1II. Physiologisches Institut, Universität Göttingen, D-37073 Gottingen; and 2Klinische Forschergruppe Neuroregeneration, Neurologische Klinik, Universität Würzburg, D-97080 Wurzburg, Germany
![]() |
ABSTRACT |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Metzger, Friedrich,
Anna Kulik,
Michael Sendtner, and
Klaus Ballanyi.
Contribution of Ca2+-Permeable AMPA/KA Receptors to
Glutamate-Induced Ca2+ Rise in Embryonic Lumbar Motoneurons
In Situ.
J. Neurophysiol. 83: 50-59, 2000.
Intracellular Ca2+
([Ca2+]i) was fluorometrically measured with
fura-2 in lumbar motoneurons of acutely isolated spinal cord slices from embryonic rats. In ester-loaded cells, bath-applied glutamate (3 µM to 1 mM) evoked a [Ca2+]i increase by up
to 250 nM that was abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) plus 2-amino-5-phosphonovalerate (APV). CNQX or APV alone reduced the response by 82 and 25%, respectively. The glutamatergic agonists kainate (KA), quisqualate (QUI), and
S--amino-3-hydroxy-5-methyl-4-isoxalone (S-AMPA) evoked a similar
[Ca2+]i transient as glutamate.
N-methyl-D-aspartate (NMDA) was only effective to increase [Ca2+]i in
Mg2+-free saline, whereas
[1S,3R]-1-aminocyclopentane-1,3-dicarboxylic acid
([1S,3R]-ACPD) had no effect. The glutamate-induced
[Ca2+]i rise was suppressed in
Ca2+-free superfusate. Depletion of Ca2+ stores
with cyclopiazonic acid (CPA) did not affect the response. Thirty-six
percent of the [Ca2+]i increase in response
to membrane depolarization induced by a 50 mM K+ solution
persisted on combined application of the voltage-gated Ca2+
channel blockers nifedipine,
-conotoxin-GVIA and
-agatoxin-IVA. In fura-2 dialyzed motoneurons, the glutamate-induced
[Ca2+]i increase was attenuated by ~70%
after changing from current to voltage clamp. Forty percent of the
remaining [Ca2+]i transient and 20% of the
concomitant inward current of 0.3 nA were blocked by Joro spider
toxin-3 (JSTX). The results show that voltage-gated Ca2+
channels, including a major portion of R-type channels, constitute the
predominant component of glutamate-induced
[Ca2+]i rises. NMDA and
Ca2+-permeable KA/AMPA receptors contribute about equally
to the remaining component of the Ca2+ rise. The results
substantiate previous assumptions that Ca2+ influx through
JSTX-sensitive KA/AMPA receptors is involved in (trophic) signaling in
developing motoneurons.
![]() |
INTRODUCTION |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
It is established that glutamate
receptor-associated rises of the free intracellular
Ca2+ concentration
([Ca2+]i) are of ultimate
importance for neuronal excitability (Collingridge and Singer
1990; Finkbeiner and Greenberg 1998
;
Hollmann and Heinemann 1994
; Mayer and Westbrook
1987
) and pathophysiological processes (Choi and Rothman
1990
; Krieger et al. 1996
). But
glutamate-mediated [Ca2+]i increases also
seem to play a crucial role in the outgrowth of dendrites and axons and
thus influence neuronal differentiation during development of the brain
(Collingridge and Singer 1990
). Local glutamate-induced
[Ca2+]i increases
influence postsynaptic phosphorylation of microtubule-associated proteins (e.g., MAP-2) (Quinlan and Halpain 1996
). Such
phosphorylation might initiate structural changes by modulation of
microtubule stability and bundling during neuritogenesis
(Ávila et al. 1994
). In particular glutamate
receptors that are activated by kainate (KA) or
-amino-3-hydroxy-5-methyl-4-isoxalone (AMPA) (Hollmann and
Heinemann 1994
) seem to be involved in the trophic effects of
glutamate. Activation of KA/AMPA receptors has been demonstrated to
reduce outgrowth and mobility of hippocampal neurons (Mattson et
al. 1988
). These ionotropic glutamate receptors were also found to influence developing motoneurons that are among the earliest neurons
to differentiate within the CNS. As an example, KA/AMPA receptors are
responsible for suppression of neurite outgrowth in spinal motoneurons
from embryonic rodents (Metzger et al. 1998
; Owen
and Bird 1997
). The highly selective blocker of the
Ca2+-permeable subtype of KA/AMPA receptors Joro
spider toxin-3 (JSTX) (Blaschke et al. 1993
;
Meucci and Miller 1998
) was found to inhibit this
response (Metzger et al. 1998
). This led to the
hypothesis that the latter trophic effect of glutamate on spinal
motoneurons is causally related to localized elevation of
[Ca2+]i that follows
Ca2+ influx through the JSTX-inhibitable KA/AMPA
receptors (Metzger et al. 1998
).
Despite the central role of Ca2+-permeable
KA/AMPA receptors for synaptic, trophic, and pathological glutamatergic
processes, there is only sparse information exclusively from studies on
cell cultures or expression systems on the effects of the toxin on glutamate receptor-associated neuronal Ca2+
transients (Meucci and Miller 1998; Savidge and
Bristow 1998
; Ying et al. 1997
). According to
our knowledge, the contribution of JSTX-sensitive KA/AMPA receptors to
glutamate-evoked [Ca2+]i
increases of neurons in functionally intact brain slices has not been
not studied so far. To test the hypothesis that
Ca2+-permeable KA/AMPA receptors are involved in
glutamatergic trophic modulation of developing motoneurons
(Metzger et al. 1998
), we have analyzed the effects of
JSTX on glutamate receptor-induced [Ca2+]i rises in lumbar
motoneurons of acutely isolated spinal cord slices from rats at
embryonic days 17-18. Within this time period, glutamatergic
synapses are formed (Furuyama et al. 1993
; Gao
and Ziskind-Conhaim 1995
; Kudo et al. 1993
;
Ziskind-Conhaim 1990
), and glutamate exerts an
inhibitory action on dendrite outgrowth of these cells (Metzger
et al. 1998
; Owen and Bird 1997
). The motoneurons that were functionally identified by antidromic stimulation were either filled with the Ca2+-sensitive dye
fura-2 by exposure of the slices to fura-2 acetoxymethyl (AM)-ester or
by dialysis via the patch electrode (Ballanyi and Kulik
1998
). The results show that even saturating concentrations of
glutamate or ionotropic receptor agonists evoke only a moderate (<250
nM) rise of [Ca2+]i that
is mediated at least by 70% via voltage-gated
Ca2+ channels. About 50% of the remaining
Ca2+ influx is caused by both
Ca2+ influx through NMDA and JSTX-sensitive
KA/AMPA receptors. It is hypothesized that these KA/AMPA receptors play
an important role in Ca2+-dependent (trophic)
neuronal signaling.
![]() |
METHODS |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Preparation of spinal cord slices
The experiments were performed on lumbar motoneurons of
transverse spinal cord slices that were acutely isolated from 17- to
18-day-old Wistar rat fetuses. Pregnant rats were anesthetized with
ether and killed by cervical dislocation. The fetuses were removed by
Caesarean section and decapitated. The lumbar part of the spinal cord
was dissected together with surrounding tissue and meninges and
transferred to ice-cold solution (for composition, see Solutions
and superfusion system). Afterward, the spinal cord was embedded
into 2% agarose solution at ~35°C (Gao and Ziskind-Conhaim 1995) and subsequently cooled down on ice. The agarose block
including the spinal cord was glued to the stage of a vibratome
(Vibracut, FTB, Weinheim, Germany). Transverse 300 µm thick slices
were cut from the spinal cord together with the surrounding agarose.
Before transfer to the recording chamber, the slices were stored at
30°C (Ballanyi 1999
).
Solutions and superfusion system
After transfer and immobilization of individual slices with a
net, the recording chamber (volume 3 ml) was superfused at 30°C with
oxygenated standard solution (flow rate 5 ml/min) of the following
composition (in mM): 118 NaCl, 3 KCl, 1 MgCl2,
1.5 CaCl2, 25 NaHCO3, 1.2 NaH2PO4, and 10 D-glucose. The pH was adjusted to 7.4 by gassing with 95%
O2 and 5% CO2. In a high
K+ solution, 50 mM NaCl was substituted by KCl.
Ca2+-free standard solution contained 1 mM
ethylene-glycol-bis-(-aminoethyl ester)-N,N,N',N'-tetraacetic acid (EGTA) and 5 mM
MgCl2. In the Mg2+-free
solution, Mg2+ was substituted by 1 mM
Ca2+. Drugs purchased from Sigma (Deisenhofen,
Germany), RBI/Biotrend (Köln, Germany), Calbiochem (Bad Soden,
Germany), or Tocris/Biotrend (Köln, Germany) were added to the
superfusate from stock solutions. The following stock solutions (in
standard saline) were used (in mM): 100 glutamate, 10 KA, 10 quisqualate (QUI), 10 N-methyl-D-aspartate (NMDA), 10 2-amino-5-phosphonovalerate (APV), 10 (+)-
-methyl-4-carboxyphenylglycine (MCPG), 1 tetrodotoxin (TTX), 1 JSTX, 100 Co2+, 100 Ni2+, 1
-agatoxin-IVA, and 1
-conotoxin-GVIA. Cyclopiazonic acid (CPA, 50 mM), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 mM), nifedipine (50 mM), methoxyverapamil (D-600, 100 mM), and the active
enantiomer of AMPA, S-AMPA (50 mM), were dissolved in DMSO. One
millimolar 1S,3R-1-aminocyclo-pentane-1,3-dicarboxylic acid ([1S,3R]-ACPD) was dissolved in 0.1 M NaOH. Agarose was dissolved in
standard solution by heating to 100°C. Fura-2 acetoxymethylester (fura-2-AM), fura-2 pentapotassium salt (fura-2), and pluronic acid
were obtained from Molecular Probes (Eugene, Oregon).
Fluorometric measurements of [Ca2+]i
[Ca2+]i was
fluorometrically measured using an upright microscope [Axioscope
(digital imaging system) or Standard-16 (photomultiplier system),
Zeiss, Oberkochen, Germany] that was equipped with epifluorescence optics, a monochromator (Polychrome II, T.I.L.L. photonics, Planegg, Germany) and either a charge-coupled device (CCD) camera (T.I.L.L. photonics) or a photomultiplier (Luigs und Neumann, Ratingen, Germany).
For fura-2 excitation, cells were exposed to alternating wavelengths
(360 and 380 nm), whereas emission was measured at 515 nm. Images were
aquired at a frequency of 1 Hz, and exposure time was 20 ms.
Fluorescence ratios of the fura-2 signals were converted into
[Ca2+]i by using
Eq. 1 [Ca2+]i = K(R Rmin)/(Rmax
R) (Grynkiewicz et al. 1985
), in which R is the fluorescence ratio (360 nm/380 nm) and K
is the effective dissociation constant of fura-2. In vivo calibrations
to determine Rmin,
Rmax and K were performed
according to the method described by Neher (1989)
.
Briefly, measurements were performed with three different pipette
solutions (in mM): 1) 130 KCl, 1 MgCl2, 10 K-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
(BAPTA), 10 N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), and 1 Na2ATP (low calcium;
Rmin); 2) 130 KCl, 1 MgCl2, 3 CaCl2, 4 K4BAPTA, 10 HEPES, and 1 Na2ATP [intermediate calcium; 300 nM, according
to a KD of 107 nM for BAPTA (Tsien 1980
)]; and 3) 130 KCl, 1 MgCl2, 10 CaCl2, 10 HEPES, and 1 Na2ATP (high calcium;
Rmax); to each solution 100 µM
fura-2 was added. The resulting intracellular fluorescence ratios were
calculated according to Eq. 1. K was calculated
as K = 300 nM (Rmax
R)/(R
Rmin). Cells were loaded with fura-2
either by incubation of slices in standard solution containing 10 µM
fura-2-AM, 5 µM pluronic F-127, and 0.1% albumin (bovine) for 30 min
at 37°C or by dialyzing an individual cell via a patch pipette with a
solution containing 100 µM fura-2.
Electrophysiological recording and stimulation
For intracellular recording from lumbar motoneurons, patch
pipettes were obtained from borosilicate glass capillaries (GC 150TF,
Clark Electromedical Instruments, Pangbourne, UK) using a horizontal
electrode puller (Zeitz, München, Germany). The standard patch
pipette solution contained (in mM) 140 potassium gluconate, 1 MgCl2, 10 HEPES, and 1 Na2ATP, pH 7.3-7.4. The resistance of the patch
electrodes ranged from 4 to 6 M. Whole cell recordings were
performed on superficial neurons under visual control, using an EPC-9
patch-clamp amplifier (HEKA, Lambrecht,Germany). Membrane conductance (gm) was measured by
application of hyperpolarizing currents (5-10 pA) or voltage pulses
(
20 mV) with a duration of 500 ms.
For functional identification of lumbar motoneurons, suction electrodes
were positioned close to the ventrolateral surface of the spinal cord
slices in the vicinity of ventral nerve rootlets (Fig.
1A). In eight of nine whole
cell recorded cells from slices of five different animals, single pulse
stimulation (10-80 V, 100 µs) via the suction electrode evoked an
action potential of 60 to 100 mV amplitude (Fig. 1B). The
short latency (200-500 µs) of these spikes and also the observation
that no postsynaptic potentials were observed on decreasing the
stimulation voltage to 90% of activation threshold (T90%) suggests
antidromic activation of motoneurons as the cause of these responses
(Fig. 1B) (for details, see Lev-Tov and O'Donovan
1995; O'Donovan et al. 1994
; Ziskind-Conhaim 1988
). In the neuron that did not
respond to antidromic stimulation, spiking could also not be evoked by
injection of depolarizing current pulses (not shown). In the other
cells, repetitive spike discharge was elicited by injection of
depolarizing current pulses (30-40 pA). These action potentials were
blocked by addition of 1 µM TTX to the superfusate (Fig.
1C). In the latter motoneurons, tetanic antidromic
stimulation (50 Hz, 2 s, 10-40 V, single pulse duration 100 µs)
evoked a [Ca2+]i increase
of between 50 and 130 nM that was abolished by TTX (not shown).
|
Data analysis
Electrophysiological and microfluorometrical signals were sampled into a Macintosh PowerPC (Apple Computers, Cupertino, CA) using Pulse/Pulsefit and X-Chart/Fura extension from HEKA. Current and voltage signals were also digitized (Instrutech VR-100A, Elmont, NY) and recorded on a VCR. Statistical significance of differences was assessed by ANOVA followed by Dunnet's test using the GraphPad Prism software (San Diego, CA). Values are given as means ± SE.
![]() |
RESULTS |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Glutamate-evoked [Ca2+]i rises in functionally identified motoneurons
In a first series of experiments, slices were loaded with fura-2-AM to assess the population response to glutamate of motoneurons within the ventrolateral aspect of gray matter. Similar to the high probability of antidromic activation of individual whole cell recorded motoneurons (Fig. 1, A-C, see METHODS), >70% of the fura-2 ester-loaded cells (Fig. 1D) responded to tetanic stimulation with a rise of [Ca2+]i by 50-100 nM from a baseline of between 50 and 150 nM (83 ± 6 nM, mean ± SE, n = 23; Fig. 1E). The stimulus-evoked [Ca2+]i transients in these cells from slices of five animals were not due to direct effect of the electrical stimulation because they were abolished by 1 µM TTX (Fig. 1E). Furthermore, as indicated in the scheme of Fig. 1A, no [Ca2+]i rises were evoked after positioning the stimulation electrode by ~200 µm more medially or laterally without changing the overall distance to the recorded neurons. The assumption that by far most of the neurons in this region of the slices are motoneurons gained further support from the size of the cell somata (>15 µm diam) and the shape of dendrites (Figs. 1D and 2A). All cells in which antidromic activation produced a [Ca2+]i increase also responded to bath application of 300 µM glutamate for 15 s. In contrast to the stimulus-evoked intracellular Ca2+ rises, the magnitude of the glutamate-evoked [Ca2+]i increase (210 ± 19 nM, n = 20) was not substantially reduced by TTX (88.4 ± 5.6% of control; Fig. 1E). All cells responded with a very similar [Ca2+]i increase to different concentrations of glutamate (Fig. 2, A and B). The dose-dependent mean rise of [Ca2+]i saturated at values of ~200 nM above baseline at glutamate concentrations of 0.3-1 mM (Fig. 2, C and D). The concentration threshold of the glutamate-induced [Ca2+]i rise was ~3 µM, and a half-maximal rise occurred at a glutamate concentration of 64 ± 13 µM (Fig. 2D). On wash out, intracellular Ca2+ returned to baseline with monoexponential kinetics [time constant (t1/2) 55.5 ± 5 s, n = 20].
|
Glutamate receptor pharmacology
In a further series of experiments, the pharmacology of the effects of glutamate on [Ca2+]i was investigated. The [Ca2+]i response to 300 µM glutamate (15 s) was suppressed to 18.4 ± 2.6% (n = 16) of control after 5 min of preincubation of the slices with 50 µM CNQX, a blocker of the KA/AMPA subtype of glutamate receptors (Fig. 3, A and C). In contrast, preincubation with the NMDA receptor antagonist APV (100 µM) reduced the peak of the glutamate-induced intracellular Ca2+ rise to 74.7 ± 2.7% (n = 16) of control (Fig. 3, B and C). The [Ca2+]i response to glutamate was almost abolished on combined application of both antagonists (Fig. 3, A and C). The KA/AMPA receptors agonists S-AMPA (20 and 50 µM), KA (50 and 100 µM; Fig. 4A), and QUI (100 µM; Fig. 4B) increased intracellular Ca2+ to a similar moderate level as seen during glutamate on bath application for 15 s (for statistics, see Fig. 4D). As exemplified in Fig. 4B for QUI, the [Ca2+]i rises evoked by the KA/AMPA receptor agonists were attenuated to 14.5 ± 3.1% (n = 12) of control after preincubation with CNQX. In contrast to the KA/AMPA receptor agonists, bath application of NMDA (50 and 200 µM) had only a minor effect on [Ca2+]i in standard solution. In Mg2+-free saline, however, the drug evoked intracellular Ca2+ rises of 116 ± 7 nM (n = 15), and these responses were effectively blocked by 100 µM APV (Fig. 4, C and D).
|
|
In contrast to the inhibitory action of CNQX and APV, the broad spectrum metabotropic glutamate receptor antagonist MCPG (200 µM) had no effect on the glutamate-induced intracellular Ca2+ changes (n = 12; not shown). Furthermore, bath application of the metabotropic glutamate receptor agonist [1S,3R]-ACPD (100 µM, 5 min), did not change [Ca2+]i (n = 9; not shown). As further indication that metabotropic receptors, which act on IP3-sensitive Ca2+ stores, have a negligible contribution to glutamate-induced [Ca2+]i rises, the effects of the endoplasmatic reticulum Ca2+-ATPase blocker CPA were tested. Bath application of 50 µM of the drug led to a rise of [Ca2+]i by between 10 and 40 nM (n = 15). However, CPA did not change the [Ca2+]i transient in response to 300 µM glutamate (Fig. 5A). The conclusion from these results, that the glutamate-induced Ca2+ signal results from Ca2+ influx from the extracellular space, is supported by the finding that the [Ca2+]i responses were reversibly abolished by Ca2+-free superfusate (n = 15; Fig. 5B).
|
Blockers of voltage-gated Ca2+ channels
For determination of a possible contribution of voltage-gated
Ca2+ channels to the glutamate-induced
[Ca2+]i rises in the
lumbar motoneurons, the effects of blockers of these channels were
tested. The L-type Ca2+ channels blockers D-600
(200 µM) and nifedipine (50 µM) reduced the glutamate-evoked
[Ca2+]i increase to 75 and 73% of control, respectively (Table
1). The P- (and Q-) type
Ca2+ channel antagonist -agatoxin-IVA (200 nM)
and the blocker of N-type Ca2+
channels
-conotoxin-GVIA (1 µM) had a similar modest attenuating effect on the glutamate-evoked Ca2+ transients
(Fig. 6A; Table 1). Combined
administration of
-agatoxin-IVA,
-conotoxin-GVIA, and nifedipine
decreased the glutamate-induced [Ca2+]i transient by
~50% (Table 1).
|
|
To investigate whether the remaining Ca2+
transient represents Ca2+ influx exclusively
through glutamate receptors after block of voltage-gated
Ca2+ channels, the effects of the drugs were
tested on depolarization-induced [Ca2+]i rises.
Superfusion for 1 min of a solution that contained 50 mM
K+ led to a mean rise of
[Ca2+]i by 101 ± 6 nM (n = 21). Similar with the above finding that TTX
produced only a modest attenuation of the glutamate-evoked [Ca2+]i rise, TTX only
slightly reduced the K+-induced
Ca2+ rise (87.8 ± 8.1% of control,
n = 12). This excludes that the K+-mediated neuronal depolarization initiates a
major release of glutamate or other neuroactive substances that act on
intracellular Ca2+. D-600 and nifedipine
attenuated the K+-evoked
Ca2+ transients to 47 and 40% of control,
respectively, whereas -agatoxin-IVA and
-conotoxin-GVIA decreased
the responses to 71 and 67% of control (Fig. 6A; Table 1).
On combined administration of
-agatoxin-IVA,
-conotoxin-GVIA, and
nifedipine, 36% of the K+-evoked intracellular
Ca2+ rise persisted in average (Table 1).
Because combined application of selective blockers of L-, N-, and
P-type voltage-gated Ca2+ channels was not
effective to abolish Ca2+ influx due to
K+-induced depolarization (see also
Bacskai et al. 1995; Magnelli et al.
1998
; Plant et al. 1998
; Regan et al.
1991
; Wu et al. 1999
), the effects of
nonspecific blockers were analyzed. Co2+ (0.5 mM)
reduced the glutamate- and the K+-evoked
Ca2+ rise to 49 and 36% of control, respectively
(Table 1). Finally, the K+-induced intracellular
Ca2+ transients were reduced to 4%
of the control response by 2 mM Ni2+ (Fig.
6B). However, also the glutamate-associated
[Ca2+]i transient was
blocked to 6% of control (n = 12) with
Ni2+ (Fig. 6B, Table 1). As revealed
by [Ca2+]i measurements
in four whole cell recorded cells (see
[Ca2+]i rises due to JSTX-sensitive KA/AMPA
receptors in voltage clamp), Ni2+ not only abolished
the glutamate-induced Ca2+ transient, but
also strongly attenuated the concomitant inward current by 78% (Fig.
6, C and D; Table 1). In summary, these results showed that voltage-gated Ca2+ channel blockers are
not useful for analysis of the relative contribution of NMDA and
Ca2+-permeable KA/AMPA receptors to the glutamate-induced
Ca2+ transients in ester-loaded spinal cord neurons from
embryonic rats.
[Ca2+]i rises due to JSTX-sensitive KA/AMPA receptors in voltage clamp
To exclude the contribution of Ca2+ channels
to the glutamate response, motoneurons that were dialyzed with fura-2
via the patch electrode were studied under voltage-clamp conditions. In
current clamp, a mean resting potential of 55.2 ± 1.5 mV was
revealed. Injection of depolarizing current pulses evoked action
potentials with an amplitude of up to 100 mV (compare Fig. 1;
n = 8). Application of 300 µM glutamate (15 s)
induced a mean depolarization to
21.8 ± 1.9 mV and elevated
[Ca2+]i by 271 ± 4 nM (n = 4; Fig. 6D). In these motoneurons,
switching to voltage clamp revealed a glutamate-induced inward current
of
180 ± 4 pA (at a holding potential of
60 mV). The
concomitant [Ca2+]i rises
were significantly (P < 0.01) smaller (69 ± 1 nM, i.e., <30% of control) than under current clamp (Fig.
6D). These results indicate that a major part of the
glutamate-evoked [Ca2+]i elevation is
secondary due to activation of voltage-gated Ca2+ channels.
To test whether the remaining component of glutamate-induced
[Ca2+]i rise in voltage clamp includes
Ca2+ entry through KA/AMPA receptors, the effects of JSTX
were studied. The example of Fig.
7A shows that superfusion
of the NMDA receptor antagonist APV (100 µM) had an attenuating
effect on both the glutamate-induced [Ca2+]i
increase (68 ± 4% of control) and inward current (81 ± 3%
of control, n = 4). Subsequent addition of 1 µM
JSTX to the superfusion fluid resulted in further suppression of the
glutamate-evoked Ca2+ rise and inward current in these
cells to 32 ± 4 and 38 ± 5% of control, respectively (Fig.
7, A and C). These inhibitory effects were reversible after wash out of the toxin in the presence of APV
(Fig. 7A). In a final set of voltage-clamp experiments,
the effects of JSTX on [Ca2+]i and membrane
current on activation of KA/AMPA receptors with S-AMPA were studied. In
five cells tested, S-AMPA evoked a mean [Ca2+]i increase by 64 ± 1 nM and a
concomitant inward current of 236 ± 9 pA. JSTX attenuated the
[Ca2+]i response to 52 ± 6% of
control, whereas the inward current was suppressed to 74 ± 8%
(Fig. 7, B and C). These voltage-clamp experiments showed that both NMDA receptors and
Ca2+-permeable KA/AMPA receptors contribute to the
glutamate-induced [Ca2+]i increase.
|
![]() |
DISCUSSION |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
[Ca2+]i rises that are associated with activation of glutamate receptors were studied in functionally identified lumbar motoneurons from fetal spinal cord slices. It was found that voltage-gated Ca2+ channels constitute the most prominent component of the intracellular Ca2+ transients on exposure to high (300 µM) concentrations of glutamate, but both NMDA and JSTX-sensitive Ca2+-permeable glutamate receptors have a noticeable contribution. These results are consistent with recent observations that neurite outgrowth in developing motoneurons is regulated by glutamate via Ca2+ influx through JSTX-sensitive KA/AMPA receptors.
[Ca2+]i rises in antidromically activated lumbar motoneurons
Previous studies on intracellular Ca2+ in
identified motoneurons in situ were primarily devoted to analysis of
Ca2+ buffering mechanisms (Lips and Keller
1998; Palacek et al. 1999
) or of dynamic
[Ca2+]i changes during
(spontaneous) activity (Bacskai et al. 1995
; Lev-Tov and O'Donovan 1995
; O'Donovan et al.
1994
). In agreement with the latter reports, we found that
repetitive stimulation of ventral roots evokes
[Ca2+]i increases in the
vast majority of neurons within the ventrolateral aspect of the gray
matter in the spinal cord slices. The observation that these
Ca2+ transients were blocked with TTX and could
only be evoked in the close vicinity of the ventral roots suggests that
they were secondary due to antidromic action potentials leading to
activation of voltage-gated Ca2+ channels in the
cell soma. The recorded embryonic motoneurons of the present study were
electrically excitable as spike discharge was observed on injection of
depolarizing current via the patch electrode (see also
Ziskind-Conhaim 1988
, 1990
). Bath-applied glutamate evoked rather stereotypic
[Ca2+]i increases in all
cells that responded to antidromic stimulation with a
Ca2+ transient. Therefore it is very likely that
the glutamate-induced [Ca2+]i transients
observed in this study occurred in motoneurons and not interneurons
(Bacskai et al. 1995
; Gao and Ziskind-Conhaim 1995
; Lev-Tov and O'Donovan 1995
;
O'Donovan et al. 1994
; Ziskind-Conhaim 1990
).
Mediation of glutamate-induced [Ca2+]i rises by ionotropic receptors
APV and, to a considerably larger extent, CNQX reduced the
glutamate-induced [Ca2+]i
transients in the lumbar motoneurons. This agrees well with previous
studies that suggested that KA/AMPA as well as NMDA receptors are
expressed and contribute to synaptic processes in spinal motoneurons of
17- to 18-day-old rat embryos (Gao and Ziskind-Conhaim
1995; Mandler et al. 1990
;
Ziskind-Conhaim 1990
). This view is supported by the
finding that NMDA (in the absence of extracellular
Mg2+) and also KA, QUI, or S-AMPA elevated
[Ca2+]i to values similar
to those induced by glutamate. Combined administration of CNQX and APV
as well as Ca2+-free superfusate abolished the
glutamate-induced [Ca2+]i
transient (see also Fryer et al. 1999
; Hubert et
al. 1998
; Tymianski et al. 1993
). The latter
results indicate that Ca2+ release from
IP3-sensitive stores due to activation of
metabotropic glutamate receptors (Murphy and Miller
1988
; Nicoletti et al. 1996
) had no major
contribution to the Ca2+ response to glutamate.
This assumption gains support from the observations that the
metabotropic glutamate receptor antagonist MCPG did not change the
glutamate-evoked [Ca2+]i
rise, whereas the broad spectrum metabotropic agonist [1S,3R]-ACPD had no effect on the Ca2+ baseline (see also
Hubert et al. 1998
). Nevertheless,
Ca2+ stores appear to be operating in the
embryonic motoneurons as administration of the
Ca2+ store uptake blocker CPA evoked a noticable
Ca2+ rise. However, CPA did not attenuate the
glutamate-induced [Ca2+]i transient.
Magnitude of glutamate-induced peak [Ca2+]i rises
In the spinal motoneurons of the present study, ionotropic
glutamate receptor agonists or saturating concentrations of glutamate (300 µM) elevated
[Ca2+]i on average by
~200 nM. The relatively large size of the motoneuron somata (15-20
µm) is not responsible for these moderate peak amplitudes of the
glutamate receptor-associated
[Ca2+]i increases as
considerably larger (>0.5 µM) glutamate-evoked Ca2+ transients are revealed in mature dorsal
vagal neurons of similar dimension (Ballanyi et al.
1998). The latter observation excludes the possibility that
fura-2-induced intracellular Ca2+ buffering
leads to underestimation of the peak of the glutamate-induced intracellular Ca2+ rise. In one comparative
study, similar modest
[Ca2+]i responses to
glutamate receptor activation were found in cultured motoneurons,
whereas glutamate-induced Ca2+ rises were
considerably larger in cultured cerebellar granule cells (Hubert
et al. 1998
). Also a further report revealed a modest glutamate-evoked [Ca2+]i
rise in cultured embryonic spinal motoneurons (Fryer et al. 1999
). In contrast, peak responses of intracellular
Ca2+ exceeding 1 µM were revealed in two other
studies (Carriedo et al. 1996
; Tymianski et al.
1993
). Species-specific differences between mice
(Carriedo et al. 1996
; Tymianski et al.
1993
) and rats (Fryer et al. 1999
; Hubert
et al. 1998
; present study) might be responsible for such
differences in the magnitude of glutamate-induced Ca2+ transients (see also Ballanyi
1999
).
Differences in the maturational state of the motoneurons could also
underly the discrepanies between the peak values of the glutamate
receptor-evoked [Ca2+]i
transients in the above studies. Large
[Ca2+]i rises due to
glutamate (receptor agonists) were revealed in motoneurons that were
kept in culture for >2 wk before the measurements (Carriedo et
al. 1996; Tymianski et al. 1993
). In contrast, a modest elevation of intracellular Ca2+ was seen
in motoneurons that were either investigated within 1 to 3 days after
isolation from rats at embryonic day 15 (Fryer et al.
1999
; Hubert et al. 1998
) or within hours after
preparation of acute spinal cord slices from rats of embryonic days
17-18 (our study). A different maturational state of the
motoneurons in the latter reports would be in agreement with the
observation that embryonic motoneurons are more susceptible to
glutamate-mediated excitotoxicity after 2 wk in culture (Regan
and Choi 1991
; Stewart et al. 1991
;
Tymianski et al. 1993
). The presumed age dependence of
both the peak value of
[Ca2+]i rises, and the
concomitant vulnerability due to glutamate thus appears causally
related to a developmental change in the magnitude of glutamate-induced
depolarization (Seno et al. 1984
; Ziskind-Conhaim 1990
). Age-dependent differences in the peak amplitude of the response to glutamate might lead to activation of different types (and/or numbers) of high-voltage-activated Ca2+
channels (see Role of voltage-gated Ca2+
channels). Indeed, the recent observation that the
high-voltage-activated component of Ca2+ channels is
progressively increased in embryonic motoneurons within several days of
culture fits into this proposed scenario (Magnelli et al.
1998
).
Role of voltage-gated Ca2+ channels
Combined block of L-, N-, and P/Q-type Ca2+
channels was found to reduce the
[Ca2+]i transient due to
application of 300 µM glutamate by >50%. This shows that
Ca2+ entry from the interstitial
space via high-voltage-activated Ca2+ channels
has a major contribution to Ca2+ rises in spinal
motoneurons in situ on stimulation of ionotropic glutamate receptors.
The relevance of Ca2+ channels might be even
underestimated as administration of a mixture of -agatoxin-IVA,
-conotoxin-GVIA, and nifedipine at supramaximal concentrations
reduced K+-evoked
[Ca2+]i rises by <65%.
This indicates that in addition to N-, L-, and P/Q-type
Ca2+ channels the so-called "R-type" isoform
constitutes a major population of voltage-gated
Ca2+ channels in the embryonic lumbar motoneurons
in situ as was suggested also for cultured motoneurons (Hivert
et al. 1995
; Magnelli et al. 1998
; Scamps
et al. 1998
), facial motoneurons of slices (Plant et al.
1998
), and other central neurons (Bacskai et al.
1995
; Regan et al. 1991
; Wu et al.
1999
). In addition to involvement of R-type voltage-gated
Ca2+ channels channels in the glutamate-induced
[Ca2+]i rises, the amount
of depolarization that is evoked by glutamate or high
K+ solutions needs to be considered. This is due
to the fact that the magnitude of membrane depolarization is critical
for the relative contribution of different types of
Ca2+ channels to depolarization-induced
intracellular Ca2+ rises. For example, it was
found that
-conotoxin-GVIA blocks ~50% of current through
voltage-gated Ca2+ channels on depolarization of
cultured motoneurons to 0 mV, whereas the drug only has an attenuating
effect of 7% during depolarization to
30 mV (Viana et al.
1997
). This might explain the relatively small effect of the
toxin on the K+- and glutamate-induced
[Ca2+]i rises in the
present study because the cells were solely depolarized to about
20
mV by both these procedures.
A pivotal role of voltage-gated Ca2+ channels in
the [Ca2+]i rises in
response to high concentrations of glutamate or ionotropic agonists is
also suggested by the finding that these Ca2+
transients were reduced by ~70% after switching from current to
voltage clamp during whole cell recording. Also under these conditions,
the quantitative contribution of Ca2+ channels
might be underestimated due to possibly imperfect voltage control of
the glutamate-induced inward current secondary to space-clamp problems
(Magnelli et al. 1998). That voltage-gated
Ca2+ channels constitute the predominant route of
glutamate-induced Ca2+ entry into embryonic
motoneurons was recently also suggested by Hubert et al.
(1998)
. The latter study presented evidence that >80% of the
glutamate-induced [Ca2+]i
rise in cultured motoneurons is caused by (L-type)
Ca2+ channels, whereas the results of
Tymianski et al. (1993)
suggested a negligible
contribution of nonligand gated Ca2+ channels to
the glutamate response.
Ca2+ influx through KA/AMPA and NMDA receptors
In the present study, voltage-clamp techniques revealed that JSTX
reversibly inhibits ~50% of the remaining S-AMPA-induced [Ca2+]i response. The
toxin was also found to reduce KA- or AMPA-induced 45Ca2+ accumulation in
hippocampal cell cultures from rats (Ying et al. 1997).
JSTX also attenuated fluorometrically monitored
[Ca2+]i transients in
cultured granule cells and transfected HEK cells that were induced by
the latter glutamate receptor agonists (Meucci and Miller
1998
; Savidge and Bristow 1998
). In the present
study, JSTX had a relatively smaller (25%) blocking effect on the
S-AMPA-induced inward current than on the concomitant
[Ca2+]i rise (50%). This
indicates that Ca2+-permeable KA/AMPA receptors
that lack the GluR2 subunit (Hollmann et al. 1991
;
Hollmann and Heinemann 1994
) are co-expressed with Ca2+-impermeable KA/AMPA receptors in individual
motoneurons (see also Jonas and Burnashev 1995
;
Meucci and Miller 1998
; O'Brien et al.
1997
; Pellegrini-Giampietro et al. 1997
). In
this context, it was found that JSTX reduces AMPA receptor-mediated
[Ca2+]i rises in cultured
cerebellar granule cells by 65%, whereas KA receptor-mediated
responses are largely insensitive (Savidge and Bristow
1998
). With respect to the potential physiological role of
Ca2+-permeable KA/AMPA receptors in developing
spinal motoneurons, it should be noted that JSTX reduced the
[Ca2+]i rise in response
to both S-AMPA or glutamate.
Under voltage clamp, APV attenuated the glutamate-evoked
[Ca2+]i increase by 32%.
This shows that Ca2+ influx via the NMDA
receptor-associated ion pore (Hollmann and Heinemann
1994; MacDermott et al. 1986
; Mayer et
al. 1987
) has a significant contribution to the
glutamate-induced [Ca2+]i
rise in the lumbar motoneurons in addition to that mediated by
voltage-gated Ca2+ channels and
Ca2+-permeable KA/AMPA receptors. This was also
concluded from findings in recent studies on cultured spinal
motoneurons (Fryer et al. 1999
; Tymianski et al.
1993
).
Role of Ca2+-permeable KA/AMPA receptors in embryonic motoneurons
It was recently shown for embryonic rat motoneurons that glutamate
has a specific regulatory effect on outgrowth of dendrites, but not
axons (Metzger et al. 1998). This effect was antagonized by diverse blockers of KA/AMPA receptors including JSTX.
Ca2+-permeable glutamate receptor subtypes
presumably represent only a small part of the total KA/AMPA receptor
population in neurons (Pellegrini-Giampietro et al.
1997
). But the blocking effect of JSTX in the present study
shows that these receptors provoke a noticable rise of intracellular
Ca2+ of neurons in situ. Such
Ca2+ influx might provide a robust intracellular
signal (Mainen et al. 1999
) that initiates the signal
cascade involved in the JSTX-sensitive trophic effects of glutamate
(Metzger et al. 1998
). As recently reviewed
(Kennedy 1997
; Kirsch 1999
), NMDA as well
as AMPA receptors are clustered at postsynaptic densities to amplify
signals that pass the synaptic cleft. Among other proteins, calmodulin
and the Ca2+-calmodulin-dependent protein kinase
II (CAMKII) are protein components of the postsynaptic densities
(Kirsch 1999
; Strack et al. 1997
). Furthermore, GluR1 and GluR2/3 receptor subtypes are phosphorylated by
CAMKII, thus enhancing their responsiveness (Hayashi et al. 1997
). This might enable Ca2+-permeable
KA/AMPA receptors to locally transform albeit small Ca2+ increases into
Ca2+-independent signals of the subsequent signal
cascade involved in trophic actions of glutamate receptors. Thus these
Ca2+-dependent regulatory proteins may trigger
very specific functions independent on those evoked by large and
widespread Ca2+ increases via voltage-dependent
Ca2+ channels.
![]() |
ACKNOWLEDGMENTS |
---|
This study was supported by the Deutsche Forschungsgemeinschaft and the Hermann-und-Lilly-Schilling-Stiftung.
![]() |
FOOTNOTES |
---|
Address for reprint requests: K. Ballanyi, II. Physiologisches
Institut, Universität Göttingen, Humboldtallee 23, D-37073
Gottingen, Germany.
E-mail:
kb{at}neuro-physiol.med.uni-goettingen.de
The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Received 1 June 1999; accepted in final form 3 September 1999.
![]() |
REFERENCES |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|