From the Research Center for Proteome Analysis, Key Lab of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
Bioinformation Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
![]() |
ABSTRACT |
---|
![]() ![]() ![]() ![]() ![]() ![]() |
---|
Chronologically, the most widely used method for the complex protein mixtures prior to mass spectrometry (MS) 1 analysis is two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) (79), followed by enzymatic digestion of the separated protein spots. 2D-PAGE is capable of detecting more than 10,000 protein spots theoretically (10) and gives valuable additional information on experimental pI and Mr values of the proteins to help in protein identification (11). Moreover, the visible separation of protein isoforms on 2D-PAGE gels is often the result of post-translational protein modifications (12). Although the resolving power of 2D-PAGE is excellent, the identification of individual spot requires a second analytical step such as MS. The extraction, digestion, and analysis of each spot from 2D-PAGE are a tedious and time-consuming process. Automation of this process requires expensive robotics to cut out and process the spots. The 2D-PAGE has other limitations, concerning the detection of low-abundance proteins, hydrophobic proteins, and proteins with extreme size and charge values (9, 13, 14). In particular, the analysis of integral membrane proteins (IMPs) remains a critical challenge, although new detergents have been designed to enhance membrane protein solubility for analysis by 2D-PAGE (15, 16).
An alternative approach to 2D-PAGE, multidimensional liquid chromatography (MDLC), has emerged to directly interface protein and peptide separations to mass spectrometers. Giddings demonstrated that the overall peak capacity of multidimensional separations is the product of the peak capacities in each independent dimension only if the separation dimensions are orthogonal and components separated in one dimension remain separated in any additional separation dimension (17). To achieve this criterion, column chromatography with independent stationary phases has been coupled together in different system combinations such as LC-capillary electrophoresis or capillary isoelectric focusing-LC (1821). One strategy employing multidimensional liquid separations for protein identification in protein complexes is direct analysis of large protein complexes (DALPC) (22) by multidimensional protein identification technology (MudPIT) (20), which combines MDLC with electrospray ionization tandem mass spectrometry (MS/MS). The MDLC method integrates a strong cation exchange (SCX) resin and a reversed-phase resin in a biphasic column. This strategy was employed to the proteome of Saccharomyces cerevisiae strain BJ5460 and identified 1,484 proteins of which 131 have three or more predicted transmembrane domains (23). Directly identifying proteins from complexes bypasses the potential limitations of gel electrophoresis, including protein insolubility, limited fractionation ranges, and limited recoveries of material. MudPIT was demonstrated a dynamic range of 10,000 to 1 between the most abundant and least abundant proteins/peptides in a complex peptide mixture (20). In addition, DALPC provides a highly automatic system and rapid process for repeated analysis of protein complexes.
Bioinformatics is an integral part of proteomics research including MS data analysis and interpretation, analysis and storage of the gel images to databases, gel comparison, and advanced methods to study e.g. protein co-expression, protein-protein interactions, as well as metabolic and cellular pathways (24). With experimentally verified information on protein function lagging far behind, computational methods are needed for reliable and large-scale functional annotation of proteins. Prediction of in vivo fates of proteins such as function (25), subcellular location (2629), modification (28), hydrophobicity, and membrane protein structure has become an even more important theme of bioinformatcs. The PSORT and TargetP programs have been popular tools used for protein subcellular location prediction. The PSORT program can localize proteins in 17 different subcellular localizations (10), with a newer, retrained version called PSORT 2 that uses a slightly different decision algorithm and integrates a number of pre-existing prediction programs as well as calculated characteristics such as overall amino acid composition within a unified framework (29, 30). The TargetP predictor has more limited prediction scope than PSORT and only classifies proteins to secretory, mitochondrial, chloroplast proteins (for plant only), and others. The method looks for N-terminal sorting signals by feeding the outputs from SignalP, ChloroP, and an analogous mitochondrial predictor into a "decision neural network" that makes the final choice between the different compartments (29, 31). The grand average hydrophobicity (GRAVY) values determined according to Kyte and Doolittle (32) provide an image of the hydrophobicity of the whole protein. GRAVY values usually vary in the range ±2. Positive scores indicate hydrophobicity and negative scores indicate hydrophilicity. The TMHMM program (33) was based on a hidden Markov model and was used to predict the theoretical transmembrane (TM) domains. The TMHMM program was claimed to predict 9798% of TM helices correctly and was applied to a number of proteome data (33).
The rat is a useful, widely used animal model for biological and toxicity studies. Rat liver is one of the most important organs involved in physiological, pathological, and toxicological activities. Proteomic research on rat liver has great significance. At present, many 2D-PAGE databases of rat liver (34, 35) or its subcellular fractions such as mitochondria (36, 37), Golgi complex (38, 39), cytosol (35), nuclear pore complex (40), and mitochondrial ribosome (41) have been established. After 2D-PAGE separation of proteins followed by in-gel enzymatic digestion and MS identification, 113 unique proteins were identified from 163 protein spots among 5,222 protein spots in 78 2D-PAGE gels for rat liver (34); 273 unique proteins were identified from the total liver and cytosolic frations, 20% of which were detected only in the cytosol fraction (35); 192 unique proteins were identified from the mitochondrial fraction (37); and 47 unique proteins were identified from the Golgi complex fraction (39). Though 2D-PAGE separations produced hundreds or even thousands of resolved spots, only a few of them have been correlated to proteins. New strategy should be applied in proteomics, especially subcellular proteomics, research.
In this work, we provided a high-throughput strategy for subcellular proteomics research: identification of proteins from subcellular fractions using 2D-LC-MS/MS followed by bioinformatics annotation. Such a strategy was applied to rat liver subcellular proteome research. The four fractions from rat liver: crude mitochondria (CM) and cytosol (C) fractions obtained with differential centrifugation, a purified mitochondrial (PM) fraction obtained with nycodenz density gradient centrifugation, and a total liver (TL) fraction, were analyzed with 2D-LC-MS/MS analysis. A total of 564 rat proteins were identified and bioinformatically annotated according to their physicochemical characteristics such as molecular mass, pI, hydrophibicity, and TM domain, subcellular location annotated in Swiss-Prot database or predicted by PSORT or TargetP, and function family categorized from universal Gene Ontology (GO) annotation terms. This strategy has proved to be a high-throughput, sensitive, effective, and largely unbiased analytical approach for subcellular proteomics research.
![]() |
EXPERIMENTAL PROCEDURES |
---|
![]() ![]() ![]() ![]() ![]() ![]() |
---|
Differential Centrifugation Separation of Rat Liver Subcellular Fractions
Subcellular fractionation of rat liver was performed according to the procedure of Ayako and Fridovich (42) with minor modifications. Briefly, Sprague-Dawley rats were sacrificed and the livers were promptly removed and placed in ice-cold homogenization buffer consisting of 200 mM mannitol, 50 mM sucrose, 1 mM EDTA, 0.5 mM EGTA, and a mixture of protease inhibitor (1 mM phenylmethylsulfonyl fluoride) and phosphatase inhibitors (0.2 mM Na3VO4, 1 mM NaF) and 10 mM Tris-HCl at pH 7.4. After mincing with scissors and washing to remove blood, the livers were homogenized in a Potter-Elvejhem homogenizer with a Teflon piston, using 10 ml of the homogenization buffer per 2 g of tissue. Centrifugation at successively higher speeds at 4 °C yielded the following fractions: crude nuclear fraction at 1,000 x g for 10 min; mitochondria at 15,000 x g for 15 min; and microsomes at 144,000 x g for 90 min. The final supernatant was the cytosol fraction. Each successive pellet was washed three times with the homogenization buffer. The centrifuges used were the Himac CR 21G high-speed refrigerated centrifuge and Himac CP 80MX preparative ultracentrifuge, both from Hitachi Koki Co. Ltd. (Tokyo, Japan).
Purification of Rat Liver Mitochondria through Nycodenz Density Gradient Centrifugation
The procedures recommended by Nycomed Pharma and Invitrogen Life Technologies were followed (42). Nycodenz was dissolved to 50% (w/v) in 5 mM Tris-HCl, pH 7.4, containing 1 mM EDTA, 0.5 mM EGTA and a mixture of protease inhibitor and phosphatase inhibitors as above. This stock solution was diluted with buffer containing 0.25 M sucrose, 5 mM Tris-HCl, and 1 mM EDTA, 0.5 mM EGTA, and a mixture of protease inhibitor and phosphatase inhibitors at pH 7.4. The crude mitochondrial pellets obtained from differential centrifugation were suspended in 12 ml of 25% nycodenz and placed on the following discontinuous nycodenz gradients: 5 ml of 34% and 8 ml of 30%, and this was topped off with 8 ml of 23% and finally 3 ml of 20%. The sealed tubes were centrifuged for 90 min at 52,000 x g at 4 °C. The bands of particles seen after centrifugation have been identified by Nycomed Pharma and Invitrogen Life Technologies as follows: nuclei at the 40/50% interface; peroxisomes at the 34/40% interface; mitochondria at the 25/30% interface, lysosomes at the 15/20% interface, and Golgi membranes at the 10/15% interface (42). The band at the 25/30% interface was collected and diluted with the same volume homogenization buffer and then centrifuged at 15,000 x g for 20 min.
Protein Preparation
For preparation of the total protein extract of rat liver (TL), rat liver tissue (1.0 g) was suspended in 10 ml of lysis buffer consisting of 8 M urea, 4% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 65 mM dithiothreitol, 40 mM Tris. The suspension was homogenized for 1 min, sonicated at 100 W for 30 s, and centrifuged at 25,000 x g for 1 h. The supernatant contained the TL proteins solubilized in the isoelectric focusing-compatible agents.
For preparation of the mitochondrial fraction, the mitochondria pellets from differential centrifugation (CM) and nycodenz density gradient purification (PM) were respectively suspended in lysis buffer, sonicated at 100 W for 30 s, and centrifuged at 25,000 x g for 1 h. The supernatants were collected as CM and PM fractions.
For preparation of the C fraction, the final supernatant obtained from differential centrifugation separation of rat liver subcellular fractions was precipitated overnight with 5x volumes of 20 °C 50:50:0.1 volumes of ethanol:acetone:acetic acid. After being lyophilized to dryness, the pellets were dissolved in lysis buffer, sonicated at 100 W for 30 s, and centrifuged at 25,000 x g for 1 h. The supernatant was collected as the C fraction.
The protein concentration was determined by the Bradford assay for all four fractions (TL, CM, PM, C). Then the four protein samples were directly used for 2D-PAGE or 2D-LC-MS/MS after another precipitation and redissolving.
Trypsin Digestion of Each Protein Mixture
Appropriate volumes of protein sample for each fraction were precipitated as above, lyophilized to dryness, and redissolved in reducing solution (6 M guanidine hydrochloride, 100 mM ammonium bicarbonate, pH 8.3) with the protein concentration adjusted to 3 µg/µl. Next, 300 µg of protein sample for each fraction with 100-µl volume was mixed with 1 µl of 1 M dithiothreitol. The mixture was incubated at 37 °C for 2.5 h and then 5 µl of 1 M iodoacetamide was added and incubated for an additional 30 min at room temperature in darkness. The protein mixtures were exchanged into 100 mM ammonium bicarbonate buffer, pH 8.5, and incubated with trypsin (50:1) at 37 °C overnight.
2D-LC-MS/MS
Orthogonal 2D-LC-MS/MS was performed using a ProteomeX work station (Thermo Finnigan, San Jose, CA). The system was fitted with a SCX column (320 µm ID x 100 mm, DEV SCX, Thermo Hypersil-Keystone) and two C18 reversed-phase (RP) columns (180 µm x 100 mm, BioBasic® C18, 5 µm, Thermo Hypersil-Keystone). The salt steps used were 0, 25, 50, 75, 100, 150, 200, 400, and 800 mM NH4Cl synchronized with nine 140-min RP gradients. RP solvents were 0.1% formic acid in either water (A) or acetonitrile (B). The setting of the LCQ Deca Xplus ion-trap mass spectrometer is as follows: one full MS scan was followed by three MS/MS scans on the three most intense ions from the MS spectrum with dynamic exclusion.
SEQUEST Analysis
The SEQUEST algorithm was used to interpret MS/MS as described previously (20, 22, 23, 43, 44). Processed tandem mass spectra of the four datasets were correlated with the combined human, mouse, and rat database or only the rat database extracted from a nonredundant database comprised of Swiss-Prot, GenPept, and PIR entries and a six-way translation of dbEST downloaded from NCBI on March 1, 2003, using the program SEQUEST running on a DEC Alpha work station (43). SEQUEST results were interpreted using a conservative criteria set according to Washburn et al. (23) with minor modification. Briefly, all accepted results had a Cn of 0.1 or greater, a value shown to lead to high confidence in a SEQUEST result (43, 44). A singly charged peptide must be tryptic, and the cross-correlation score (Xcorr) had to be at least 1.8. Tryptic or partially tryptic peptides with a charge state of +2 must have a cross-correlation score of at least 2.2. Triply charged tryptic or partially tryptic peptides with a +3 charge state were accepted if the XCorr was
3.7. When a protein was identified by four or more unique peptides possessing SEQUEST scores that passed the above criteria, no visual assessment of spectra was conducted and the protein was considered present in the mixture. When a protein was identified by three or fewer unique peptides possessing SEQUEST scores that passed the above criteria, at least one of SEQUEST results was visually assessed using criteria described previously to confirm or deny the presence of a protein (22, 44). That is to say, protein identifications based on mass spectra correlating to one or more unique tryptic peptides were considered as valid identifications. Single peptides that alone identify a protein were manually validated after meeting the following criteria. First, the SEQUEST cross-correlation score must be
1.8 for a +1 tryptic peptide or
2.2 for a +2 tryptic peptide or
3.7 for a +3 tryptic peptide. Second, the MS/MS spectrum must be of good quality with fragment ions clearly above baseline noise. Third, there must be some continuity to the b or y ion series. Fourth, the y ions that correspond to a proline residue should be intensive ions. Fifth, unidentified, intense fragment ions either corresponds to +2 fragment ions or the loss of one or two amino acids from one of the ends of the peptide. After going through this process, we are fairly confident of protein identification.
Bioinformatics Annotation Tools
The theoretical pI and molecular mass values of proteins were defined by program pepstats (www.hgmp.mrc.ac.uk/Software/EMBOSS). The protein subcellular location annotation was from Swiss-Prot and TrEMBL protein database (us.expasy.org/sprot/). The GRAVY values were determined according to Kyte and Doolittle (32). The PSORT (psort.nibb.ac.jp/form2.html) (29, 30) and TargetP (www.cbs.dtu.dk/services/TargetP/) (29, 31) tools were used to predict protein subcellular location. The TMHMM (www.cbs.dtu.dk/services/TMHMM/) (33) was used to predict protein TM domains. The protein function family was categorized according to GO annotation terms (45) extracted by InterPro (www.ebi.ac.uk/interpro/) (46).
![]() |
RESULTS |
---|
![]() ![]() ![]() ![]() ![]() ![]() |
---|
|
|
|
|
Regarding the pI distribution, the 564 proteins distribute across a wide pI range (3.612.3). A total of 493 proteins (87.4%) distribute among pI 4
10 intervals but 14 (2.5%) proteins have pI < 4.3 and 65 (11.5%) proteins have pI > 10, also beyond the 2D-PAGE separation capability. Interestingly, the pI distribution patterns are very different within the four respective fractions (Fig. 2B). The TL fraction has a similar pI distribution pattern to the total 564 proteins, most of which distribute among pI 49 except for a higher percentage (15.4%) of proteins with pI > 10. Nearly half (44.2%) of the proteins identified in the C fraction distribute among pI 68 intervals. On the contrary, among the proteins identified in the PM fraction, 93 (41.0%) proteins are within pI 8
10 and 17 (7.5%) proteins have pI > 10.
Fig. 2B also shows the pI distribution of proteins only found in different fractions. Most of the proteins only identified in the C fraction distributed in the pI 58 interval, consistent with the traditional 2D-PAGE separation. Thirty-six of 93 (38.7%) proteins with pI > 10 only identified in the TL fraction are the largest part of the TL-only proteins, while no protein with pI > 10 was detected in C-only proteins. On the other hand, there are 7.3% and 8.2% components with pI > 10 found in CM-only and PM-only proteins, while PM has more proteins in pI 810 than other fractions, especially proteins in pI 89. The subcellular fractionation enriched alkaline proteins (pI 810) in the CM and PM fractions, and PM has such a pI pattern more typically than the CM fraction. By the following subcellular location annotation, it is observed that about 90% of ribosomal proteins have theoretical pI > 10 and contribute to the high percentage of proteins with pI > 10 in the TL fraction (see Table V). About 50% of annotated mitochondria proteins are theoretically in pI 810, consistent with the pI patterns of the PM fraction (see Table V).
|
|
|
|
PSORT Prediction
In this work, PSORT was used to predict the subcellular location of the total 564 proteins. Prediction results indicated that the total of 564 proteins includes 54.6% cytoplasmic, 12.9% mitochondrial, and 8.7% extracellular proteins. However, the C fraction includes more cytoplasmic proteins (65.3%) than the TL (576.1%), CM (48.7%), and PM (48.5%) fractions, while the PM fraction includes more mitochondrial proteins (25.6%) than the TL (14.3%), C (9.5%), and CM (14.6%) fractions (Fig. 3B).
TargetP Prediction
The total of 564 proteins includes 20.7% mitochondrial, 17.6% secreted, and 61.7% other proteins predicted by TargetP (Fig. 3C). In accordance with the Swiss-Prot subcellular annotation and PSORT prediction results, the TargetP prediction results indicated that the PM fraction included twice as many mitochondrial proteins (40.5%) as the TL fraction (19.1%) and the CM fraction (22.5%) and three times as many as the C fraction (12.2%). In addition, the CM fraction has more secreted proteins (29.6%) than other fractions (PM 18.1%, TL 15.4%, C 9.0%), which might resulted from contamination of the Golgi complex and ER that are involved in the synthesis, maturation, and traffic of the secreted proteins.
Evaluation of the Bioinformatics Tools Using the 352 Proteins with Swiss-Prot Annotation as a Test Dataset
It has been reported that TargetP has a sensitivity of 0.89 and a specificity of 0.67 while PSORT has a sensitivity of 0.81 and a specificity of 0.60 for mitochondrial protein prediction in a non-plant test dataset (31). However, many problems are involved in the prediction (27), and it is questionable whether the efficiency still holds when applied to proteome data (28). To evaluate the separation and purification effect and prediction efficiency, the 352 proteins with subcellular location annotation in the Swiss-Prot database are used as a test dataset for analyzing the sensitivity and specificity of subcellular fractionation and those predictors for separating or predicting cytoplasmic, mitochondrial, membrane, and ribosomal proteins. The results are shown in Table V. In this simple actual test dataset, TargetP has a sensitivity of 0.71 and a specificity of 0.66 for mitochondrial protein prediction while PSORT has a sensitivity of 0.45 and a specificity of 0.66 for mitochondrial protein prediction and a sensitivity of 0.71 and a specificity of 0.31 for cytoplasmic protein prediction. The values implied that the two tools had been overestimated. But surprisingly, the combination usage of TargetP and PSORT has a high specificity up to 0.86 for mitochondrial protein prediction. The separation and purification effect is again shown when compared to the sensitivity and specificity of a different fraction for examining cytoplasmic, mitochondrial, membrane, or ribosomal proteins (Table V). It is excitingly to find the PM fraction has a high sensitivity up to 0.95 for examining the mitochondrial proteins with specificity of 0.49, which indicates that the PM fraction has a lowered complexity and provides more specific mitochondrial proteins.
Only 54% membrane proteins have one or more TM helices predicted by TMHMM. But eight proteins with three or more TM helices are all annotated as IMPs, which mainly identified in CM or PM fractions. So, when with three or more TM helixes predicted by TMHMM, a protein would be intensively indicated as an IMP (Table III). Typically, 99% of cytoplasmic proteins have no TM domain predicted by TMHMM, and 89% of cytoplasmic proteins have a GRAVY value 0.
Functional Annotation
The identified proteins were functionally categorized based on universal GO annotation terms (45). Three hundred seventy-two (66.0%) of the identified proteins were mapped to at least one annotation term within the GO molecular function category, including 19 (5.1%) electron transfer flavoproteins, 54 (14.5%) proteins with electron transfer activity, 48 (12.9%) proteins with oxygen binding activity, 40 (10.8%) ribosome constituent proteins, 62 (16.7%) proteins with enzyme activity, 28 (7.5%) proteins with metal ion binding activity, 14 (3.8%) proteins with transcription factor activity, and 19 (5.1%) proteins with translation factor activity (Fig. 1C). The PM fraction enriched electron transfer flavoproteins (10.0%), proteins with electron transfer activity (22.0%), and proteins with oxygen binding activity (18.7%), while the C fraction enriched more metabolic enzymes (Fig. 4). In each fraction-only protein, the functional classification presents more specificity. In the TL-only fraction, ribosomal proteins are the major part (42.5%). As before mentioned, ribosomal proteins locate in the ER, which was contained in the TL fraction but removed in the C fraction. On the other hand, several ribosomal proteins can be found in the CM-only fraction and none found in the PM-only fraction. The CM fraction was from primary purification by differential centrifugation, in which may contain the ER component and thus are mixed with ribosomal proteins. After density gradient centrifugation, the ER component was removed more completely, resulting in none of the ribosomal constituents that were detected in the PM-only proteins. In the C-only proteins, enzymes occupy the greatest number. After differential centrifugation, the CM-only fraction still includes many enzyme proteins, whose coverage (24.1%) is even more than that of the whole CM fraction (16.3%) and C-only fraction (22.6%). The CM fraction may be contaminated with ER and lysosome (as shown in Table IV), which contain many enzymes. After density gradient centrifugation, the enzyme proteins decrease obviously, while electron transfer flavoproteins, proteins with electron transfer activity and proteins with oxygen binding activity become the major parts of the PM-only proteins. These observations indicate that the 2D-LC-MS/MS provide a fast and direct strategy to evaluate the results of subcellular fractionation and assess the purity of each faction.
|
![]() |
DISCUSSION |
---|
![]() ![]() ![]() ![]() ![]() ![]() |
---|
Our strategy appears to give an overall understanding of proteins in rat liver or their subcellular fractions, with little restrictions on the molecular mass, pI, hydrophobicity, and even membrane proteins. The proteins detected in 2D-PAGE gels are in general hydrophilic with negative GRAVY values (35, 49). For the 170 proteins identified by Fountoulakis et al. (35) from 2D-PAGE gels of rat liver, only 14 proteins had low positive GRAVY values (below 0.21). In our study, 65 (11.5%) hydrophobic proteins with GRAVY value >0 (up to 0.72) were identified. Without specific methods for enrichment or treatment of membrane proteins, we still identified 70 (12.4%) proteins from the total of 564 proteins having one or more predicted TM domain in which 11 proteins have three or more TM domains (Fig. 1B). In particular, eight of the 11 proteins with three or more TM domains are almost all known IMPs mainly identified in the CM or PM fraction (Table III). On the contrary, in the 170 proteins identified in rat liver or its cytosol sample through 2D-PAGE (35), only one protein with three TM domains has been identified. Furthermore, the 352 proteins with Swiss-Prot subcellular location annotation were used as an actual subcellular proteome dataset to evaluate the widely used bioinformatics tools for protein subcellular location prediction such as PSORT, TargetP, TMHMM, and GRAVY values. The sensitivity and specificity for each prediction tool might have been overevaluated previously according to our results.
Nycodenz is an iodinated density gradient media with osmolarity and viscosity lower than those of sucrose gradients (51). It can be used in density gradient centrifugation with a high-speed mode rather than an ultracentrifuge mode (42, 51). In this report, crude mitochondria by differential centrifugation and purified mitochondria by nycodenz density gradient centrifugation were obtained. Many proteins annotated as cytoplasmic, ER, peroxisomal, Golgi, lysosomal, and nuclear proteins were included in the CM fraction but apparently decreased in the PM fraction. A total of 41.9% (93/222) of proteins identified in C fractions were also identified in the CM fraction, but for the PM fraction, the value decreased to 24.8% (55/222). Excitingly, for all the 78 proteins annotated as mitochondrial (see Tables IV and V and Fig. 3), 74 (94.8%) of them had been identified in the PM fraction; moreover, 21 (26.9%) of them had only been identified in the PM fraction. Pflieger et al. (52) had validated that the mitochondria contain a large number of membrane-associated and highly alkaline proteins in yeast mitochondrial proteome research. In this work, nearly half (48.4%) of the 227 proteins identified in the PM fraction distribute in pI > 8 and even in pI > 10, and 27 (11.9%) of them have one or more TM domain. Miotochondria proteins were dramatically enriched by the purification process. Thus purified subcellular fraction would be in favor of identification of more organelle-specific proteins.
Certain subcellular fractions enriched specific functional proteins. About 4050% of the proteins identified in the PM fraction are predicted or annotated as mitochondrial proteins. Moreover, the PM fraction enriched electron transfer flavoproteins (10.0%), proteins with electron transfer activity (22.0%), and proteins with oxygen binding activity (18.7%) (Fig. 4). Many proteins annotated as cytoplasmic, ER, peroxisomal, Golgi, lysosomal, and nuclear proteins are included in the CM fraction but apparently decreased in the PM fraction. Table VI shows the identified proteins involved in the electron transport and oxidative phosphorylation occurring in mitochondria and their distribution in certain fractions. A total of 25 components involved in the electron transport and oxidative phosphorylation were obtained in this work. All of them could be found in purified mitochondria, while only three components (cytochrome c,
-ETF, and H+-transporting two-sector ATPase ß chain) were detected in the C fraction. It is concluded that protein purification and fractionation are efficient at enriching specific proteins located in certain subcellular organelle. On the other hand, it is noted that the distribution difference between TL and CM fractions are not obvious. There are 17 and 16 proteins involved in the electron transport and oxidative phosphorylation found in TL and CM fractions, respectively. These results show that differential centrifugation separated mitochondria from other subcellular components but that CM still maintained large complexity. In addition, the proteins in electron transport and the oxidative phosphorylation pathway are relatively high-abundant proteins, and some of the components were easily found in TL even with no purification of mitochondria. However, all of the 25 proteins were found in PM, which showed the efficient decrease of complexity of sample and enabled more mitochondria-specific proteins to be identified with the nycodenz density gradient centrifugation. Moreover, there are two IMPs involved in electron transfer and oxidative phosphorylation (ATP synthase E chain and cytochrome c oxidase subunit II) detected in this work, and both of them were only found in PM. The nycodenz density gradient centrifugation increases the capability of identification of membrane proteins that are usually low-abundant proteins. However, there are many proteins in the PM fraction possessing subcellular location other than mitochondrial, and about 4% of the TM proteins were detected in the C fraction. These phenomena could result from i) contamination during the preparation, ii) the fact that other fraction or organelles are in close contact with certain fraction, or iii) cross-localization in different fractions (50).
|
![]() |
FOOTNOTES |
---|
Published, MCP Papers in Press, January 22, 2004, DOI 10.1074/mcp.M300117-MCP200
1 The abbreviations used are: MS, mass spectrometry; 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis; IMP, integral membrane proteins; MDLC, multidimensional liquid chromatography; 2D-LC, two dimensional liquid chromatography; MS/MS, tandem mass spectrometry; DALPC, direct analysis of large protein complexes; MudPIT, multidimensional protein identification technology; CM, crude mitochondria; PM, purified mitochondria; C, cytosol; TL, total liver; TM, transmembrane; GRAVY, grand average hydrophobicity; GO, Gene Ontology; SCX, strong cation exchange; RP, reversed phase; ER, endoplasmic reticulum.
* This work was supported by National High-Technology Project (2001AA233031, 2002BA711A11) and Basic Research Foundation (2001CB210501). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
¶ To whom correspondence should be addressed: Research Center for Proteome Analysis, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China. Tel.: 86-21-54920170; Fax: 86-21-54920171; E-mail: zr{at}sibs.ac.cn
![]() |
REFERENCES |
---|
![]() ![]() ![]() ![]() ![]() ![]() |
---|