Group in Vision Science, School of Optometry, University of California, Berkeley, California 94720-2020
![]() |
ABSTRACT |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Anzai, Akiyuki, Izumi Ohzawa, and Ralph D. Freeman. Neural Mechanisms for Encoding Binocular Disparity: Receptive Field Position Versus Phase. J. Neurophysiol. 82: 874-890, 1999. The visual system uses binocular disparity to discriminate the relative depth of objects in space. Because the striate cortex is the first site along the central visual pathways at which signals from the left and right eyes converge onto a single neuron, encoding of binocular disparity is thought to begin in this region. There are two possible mechanisms for encoding binocular disparity through simple cells in the striate cortex: a difference in receptive field (RF) position between the two eyes (RF position disparity) and a difference in RF profiles between the two eyes (RF phase disparity). Although there is evidence that supports each of these schemes, both mechanisms have not been examined in a single study to determine their relative roles. In this study, we have measured RF position and phase disparities of individual simple cells in the cat's striate cortex to address this issue. Using a sophisticated RF mapping technique that employs binary m-sequences, we have obtained left and right eye RF profiles of two or more cells recorded simultaneously. A version of the reference-cell method was used to estimate RF position disparity. We find that RF position disparities generally are limited to values that are not sufficient to encode large binocular disparities. In contrast, RF phase disparities cover a wide range of binocular disparities and exhibit dependencies on RF orientation and spatial frequency in a manner expected for a mechanism that encodes binocular disparity. These results suggest that binocular disparity is encoded mainly through RF phase disparity. However, RF position disparity may play a significant role for cells with high spatial frequency selectivity that are constrained to have only small RF phase disparities.
![]() |
INTRODUCTION |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
An image of an object either in front of or behind
the point of visual fixation projects onto slightly different locations on the retinae in the two eyes. This difference, binocular disparity, is by itself a sufficient cue for our perception of depth
(Julesz 1960; Wheatstone 1838
). Since the
discovery that most neurons in the striate cortex of cats and monkeys
are selective to binocular disparity (e.g., Barlow et al.
1967
; Pettigrew 1965
; Pettigrew et al.
1968
; Poggio and Fischer 1977
), describing how
these neurons encode binocular disparity has become an important issue
for understanding neural mechanisms of binocular fusion and stereopsis
(DeAngelis et al. 1991
, 1995
; Fleet et al.
1996
; Freeman and Ohzawa 1990
; Joshua and
Bishop 1970
; Maske et al. 1984
; Nikara et
al. 1968
; Nomura et al. 1990
; Ohzawa et
al. 1996
; Qian 1994
; Qian and Zhu 1997
; Wagner and Frost 1993
; Zhu and Qian
1996
).
There are two plausible hypotheses for how cortical neurons encode
binocular disparity. The traditional view, illustrated in Fig.
1A, is that left and right eye
RFs of a neuron have the same spatial profile, but their positions are
not necessarily at retinal correspondence, creating RF position
disparity through which binocular disparity can be encoded
(Maske et al. 1984; Nikara et al. 1968
;
Wagner and Frost 1993
). In this scheme, the range of
binocular disparity that can be encoded is limited by the range of RF
position disparity.
|
Alternatively, binocular disparity can be encoded through a difference
in RF profiles or phases between the two eyes, without RF position
disparity (DeAngelis et al. 1991, 1995
; DeValois
and DeValois 1988
; Fleet et al. 1996
;
Freeman and Ohzawa 1990
; Nomura et al.
1990
; Ohzawa et al. 1996
; Qian
1994
; Qian and Zhu 1997
; Zhu and Qian
1996
). This is illustrated in Fig. 1B. Because, by definition, RF phase disparity is limited to a range between
±180° phase angle (deg PA), the range of binocular disparity that
can be encoded with this scheme is proportional to the period of the RF
or inversely proportional to the spatial frequency of the RF.
RF position disparities of neurons in the cat's striate cortex were
demonstrated first by Nikara et al. (1968). They
measured the positions of left and right eye RFs using moving bars and edges and found that the distribution of RF position disparities ranges
between ±1.2 deg visual angle (deg VA) with a standard deviation of
~0.6 deg VA. Similar results also were obtained by Joshua and
Bishop (1970)
and by von der Heydt et al.
(1978)
.
Support for the position encoding mechanism also was provided by
Maske et al. (1984), who measured spatial profiles for
left and right eye RFs of binocular simple cells in cats using moving bright and dark bars. They argued that if a binocular neuron is to
serve as a depth detector, then the left and right eye RFs should have
an almost identical organization. This would ensure that the cell would
respond to the same object features in the two eyes. They report that
the number and spatial sequence of ON and OFF
subregions for the left and right eye RFs are always precisely the
same. This suggests that there is very little RF phase disparity
between the two eyes and hence favors the position encoding mechanism.
However, the question of whether left and right eye RFs have the same
profile or not cannot be answered solely on the basis of the number and
spatial sequence of ON and OFF subregions. The
relative strength of subregions must be examined as well. In fact, some
of the data in Maske et al. (e.g., RF profiles shown in Fig. 2,
A and B, of their paper) actually indicate that the relative strengths of subregions can be different in the two eyes;
this suggests some degree of RF phase disparity.
Wagner and Frost (1993) also proposed that binocular
disparity is encoded through RF position disparity. They applied a
technique used in auditory research to study disparity tuning of
neurons in the visual Wulst of barn owls. They found that the peaks of disparity tuning functions measured with sinusoidal gratings of various
spatial frequencies are all at about the same disparity, which they
call the characteristic disparity. Because there is no well-defined
characteristic disparity for RFs that have different profiles in the
two eyes, they concluded that the left and right eye RFs must be
identical in shape and, therefore, that binocular disparity must be
encoded through RF position disparity.
However, the examination of characteristic disparity to distinguish
position from phase encoding mechanisms has been questioned by
Zhu and Qian (1996). They showed that model neurons with
an RF phase disparity exhibit an approximate characteristic disparity. Because the data shown in the papers of Wagner and Frost (1993
, 1994
) are virtually indistinguishable from those predicted by the model neurons, Zhu and Qian contend that the mere existence of an
approximate characteristic disparity should not be taken as evidence
against the phase encoding mechanism.
The idea of using spatial phase as a primitive for encoding binocular
disparity came from computational studies in vision (Jenkin and
Jepson 1988; Sanger 1988
; see also
DeValois and DeValois 1988
for the same idea).
Jenkin and Jepson (1988)
proposed a method for measuring
a binocular disparity as a local phase difference between the left and
right eye images. Sanger (1988)
also used local phase
disparities between stereo half-images to solve the correspondence
problem. Later, RF phase disparity was implemented into models of
binocular neurons in the striate cortex as a mechanism for encoding
binocular disparity (Fleet et al. 1996
; Nomura et al. 1990
; Ohzawa et al. 1990
; Qian
1994
; Qian and Zhu 1997
).
Physiological evidence for RF phase disparity first was reported by
Freeman and Ohzawa (1990). They measured spatiotemporal RF profiles for binocular simple cells in cats using the sophisticated RF mapping technique of Jones and Palmer (1987)
and
showed that left and right eye RFs of some neurons have different
spatial profiles (and therefore different spatial phases).
Subsequently, they also found that phase is the only RF parameter that
can be quite different between the two eyes (DeAngelis et al.
1995
; Ohzawa et al. 1996
). In these studies,
however, they did not know the location of the corresponding points on
the retinae, and RF position disparities were never examined.
The above mentioned studies have established the existence of RF position and phase disparities and have hypothesized the two encoding mechanisms. However, because each of these studies has examined only one of the two hypotheses, the relative roles of the two encoding mechanisms have not been determined. It is still not clear whether simple cells encode binocular disparity through both RF position and phase disparities or through either one alone. Therefore the question of how neurons encode binocular disparity still remains open and cannot be resolved unless one examines both RF position and phase disparities for individual neurons at the same time.
However, obtaining RF position and phase disparities for individual
neurons in a single experiment is not an easy task. To estimate RF
phase disparity, one needs to obtain detailed profiles of left and
right eye RFs. This can be done with reasonable accuracy using one of
the techniques of white noise analysis (e.g., Citron et al.
1981; DeAngelis et al. 1993
; Jacobson et
al. 1993; Jones and Palmer 1987
; Ohzawa
et al. 1990
; Reid and Shapley 1992
; Reid et al. 1997
). Because mapping RFs takes time, usually 5-20
min, the animal has to be paralyzed to prevent the eyes from moving. This creates a problem for measurements of RF position disparity. In a
paralyzed preparation, eye muscles are relaxed and the visual axes of
the eyes deviate from a normal fixation position. As a consequence, it
is very difficult to locate corresponding points on the retinae and use
them to measure RF position disparity (see Fig. 1A).
Although there have been attempts to determine the corresponding points
based on landmarks on the retinae (e.g., Barlow et al. 1967
; Nikara et al. 1968
; von der Heydt
et al. 1978
), the procedure is rather complicated and
subjective and introduces many possible sources of errors.
To get around this problem, RF position disparity can be measured with
respect to the RF position of a reference cell instead of corresponding
points (Ferster 1981; Hubel and Wiesel
1970
; LeVay and Voigt 1988
). Statistical
considerations indicate that a distribution of RF position disparities
for a population of neurons can be obtained and that RF position
disparities of individual neurons can be estimated with a known amount
of uncertainty (see METHODS for details).
Here, the long-standing question of how neurons encode binocular
disparity finally is addressed appropriately by measurements of both RF
position and phase disparities for individual simple cells with a
reference-cell method and an RF mapping technique using binary
m-sequence noise (Reid and Alonso 1995; Reid and Shapley 1992
; Reid et al. 1997
; Sutter
1987
, 1992
). Relative contributions of RF position and phase
disparities to the encoding of binocular disparity are examined in
relation to various RF parameters. Preliminary results of this study
have been reported (Anzai et al. 1997
).
![]() |
METHODS |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Surgical procedures
Extracellular recordings were made from single neurons in the striate cortex of anesthetized and paralyzed adult cats. Thirty minutes before anesthesia, acepromazine maleate (0.2 mg/kg) and atropine sulfate (0.04 mg/kg) were injected subcutaneously. Surgery was performed under 2-3% isoflurane anesthesia.
A femoral vein was cannulated for intravenous infusion, a tracheal tube
and a rectal thermometer was inserted, and electrocardiograph (ECG)
leads and electroencephalograph (EEG) screw electrodes were positioned.
A craniotomy (~5 mm diam) was performed around Horsley-Clarke coordinates P4 L2 and the dura carefully was removed. Two
tungsten-in-glass electrodes (Levick 1972) were
positioned just above the surface of the cortex at an angle of 10°
medial and 20° anterior, and the opening hole was closed with agar
and sealed with wax to form a closed chamber.
During recording, the animal was anesthetized and paralyzed by
intravenous infusion of a mixture of thiopental sodium (Pentothal, 1.0 mg · kg1 · h
1) and
gallamine triethiodide (Flaxedil, 10 mg · kg
1 · h
1),
combined with a 5% dextrose and lactated Ringer solution (0.5 ml · kg
1 · h
1). In
addition, the animal received intravenous infusion of a 5% dextrose
and lactated Ringer solution (5 ml · kg
1 · h
1) to
prevent dehydration. The animal was respired artificially with a
mixture of N2O (70%) and
O2 (30%) at 25 strokes/min. The body
temperature, end-tidal CO2, heart rate, ECG, and
EEG were monitored continuously through a PC Based physiological
monitoring and analysis system (Ghose et al. 1995
). The
body temperature was maintained near 38°C and end-tidal
CO2 at 4-4.5%. Intratracheal pressure also was
monitored. The pupils were dilated with 1% atropine sulfate, and
nictitating membranes were retracted with 10% phenylephrine hydrochloride. Contact lenses (+2D) with artificial pupils of 4 mm in
diameter were placed on both corneas. Every 12 h, the contact
lenses were removed and cleaned, and the clarity of the refractive
media was checked with an ophthalmoscope.
Histological procedure
Small lesions were made along each recording track when the electrodes were withdrawn. At the end of an experiment, the animal was killed with an overdose of pentobarbital sodium (Nembutal), perfused, and fixed through the heart with a buffered 0.9% saline solution followed by 10% formalin. A block of cortex around the recording site was removed and sectioned at 40-µm intervals. From thionin-stained sections, the cortical laminae were identified, and electrode tracks were reconstructed.
Apparatus
The animal was positioned in front of a tangent screen on which a bar stimulus of variable size and orientation could be swept throughout the visual field in any direction. A PC Based visual stimulator displayed various visual stimuli on two independent CRT displays (Nanao T2 · 17, 28 × 22 cm active display area, 76-Hz refresh rate), thereby allowing independent stimulation of the two eyes. Each stimulus display was positioned on one side of the animal at a distance of ~57 cm and subtends a visual angle of 28 × 22°. The stimuli were visible to the animal by reflection from semisilvered mirrors. The displays are adjusted to have a mean luminance of 20 cd/m2 as seen through the semisilvered mirrors. A personal computer (Pentium-90 MHz) controlled the visual stimulator and acquired data.
Action potentials were recorded with a pair of electrodes that were separated laterally by 400-600 µm. Signals were amplified, sent to a spike discriminator, and monitored through speakers and oscilloscopes. The isolated spikes were stored along with codes to indicate the time of occurrence (at a resolution of 40 µs) and the identity of the input channel. Data were written to a hard disk and displayed in real time on a monitor screen.
Recording procedures
The optic disk for each eye was projected with a reversible ophthalmoscope onto the tangent screen. The electrodes then were advanced while a search was made for neural activity evoked by sweeping a bright bar across the tangent screen. Once a spike was isolated, the RF of the neuron was located on CRT displays with a drifting sinusoidal grating, and the neuron's preferred orientation and spatial frequency were determined qualitatively for each eye.
PRELIMINARY TESTS.
The tuning of the neuron for orientation, spatial frequency, temporal
frequency, and relative interocular spatial phase then was examined
quantitatively. A drifting sinusoidal grating of 40-50% contrast was
presented for 4 s to either eye in a randomly interleaved manner.
For the tuning of relative interocular spatial phase, gratings were
presented dichoptically. The temporal frequency of the grating was set
at 2 Hz except for the temporal frequency tuning measurement. Other
parameters of the grating were set to the optimal values that were
obtained qualitatively until the optimal values were estimated
quantitatively from each tuning test. During each tuning test, the
value of the tuning parameter was varied, and stimuli were presented in
a random order. Optimal stimulus parameters were determined based on
either mean spike rates (DC responses) or the first harmonic responses
at the temporal frequency of the grating, whichever was greater.
Neurons were classified as simple if the first harmonic
response was greater than the DC response (Skottun et al.
1991) and/or if ON (bright excitatory) and
OFF (dark excitatory) subregions were clearly defined
(Hubel and Wiesel 1959
). Otherwise, they were classified as complex.
RF MAPPING WITH BINARY M-SEQUENCE NOISE.
The RF mapping technique employed here was adopted from a
systems-analysis method originally developed by Sutter (1987,
1992
). Receptive fields of neurons were mapped with white noise
stimuli generated according to binary m-sequences (Golomb
1982
; Zierler 1959
). Two kinds of stimulus
configuration were used: two- and one-dimensional (2D and 1D) patterns
(Fig. 2). In the 2D case, a square patch,
large enough to completely contain the RF of the neuron, was divided
into 12 × 12 square elements. The size of each element was set to
approximately one-fourth of the optimal spatial period (the inverse of
the optimal spatial frequency) of the grating. Four elements at each
corner were eliminated so that the total number of elements in a patch
was always 128 (a power of 2) for optimal measurements (Sutter
1992
). In the 1D case, a square patch was divided into 16 rectangular elements. The square patch was rotated so that the
orientation of the rectangular elements coincides with the optimal
value for the cells recorded. In 2D mapping, RFs of multiple cells can
be measured simultaneously regardless of the cells' orientation
preferences. In 1D mapping, however, all cells must have similar
orientation preferences for their RFs to be obtained simultaneously.
|
Data analysis
Each spike train recorded as a response to binary m-sequence
noise was cross-correlated with the stimulus sequences by means of the
fast m-transform (Sutter 1991) to obtain RF maps. The
cross-correlation between stimulus sequences in the left eye and a
spike train yielded a left eye RF, whereas the cross-correlation
between stimulus sequences in the right eye and the spike train yielded
a right eye RF. Details of how RFs are constructed were described in
Anzai et al. (1999a
; see also Anzai
1997
). The RFs were analyzed to obtain RF position and phase
disparities for individual simple cells. The RFs were fitted first with
a Gabor function (Gabor 1946
). Then the parameters of
the best fitting Gabor function were used for computing RF position and
phase disparities.
RF FITTING.
A spatial profile of each RF at the optimal cross-correlation delay
(the delay at which the sum of squared values of all data points in the
RF is maximum, and the same delay is used for both left and right eye
RFs) was fitted with a Gabor function (Gabor 1946) using
a Levenberg-Marquardt method (Press et al. 1992
). The
exact formulae of the functions used to fit 1D and 2D RF profiles are
described in the APPENDIX (Fig. A1). Briefly, a Gabor
function is the product of a Gaussian envelope and a sinusoid. The RF
center coordinates and the RF phase are obtained as the center
coordinates of the Gaussian envelope
(Xo and
Yo) and the phase of the sinusoid (
), respectively, and are used to compute RF disparities as
described in the next section.
ESTIMATING RF PHASE DISPARITY. An RF phase disparity (dP) was obtained as the difference between RF phases for the left and right eyes (see APPENDIX for a formal definition). Phase disparity can be expressed in two ways: deg in phase angle (deg PA), and deg in visual angle (deg VA). Phase disparity in deg VA can be derived from phase disparity in deg PA by taking the RF spatial frequency (the frequency of the sinusoid in Fig. A1) into account. There is an important distinction between phase disparities expressed in deg PA and deg VA. Phase disparity in deg PA indicates the similarity or dissimilarity between spatial profiles of the left and right eye RFs, whereas phase disparity in deg VA indicates a spatial offset between sinusoidal components of the left and right eye RFs. The latter is comparable with position disparity, but the former is not.
ESTIMATING RF POSITION DISPARITY USING A REFERENCE-CELL METHOD.
An RF position disparity was estimated using a reference-cell
method1
(Ferster 1981; cf. Hubel and Wiesel 1970
;
LeVay and Voigt 1988
), which is illustrated in Fig.
3A. This method requires RFs
of at least two binocular simple cells recorded simultaneously. For each RF measurement, cells are grouped in distinct pairs. One member of
each pair, which is chosen randomly, is regarded as a reference cell
and the RF position disparity of the other member is measured relative
to the RF position disparity of the reference cell. In other words, the
RF position disparity of a cell is obtained as the distance in deg VA
between the centers of the cell's left and right eye RFs while the RF
position disparity of the reference cell is assumed to be zero. An RF
position disparity measured here is, therefore, the relative position
disparity of one cell to that of a reference cell. However, as
illustrated in Fig. 3B, the standard deviation of the
population distribution for true position disparity is expected to be
smaller than that for relative position disparity by a factor of
(see APPENDIX for proof). This is simply
because two samples drawn randomly from a distribution sometimes add
and sometimes cancel each other when they are summed (or their
difference is taken), and as a result, the distribution of the sum (or
difference) becomes broader than the original. Therefore the population
distribution of true position disparities can be recovered from the
distribution of relative position disparities for a population of
cells. Furthermore true position disparities of individual neurons can
be estimated with a specified amount of uncertainty (see the legend of
Fig. 3B). Using this method, the RF position disparity along
the direction perpendicular to the RF orientation
(dX), which is also the direction in
which the RF phase disparity is measured, was estimated. In addition,
for 2D RF data, the RF position disparity along the direction parallel
to the RF orientation (dY) was
estimated (see APPENDIX for formal definitions of the RF
position disparities).
|
ESTIMATING MEASUREMENT ERRORS ASSOCIATED WITH POSITION AND PHASE
DISPARITY DATA.
It is important to know how much measurement variability there is in
each disparity estimate. Unfortunately, RFs are usually measured only
once for each cell, and we do not have multiple independent estimates of the RF disparity to compute variability. Alternatively, we can compute the amount of variation in the disparity estimates using a Monte Carlo simulation (e.g., Press et al.
1992). The Monte Carlo simulation is a standard technique for
generating random samples of data, simulating independent measurements.
![]() |
RESULTS |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
We have obtained either 2D or 1D (or both) profiles of left and right eye RFs2 from 97 simple cells in 14 adult cats. Of these, 48 cells were recorded individually under conditions in which RF position disparity could not be determined. The remaining 49 cells were either from pair recordings (20 cases) or from trio recordings (3 cases). For each cell, an RF phase disparity dP was obtained. A total of 23 multiple-cell recordings yielded 29 distinct cell pairs, and an RF position disparity dX was estimated for each of these pairs using a reference-cell method. Among these pairs, there were 15 cases in which 2D RF maps were obtained so that an RF position disparity dY also could be estimated.
Examples of RF maps
Each panel in Fig. 4 shows an
example of left and right eye RFs for a pair of simple cells recorded
simultaneously. As reported previously (DeAngelis et al. 1991,
1995
; Freeman and Ohzawa 1990
; Ohzawa et
al. 1996
), left and right eye RFs can have different spatial
profiles. For instance, the right eye RF of cell A and the
left eye RF of cell B shown in Fig. 4A are
approximately even-symmetric, whereas their RFs in the other eye are
more similar to those of odd-symmetric. The difference between the left
and right eye RF profiles indicates an RF phase disparity. On the other
hand, RF position disparities (the distance between the centers of left and right eye RFs for cell B minus that for cell
A, a reference cell) appear to be relatively small in the examples
shown. In general, we find that the left eye RFs of cells A
and B overlap in a manner similar to their right eye RFs,
i.e., their relative locations in one eye are comparable with those in
the other eye.
|
We have fitted each RF with a Gabor function, which generally provides
a good fit. The parameters of the best fitting function, such as the
width of the Gaussian (RF size) and the frequency of the sinusoid (RF
spatial frequency), are matched well in the two eyes as described
previously (DeAngelis et al. 1995; Ohzawa et al.
1996
). The difference in RF orientation between the two eyes is
always very similar for cells recorded simultaneously. This confirms
the previous finding of Nelson et al. (1977)
that the
interocular orientation disparity of each cell is minimal once RF
orientations are corrected for cyclorotation of the eyes due to
paralysis. On the basis of the parameters of the best fitting Gabor
function, we have computed RF phase and position disparities.
Histograms of RF position and phase disparities
Figure 5 shows histograms of RF
position and phase disparities for a population of simple cells. In
Fig. 5A, a histogram of phase disparity in deg PA is shown.
Cells for which position disparities also are estimated (matched
samples) are shown (). The phase disparities are distributed around
zero, indicating that cells with similar RF profiles in the two eyes
are most numerous. However, the distribution is rather broad; there are
also many cells with dissimilar RF profiles in the two eyes. The phase
disparities are mostly limited within ±90°. It has been suggested
that, because of the cyclic nature of phase, phase disparity must be
limited to a quarter cycle (90°) in order for band-pass filters to
unambiguously encode binocular disparity (Blake and Wilson
1991
; Marr and Poggio 1979
). The data shown in
Fig. 5A demonstrate that the visual system by and large
satisfies this requirement.
|
The phase disparity histogram is replotted in Fig. 5B in
terms of deg VA so that it can be directly compared with the position disparity histograms shown in Fig. 5, C and D.
Both the position and phase disparities are distributed around zero,
and the disparities of most cells are within ±1 deg VA. This range
corresponds roughly to the limits of binocular fusion in cats
(Packwood and Gordon 1975). The standard deviations of
the distributions for position disparities
dX and
dY are 0.52 and 0.62 deg VA,
respectively. These values divided by
, i.e., 0.37 and 0.44, are the estimated standard deviations of the distributions for true
position disparities (see Fig. 3B). These numbers are comparable with the results of the recent study by Hetherington and Swindale (1997
; also personal communication) who measured RF position disparities of neurons in the cat's striate cortex using a
tetrode (e.g., Gray et al. 1995
; Wilson and
McNaughton 1993
) and a variation of the reference-cell method.
The standard deviation for the phase disparity distribution is 0.59 deg
VA (0.68 deg VA for the matched sample distribution), which is 1.6 (1.8 for the matched sample distribution) times greater than that of the
distribution for true position disparity
dX. Statistical analysis indicates
that the phase disparity distribution has a larger variance compared
with the distribution for true position disparity [F test:
F ratio = 2.546, df = (96,28), P < 0.01; with the matched sample distribution, F ratio = 3.403, df = (28,28), P < 0.01]. Thus position
disparity is limited to a relatively small range compared with that of
phase disparity.
Factors that may contribute to the difference between disparity histograms
It is possible that the difference between the position and phase disparity distributions may be due to differences in the amount of error associated with the estimates of position and phase disparities. To examine this possibility, a Monte Carlo simulation has been conducted to obtain a standard error for each disparity estimate. More than 90% of the standard errors are <0.25 deg VA. Mean values of the standard errors for position disparities dX and dY and phase disparity are 0.12, 0.1, and 0.12 deg VA, respectively. Therefore errors in the disparity estimates are comparable for position and phase disparities and cannot account for the difference between the distributions of position and phase disparities.
Another possible factor that may contribute to the difference in
standard deviation between the distributions is local clustering of
cells with similar position disparities. The assumption necessary for
the reference-cell method used in this study to work is that the true
position disparities of cells recorded simultaneously are independent,
or uncorrelated (see Fig. 3B). If this assumption does not
hold, the factor used to estimate the standard deviation of the
distribution for true position disparity would be something other than
(see Eq. A15 in the APPENDIX). Suppose that there was a negative correlation between the true position
disparities of cells recorded simultaneously, i.e., one cell exhibits a
crossed disparity and the other, an uncrossed disparity. Then the
factor would be more than
and using a factor of
would be overestimating the standard deviation of the true position
disparity distribution. Therefore the conclusion drawn in the previous
section would not change. However, if there was a positive correlation,
i.e., true position disparities of nearby neurons were similar, then
the factor would be something between 0 and
. In this case,
using a factor of
would underestimate the standard
deviation of the true position disparity distribution and would
contribute to the difference between standard deviations of
distributions for position and phase disparities.
Unfortunately, it is not possible to determine if there is such a
correlation between true position disparities of cells recorded simultaneously. However, if cells with similar preference for binocular
disparity were clustered (i.e., the sum of position and phase
disparities are similar for nearby cells) and their position
disparities were correlated, then their phase disparities also would
have to be correlated. Whether phase disparities of cells recorded
simultaneously are correlated can be examined. In Fig.
6, phase disparities of individual cells
are plotted against those of reference cells. Data obtained from pair
recordings made through a single electrode are shown as open circles,
and those in which a pair of cells were recorded from different
electrodes that are separated by 400-600 µm are shown as filled
circles. No correlation is evident in this plot (correlation
coefficient r = 0.06,
R2 = 0.3%), indicating that phase
disparities of nearby cells are not correlated. This suggests that if
cells with similar preferences for binocular disparity were clustered,
position disparities of these cells would not be correlated. However,
it has been reported that preferred binocular disparities of nearby
cells are correlated only weakly (LeVay and Voigt 1988
).
Therefore it is still possible, though unlikely, that position
disparities of nearby cells are somewhat correlated.
|
Relationship between RF position and phase disparities
Although the range of position disparities is smaller than that of phase disparities, position disparities still may contribute to the overall preference of cells for binocular disparity. How does a position disparity contribute to the cell's preferred disparity? Does it always add to phase disparity to yield a cell's preferred disparity that is larger than either the phase or position disparity? Or does it always cancel a phase disparity? In Fig. 7, position disparities of individual cells are plotted against their phase disparities. No correlation is found between position and phase disparities (correlation coefficient r = 0.12, R2 = 1.45%), suggesting that position and phase disparities are largely independent of each other. In other words, they may add up or partially cancel each other.
|
Relationship between disparity and RF orientation
It has been shown that RF profiles for the left and right eyes are
relatively matched for cells tuned to horizontal orientations, whereas
those for cells tuned to vertical orientations are predominantly dissimilar (DeAngelis et al. 1991, 1995
; Ohzawa
et al. 1996
). This finding is confirmed by the data reported
here. In Fig. 8A, magnitudes
of phase disparities in deg PA are plotted for individual cells as a
function of RF orientation. Orientations of 0 and 90° correspond to
horizontal and vertical, respectively. Cells tuned to horizontal
orientations tend to have small phase disparities, indicating that left
and right eye RFs of these cells have relatively similar spatial
profiles. In contrast, phase disparities of cells tuned to more oblique
and vertical orientations are spread along the y axis,
indicating that the spatial profiles of left and right eye RFs are
quite different for some cells. A statistical analysis indicates that
the distribution of phase disparity for cells tuned to orientations
within ±20° from horizontal has a smaller variance compared with the
distribution for cells tuned to orientations within ±20° from
vertical [F test: F ratio = 2.995, df = (18,25), P < 0.01]. Limiting data points to matched
samples (
) does not alter the statistical significance
[F test: F ratio = 6.826, df = (10,7),
P < 0.01].
|
This result implies that cells tuned to horizontal orientations encode
a small range of binocular disparity compared with cells tuned to
vertical orientations. This orientation anisotropy is expected because
binocular parallax yields a larger range of binocular disparities along
horizontal than vertical directions due to the fact that the eyes are
displaced laterally. In Fig. 8B, magnitudes of position
() and phase disparities (
and
;
indicate matched samples)
in deg VA are plotted as a function of RF orientation. As expected,
there is a tendency for cells tuned to horizontal orientations to have
small phase disparities compared with those tuned to vertical
orientations. This tendency is also statistically significant; the
distribution of phase disparity for cells tuned to orientations within
±20° from horizontal has a smaller variance compared with the
distribution for cells tuned to orientations within ±20 deg from
vertical [F test: F ratio = 2.935, df = (18,25), P < 0.01]. This is also true for the
matched samples [F test: F ratio = 7.041, df = (10,7), P < 0.01]. A similar orientation
anisotropy was reported by Barlow et al. (1967)
who examined the range of cells' preferred binocular disparities (but see
Ferster 1981
; LeVay and Voigt 1988
). On
the other hand, no orientation anisotropy is found for position
disparity [F test: F ratio = 2.307, df = (10,7), P = 0.14], which is consistent with most
previous studies that measured the position difference between left and
right eye RFs (Joshua and Bishop 1970
; Nikara et
al. 1968
; von der Heydt et al. 1978
).
Relationship between disparity and RF spatial frequency
Figure 9 shows how position and
phase disparities depend on RF spatial frequency. In Fig.
9A, magnitudes of phase disparities in deg PA are plotted as
a function of RF spatial frequency. As reported previously
(DeAngelis et al. 1995; Ohzawa et al.
1996
), there is no obvious tendency for cells tuned to
different spatial frequencies to have different ranges of phase
disparities (linear regression: slope = 0.49, P = 0.35; for the matched samples, slope = 0.31, P = 0.77). This suggests that the similarity or dissimilarity between
spatial profiles of left and right eye RFs does not depend on RF
spatial frequency.
|
In contrast, phase disparities in deg VA clearly show a dependency on
RF spatial frequency. In Fig. 9B, magnitudes of phase disparities ( and
;
indicate matched samples) in deg VA are plotted, together with position disparities (
), as a function of RF
spatial frequency. As a reference, phase disparities equivalent to 180 and 90 deg PA are indicated by the solid and dashed lines, respectively. Phase disparities are scattered below the solid line,
suggesting that they can be used to encode a wide range of binocular
disparities within the limit indicated (
). A linear regression
analysis indicates that there is a tendency for phase disparity to
decrease with spatial frequency (slope =
0.86, P < 0.01). This tendency becomes weaker (linear regression: slope =
1.05, P = 0.076) when data points are limited to
matched samples (
). Nevertheless, the matched samples are still
scattered widely below the solid line. In any case, the observed
tendency is consistent with previous reports that the range of cells'
preferred binocular disparities (Pettigrew et al. 1968
)
and the width of binocular disparity tuning (Ferster
1981
) increase with RF size.
Unlike phase disparity, which is limited to ±180 deg PA by definition,
position disparity has no such limit in theory. This is an important
advantage of the disparity encoding scheme based on RF position
disparity because it allows the visual system to encode a larger range
of binocular disparity than would be with RF phase disparity. It
becomes especially important at high spatial frequencies for which RF
phase disparity in deg VA is necessarily small. However, the visual
system does not appear to take advantage of this. As shown in Fig.
9B, position disparities are generally very small (note that
the spread of the position disparities along the vertical axis in the
figure would be even smaller by a factor of for true
position disparities), and most of them fall well below the 90 deg
phase disparity line. They are relatively constant across spatial
frequency (regression slope =
0.75, P = 0.089).
Therefore unless RF spatial frequencies are very high, the range of
binocular disparity that can be encoded would be larger with RF phase
disparity compared with that with RF position disparity.
These results also suggest that if the visual system was to encode
binocular disparity through position disparity, its performance in
binocular fusion and stereo tasks would not depend on stimulus spatial
frequency. Whereas, if phase disparity was to be used, dependence on
spatial frequency would be expected. It has been reported that
performance of human observers in binocular fusion and stereo tasks
does depend on stimulus spatial frequency (DeValois 1982; Felton et al. 1972
; Kulikowski
1978
; Legge and Gu 1989
; Richards and
Kaye 1974
; Schor and Wood 1983
; Schor et
al. 1984a
,b
; Smallman and MacLeod 1994
). One
such example is shown in Fig. 10. In
the figure, the fusion limit of human observers is plotted as a
function of stimulus spatial frequency. Data points (
) are replotted
from a study by Schor et al. (1984b)
. They found that the fusion limit of human observers decreases with stimulus spatial frequency (size-disparity correlation) in a manner similar to the
prediction of a phase encoding model (
), up to a spatial frequency of
~2.5 c/deg. Beyond this spatial frequency, however, the performance
of human observers deviates from the prediction and becomes constant
(- - -). The physiological data reported here are concordant with the
psychophysical data in the sense that phase disparity seems to provide
the upper limit of binocular disparity at low spatial frequencies and
position disparity provides a constant limit at high spatial
frequencies.
|
![]() |
DISCUSSION |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Using a quantitative RF mapping technique, combined with a reference-cell method, RF position and phase disparities for simple cells in the cat's striate cortex have been estimated. Position disparities are generally small and are only suitable for encoding small binocular disparities. They do not show any correlation with RF orientation or spatial frequency. It seems, therefore, that RF position disparity may be a byproduct of random jitter in RF position. On the other hand, phase disparities cover a wide range of binocular disparities and exhibit an orientation anisotropy. They are generally within the quarter cycle limit and provide a basis for the size-disparity correlation observed in psychophysics. Considered together, these results strongly favor the notion that binocular disparity is encoded mainly through RF phase disparity. However, RF position disparity still may play an important role in encoding binocular disparity at high spatial frequencies for which RF phase disparity becomes necessarily small in deg VA.
RF position and phase for encoding image phase
In their ground-breaking work, Hubel and Wiesel
(1962) found that neurons in the striate cortex responded to
elongated slits or bars and oriented edges more effectively than to
diffuse light or spots. Subsequently these neurons were considered bar
and edge detectors (e.g., Barlow 1972
; Bishop et
al. 1971
; Hubel 1963
). Neurons selective to
binocular disparity also were considered as detectors of the monocular
trigger features that are located at slightly different retinal
locations in the two eyes (Barlow et al. 1967
;
Bishop 1973
; Maske et al. 1984
). In a
sense, binocular disparity was yet another trigger feature. The idea of
feature detectors seemed to fit with the notion that the visual system analyzes an image first by decomposing it into simple features like
bars and edges (Lindsay and Norman 1972
; Neisser
1967
).
However, the introduction of sinusoidal grating stimuli
(Campbell and Robson 1968; Robson 1966
;
Schade 1956
) for analysis of the visual system in the
frequency domain provided an alternative view: the visual system
analyzes an image first by decomposing it into various spatial
frequency components. This notion received strong support from the
various studies that demonstrated that responses of neurons in the
striate cortex can be predicted not by the bars and edges that are
contained in the stimulus but by the frequency components in the
stimulus (e.g., Albrecht and DeValois 1981
;
DeValois 1982
; DeValois and DeValois
1988
; DeValois et al. 1978
, 1979
; Maffei
et al. 1979
; Pollen and Ronner 1982
). It now is
accepted widely that one of the main functions of neurons in the
striate cortex is to perform band-pass filtering in the spatiotemporal frequency domain.
As frequency-based processing devices, these neurons do not encode the
position of bars and edges per se; they encode the position of
frequency components in the image, namely the phase. Indeed, the
importance of image phase has been pointed out by many researchers
(e.g., Morrone and Burr 1988; Openheim and Lim 1981
; Piotrowski and Campbell 1982
). Likewise,
binocular disparity is not encoded as the relative position of bars and
edges in the images between the two eyes but as the relative phase of
the frequency components in the images (DeValois and DeValois
1988
). This view is consistent with computational studies that
demonstrated that phase disparities in a stereo image can be used to
compute the binocular disparity of the image (Jenkin and Jepson
1988
) and solve the correspondence problem (Sanger
1988
).
Because position and phase are interchangeable in space, one could
build a visual system that detects the relative image phase using
Gabor-like RFs with a position offset, a phase offset, or both. If the
relative phase is detected only through a position offset, then the RFs
should be identical in shape. However, RFs of simple cells come in a
variety of monocular phases (DeAngelis et al. 1993;
Field and Tolhurst 1986
; Jones and Palmer
1987
) and also a variety of binocular phase disparities, as
shown in this and previous studies (DeAngelis et al. 1991
,
1995
; Freeman and Ohzawa 1990
; Ohzawa et
al. 1996
). In addition, the results presented here show that
position disparities are relatively small compared with phase
disparities. Therefore at least in the binocular domain, image phase is
likely to be detected through a phase encoding mechanism. Although
there have been no studies that have examined position and phase
mechanisms for encoding monocular image phase, Pollen and Ronner
(1981
, 1982
) reported that adjacent simple cells recorded
simultaneously from the same electrode tend to be tuned to the same
orientation and spatial frequency but differ in spatial phase by
~90° (see also Liu et al. 1992
). Therefore it is
likely that a phase-encoding mechanism operates in the monocular domain as well. Recent models of cortical neurons explicitly use RF phases to
encode monocular phase as well as binocular phase disparity (e.g.,
Fleet et al. 1996
; Nomura et al.
1990
; Ohzawa et al. 1990
; Pollen
and Ronner 1981
, 1982
; Qian 1994
).
Despite the recent emphasis on phase encoding, however, one should not abandon position encoding altogether. One serious limitation of phase encoding is that the range of spatial displacement that can be encoded through phase decreases with increasing spatial frequency. This is simply because a constant phase angle spans a smaller and smaller distance in visual angle as spatial frequency increases. On the other hand, position does not have such a dependency on spatial frequency. Therefore as noted in the preceding text, position encoding may be quite useful at high spatial frequencies, at which the phase in degree visual angle becomes necessarily small.
Definition of RF position disparity and the aperture problem
In this study, RF disparities were measured in the direction
perpendicular to the RF orientation. This is necessary in the case of
phase disparity because it is defined as orthogonal to the RF
orientation. However, position disparities could have been measured in
any direction. For instance, a position disparity can be defined by a
vector that connects the centers of the left and right eye RFs,
irrespective of the RF orientation. Another way to define a position
disparity is to project the vector onto the horizontal and vertical
axes of the visual field. This definition may be suitable for direct
comparisons with data from psychophysical studies for which horizontal
and vertical disparities of stimuli are manipulated. If the vector is
projected onto the axes parallel and orthogonal to the RF orientation,
one obtains the definition used in this study. All of these definitions
are equivalent, but it is not immediately clear which is most
appropriate (Cumming 1997).
There are two practical reasons why position disparities had to be measured orthogonal to the RF orientation in this study. First, it is the only direction in which the position disparity is obtainable from 1D RF data. Second, to compare phase and position disparities, the position disparity must be measured in the same direction as the phase disparity. Although these reasons certainly dictated the way in which the analysis was conducted in this study, they do not necessarily provide a full justification for the choice of one definition over others. Are there any other justifications that have a more functional basis? To answer this question, one needs to consider if neurons in the striate cortex can distinguish directions in which binocular disparity is introduced.
Each neuron in the striate cortex has to encode a binocular disparity
based on the information available within its left and right eye RFs.
When an extended stimulus only containing a 1D pattern such as a
sinusoidal grating is presented over the RFs, there are an infinite
number of directions in which binocular disparity can be introduced to
yield the same stereo image within the RFs. In Fig.
11, three examples of such a stimulus
are illustrated. Although the amount and direction of binocular
disparity (indicated by arrows) are different for each stimulus, the
image within the RF (indicated by circles) of each eye is the same.
Therefore responses of a neuron to these stimuli would be the same
regardless of the direction of binocular disparity. It should be noted
that the vector component of binocular disparity parallel to the
orientation of the image pattern is different for each stimulus,
whereas the vector component orthogonal to the pattern orientation is
the same. In other words, changes of a stimulus in the direction
parallel to the pattern orientation are not detectable, but those in
the orthogonal direction are. This is called the aperture problem and
is analogous to the aperture problem in identification of direction of
motion (e.g., Movshon et al. 1985). Because neurons in
the striate cortex respond best to stimuli that are elongated along the
RF orientation, they can encode binocular disparity in the direction
orthogonal to, but not parallel to, the RF orientation.
|
Psychophysical data also support this assertion; stereoacuity of human
observers for 1D stimuli such as gratings and oriented Gabor patches
decreases in proportion to the cosine of the stimulus orientation angle
from the vertical in the frontal plane, and the depth threshold
expressed in phase disparity at right angle to the stimulus orientation
remains constant (e.g., Morgan and Castet 1997; see
Howard and Rogers 1995
for a review). These results are
consistent with the detection of binocular disparity by neurons in the
striate cortex along the direction orthogonal to the stimulus orientation rather than along the horizontal axis of the visual field.
Therefore the RF position disparity measured orthogonal to the RF
orientation is indeed suitable for the analyses conducted in this study.
Position and phase encoding in other visual tasks
As described in RESULTS, psychophysical data such as
those of Schor et al. (1984b) indicate that the
performance of human observers in binocular fusion and stereo tasks
consists of two parts: a spatial frequency dependent portion (at low
spatial frequencies) and an independent portion (at high spatial
frequencies). Interestingly, this dual behavior is apparently not
unique to binocular fusion and stereopsis but also is found in various
spatial tasks (Baker et al. 1989
; Boulton and
Baker 1991
; Burr 1980
; Burr et al.
1986
; Chang and Julesz 1985
; Cleary and
Braddick 1990a
,b
; DeValois and DeValois 1988
;
Westheimer 1978
; Yo et al. 1989
). For
example, DeValois and DeValois (1988)
measured the
threshold of human observers for displacement of sinusoidal gratings at
various spatial frequencies. They found that, at spatial frequencies
<2 c/deg, the threshold decreased with spatial frequency (see also
Burr 1980
; Yo et al. 1989
), but for
higher spatial frequencies the threshold was approximately constant
(see also Westheimer 1978
). Similar results also have been reported for measurements of maximum displacement
(Dmax) for correct identification of direction in
short-range apparent motion (Baker et al. 1989
;
Boulton and Baker 1991
; Burr et al. 1986
;
Chang and Julesz 1985
; Cleary and Braddick
1990a
,b
).
It is tempting to speculate that the dual behavior observed for
binocular fusion and stereopsis, monocular displacement detection, and
short-range apparent motion all share the same neural basis: a phase
encoding mechanism for low spatial frequencies and a position encoding
mechanism for high spatial frequencies. For the phase encoding
mechanism to work properly, RF centers have to be at the same position.
However, RF position is subject to slight random jitter
(Hetherington and Swindale 1997). For RFs with low
spatial frequency selectivity, this is not a problem because the amount of jitter is very small compared with the size of the RFs. For RFs with
high spatial frequency selectivity, however, the amount of jitter may
be significant compared with the size of the RFs, and position encoding
becomes more reliable than phase encoding. To explain the dual behavior
of their displacement threshold data, DeValois (1982
;
see also DeValois and DeValois 1988
) proposed a
two-stage model in which a phase processing stage (presumably at the
striate cortex level) is followed by a position processing stage
(extrastriate cortex). Our results suggest that both mechanisms may
reside at the level of the striate cortex.
RF disparity and cells' tuning for binocular disparity
In this study, RF position and phase disparities of simple cells have been examined as mechanisms through which binocular disparity is encoded. An implicit assumption here is that the cell's preferred binocular disparity can be predicted from differences between left and right eye RFs, i.e., cell's responses to binocular stimulation can be predicted from cell's responses to monocular stimulation. This assumption is true if signals from the left and right eyes are combined linearly or nearly so. If the binocular combination of signals is nonlinear, then the assumption may or may not hold depending on the type of nonlinearity.
There is some evidence that indicates that a combination of left and
right eye signals is indeed linear. Ohzawa and Freeman (1986a) studied phase-specific binocular interactions of simple cells in the cat's striate cortex using drifting sinusoidal gratings and suggested that the majority of binocular interactions may be
accounted for by a simple linear summation of monocular signals and a
threshold mechanism. In addition, it is shown in the following paper
(Anzai et al. 1999a
) that a simple cell can be modeled
as a linear binocular filter followed by a static nonlinearity. Because the static nonlinearity only affects response amplitude and not peak
locations of disparity tuning functions, the RF disparity of a cell
should correspond to the optimal binocular disparity for that cell.
Orientation dependency of binocular disparity
Because our eyes are displaced laterally, binocular parallax
yields a larger range of binocular disparities along horizontal compared with vertical directions. Therefore the range of RF disparity is expected to be larger for cells tuned to vertical compared with
horizontal orientations. Physiological evidence for this orientation
anisotropy first was reported by Barlow et al. (1967). They measured for each cell the binocular disparity necessary to evoke
maximum binocular facilitation, and found that the range of disparities
was larger for horizontal (±3.3°) compared with vertical disparity
(±1.1°).
However, subsequent studies failed to find such an orientation
anisotropy (Ferster 1981; Joshua and Bishop
1970
; LeVay and Voigt 1988
; Nikara et al.
1968
; von der Heydt et al. 1978
). For example,
Nikara et al. (1968)
measured positions of left and
right eye RFs using moving bars and edges and found that the RF
position disparities ranged between ±1.2°, with a standard deviation
of ~0.6°, in both the horizontal and vertical directions. Similar results were also obtained by von der Heydt et al.
(1978)
. Joshua and Bishop (1970)
found RF
position disparity to be dependent on eccentricity. For small
eccentricities, they observed no difference between the ranges of RF
position disparities along the horizontal and vertical directions, but
at horizontal eccentricities beyond 8°, they found an orientation
anisotropy. Therefore they concluded that the orientation anisotropy
reported in Barlow et al. (1967)
could be attributed to
the large range of eccentricities from which data were sampled and
errors in measurement of RFs in the periphery.
Although eccentricity might have been a factor that contributed to the
difference between the results of Barlow et al. (1967) and those of the three studies just mentioned (Joshua and Bishop 1970
; Nikara et al. 1968
; von der Heydt
et al. 1978
), there is one other important factor that needs to
be considered. Barlow et al. reached their conclusion based on the
measurements of cells' preferred binocular disparities, whereas others
used the measurements of monocular RF locations, i.e., RF position
disparities. A cell's preferred binocular disparity is the sum of its
RF phase and position disparities. If RF position disparities are
relatively small compared with RF phase disparities and if RF phase
disparity, but not RF position disparity, shows orientation anisotropy
as found in the current study, then the previous reports are all
consistent. Barlow et al. measured something very close to RF phase
disparity, whereas others measured RF position disparity. In fact,
Barlow et al. observed that the centers of the monocular RFs did not
necessarily correspond to the positions of the stimuli that elicited
the maximal binocular facilitation.
There are two more studies that are relevant to this issue.
Ferster (1981) and LeVay and Voigt (1988)
measured the preferred binocular disparities of cells, and their
results are, therefore, comparable with those of Barlow et al.
(1967)
. Yet they failed to find an orientation anisotropy.
Because they used a reference-cell method, errors in their measurements
are probably less than those in Barlow et al. However, the orientation
anisotropy found in the current study is also not very strong, though
it is statistically significant (Fig. 8B). Therefore it is
not surprising that they did not find an orientation anisotropy. On the
other hand, RF phase disparity in phase angle does show a clear
orientation anisotropy as presented in Fig. 8A and also in
previous studies (DeAngelis et al. 1991
, 1995
;
Ohzawa et al. 1996
), which indicates that a similarity
(or dissimilarity) of left and right eye RFs depends on RF orientation.
Phase encoding and the stereo correspondence problem
Numerous psychophysical studies have shown that performance of
human observers in binocular fusion and stereo tasks depends on
stimulus spatial frequency, at least at low spatial frequencies (DeValois 1982; Felton et al. 1972
;
Kulikowski 1978
; Legge and Gu 1989
;
Richards and Kaye 1974
; Schor and Wood
1983
; Schor et al. 1984a
,b
; Smallman and
MacLeod 1994
). In general, threshold disparity increases as
spatial frequency decreases or as stimulus size increases. Hence this
relationship is called a size-disparity correlation (Schor and
Wood 1983
).
The range of RF phase disparity also exhibits a size-disparity
correlation (Fig. 9B); the range decreases as spatial
frequency increases. This means that cells tuned to high spatial
frequencies can encode only small binocular disparities, whereas cells
tuned to low spatial frequencies could encode relatively large
binocular disparities as well. Marr and Poggio (1979)
suggested that the stereo correspondence problem can be solved first at
coarse scales (low spatial frequencies) to limit the range of
disparities for which the match is sought and then at fine scales (high
spatial frequencies) to find the match (see also Nishihara
1987
; Quam 1987
). It also has been suggested
that binocular disparity should be limited to a quarter cycle (90 deg
PA) for band-pass filters with a bandwidth comparable with that of
cortical cells to unambiguously encode binocular disparity
(Blake and Wilson 1991
; Marr and Poggio 1979
). As shown in Fig. 5A, RF phase disparity
satisfies this requirement.
These results imply that the stereo correspondence problem may be
solved, at least partially if not completely, at the very earliest
stage of cortical processing. This imposes important constraints as to
what the possible algorithms for solving the correspondence problem
should be based on. Sanger (1988) proposed a phase Based
algorithm for solving the correspondence problem by computing something
equivalent to interocular cross-correlation of a pair of band-limited
images (see also Jenkin and Jepson 1988
). In the
following two papers (Anzai et al. 1999a
,b
), it is shown that outputs of simple and complex cells contain response components due to multiplicative binocular interaction, the key ingredient for
computing interocular cross-correlation. Therefore these neurons may
indeed form a neural basis for solving the correspondence problem.
RF disparities of complex cells
In this study, RF disparities of only simple cells are examined.
How do complex cells encode binocular disparity? It has been shown that
a significant fraction of complex cells are selective to binocular
disparity (Ferster 1981; LeVay and Voigt
1988
; Ohzawa and Freeman 1986b
; Ohzawa et
al. 1990
, 1997
; Pettigrew et al. 1968
;
Poggio et al. 1985
; von der Heydt et al.
1978
). However, it is quite difficult to study their RF
mechanisms for encoding binocular disparity. This is simply because
complex cells respond to both bright and dark stimuli at the same
location of space, and therefore their RF profiles, the responses to
bright stimuli minus the responses to dark stimuli, are relatively flat
(see Fig. 1, C and F, in Anzai et al.
1999b
for examples). Furthermore RF profiles obtained with
either bright or dark stimuli alone are approximately Gaussian shaped
(e.g., Dean and Tolhurst 1983
; Heggelund
1981
; Kulikowski et al. 1981
; Movshon et
al. 1978
; Ohzawa et al. 1990
; Palmer and
Davis 1981
; Schiller et al. 1976
; see also
Baker and Cynader 1986
) and no sinusoidal component is
present. Therefore it is not possible to estimate RF position and phase disparities of complex cells from their monocular RFs.
Numerous studies have provided evidence consistent with the idea that
complex cells are made up of subunits that resemble simple cells
(Baker and Cynader 1986; Dean and Tolhurst
1983
; Emerson et al. 1987
, 1992
; Gaska et
al. 1994
; Movshon et al. 1978
; Ohzawa et
al. 1990
; Pollen and Ronner 1982
;
Szulborski and Palmer 1990
), originally suggested by
Hubel and Wiesel (1962)
. Therefore the RF properties of
complex cells are thought to be inherited directly from the underlying
subunits. Then one would expect that complex cells encode binocular
disparity in the same manner as simple cells do, i.e., mainly through
RF phase disparity.
Recently, Ohzawa et al. (1997) measured interocular two
bar interaction and estimated disparity tuning curves for complex cells. They found that the disparity tuning of complex cells can be
either symmetric or asymmetric in shape. Because phase encoding, but
not position encoding, predicts asymmetric disparity tuning, they
concluded that complex cells encode binocular disparity through RF
phase disparity of subunits.
In the third paper of this series (Anzai et al. 1999b),
RF profiles of subunits are estimated from the binocular interaction RFs of complex cells, and RF position and phase disparities of subunits
are obtained. It is shown that the RF position and phase disparities of
complex cell subunits are mostly consistent with those of simple cells
as reported in the current study. Therefore complex cells seem to
encode binocular disparity mainly through RF phase disparity, just like
simple cells.
![]() |
APPENDIX |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Gabor functions used to fit RF profiles
A Gabor function (G) is the product of a Gaussian
envelope (E) and a sinusoid (S). The function
used to fit one-dimensional (1D) RF profiles is illustrated in Fig.
A1A. There are six free parameters for the 1D Gabor function: the center coordinate of the
Gaussian (Xo), the width of the
Gaussian (W), the frequency of the sinusoid
(f), the phase of the sinusoid (), the
amplitude (Am), and the amplitude
offset (Ao). The amplitude offset is
expected to be zero, and in fact, it is always very close to zero.
Therefore it is not necessary to have this parameter. Nonetheless it is included here because real data always exhibit a finite value for this
parameter, no matter how small. Figure A1B shows the Gabor function used to fit two-dimensional (2D) RF profiles. The 1D profiles
in the figure are the sections through the center of the Gabor
function. There are 10 free parameters: the center coordinate of the
Gaussian on the x axis
(Xo), the center coordinate of the Gaussian on the y axis
(Yo), the rotation angle of the
Gaussian (
), the width of the Gaussian along the minor axis
(Wp), the width of the Gaussian along
the major axis (Wq), the frequency of
the sinusoid (f), the phase of the sinusoid
(
), the rotation angle of the sinusoid (
), the amplitude
(Am), and the amplitude offset
(Ao). A 2D Gabor function can be
formulated in a number of different ways. The choice of this particular
function is based on empirical reasons. First, the parameters of the
function are fairly uncorrelated, i.e., they are not redundant. Second,
the parameters almost always converge, i.e., the fitting algorithm can
find the best fit.
|
Definition of RF disparities
RF PHASE DISPARITY.
Receptive field disparity dP is
defined as follows
![]() |
(A1) |
![]() |
(A2) |
RF POSITION DISPARITY.
Let Xo and
Yo be the center coordinates of the RF
mapped on the visual field, and , the RF orientation. Parenthesized
superscripts, A and B, will be used on these parameters to indicate
that they belong to cell A (a reference cell) and cell
B, respectively. The RF coordinates of cell B can be
transformed into a new coordinate system so that the center coordinates
of cell A becomes the origin and the RF orientation of
cell A matches the ordinate. The new coordinates of
cell B's RF is given by
![]() |
(A3) |
![]() |
(A4) |
![]() |
(A5) |
![]() |
(A6) |
![]() |
(A7) |
Relationship between distributions of true and relative position disparities
Suppose that the population distribution of true position
disparity (see Fig. 3B; top) has a mean
µt and a variance t2, i.e.,
![]() |
(A8) |
![]() |
(A9) |
![]() |
(A10) |
![]() |
(A11) |
![]() |
![]() |
![]() |
(A12) |
![]() |
(A13) |
![]() |
(A14) |
![]() |
(A15) |
![]() |
ACKNOWLEDGMENTS |
---|
We are grateful to Dr. Erich Sutter for advice on binary m-sequences and their applications to receptive field mapping. We also thank Drs. Bruce Cumming, Greg DeAngelis, Karen DeValois, Russel DeValois, Ed Erwin, Edwin Lewis, and Clifton Schor for discussions and helpful comments and suggestions.
This work was supported by research and CORE grants from the National Eye Institute (EY-01175 and EY-03176).
![]() |
FOOTNOTES |
---|
Address for reprint requests: R. D. Freeman, 360 Minor Hall, School of Optometry, University of California, Berkeley, CA 94720-2020.
The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
1
There are a number of variations in the
reference-cell method. For instance, Ferster (1981) used
a different reference cell for each measurement, whereas Hubel
and Wiesel (1970)
kept a single reference cell for the entire
experiment. We have employed Ferster's method because it is more
practical and the data obtained are amenable to a simple statistical
analysis described here.
2 The rotation of the RFs is necessary to correct cyclorotation of the eyes due to paralysis.
Received 2 June 1998; accepted in final form 2 April 1999.
![]() |
REFERENCES |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|