BRIEF COMMUNICATION |
BRAF Mutation in Papillary Thyroid Carcinoma
Yoram Cohen,
Mingzhao Xing,
Elizabeth Mambo,
Zhongmin Guo,
Guogun Wu,
Barry Trink,
Uziel Beller,
William H. Westra,
Paul W. Ladenson,
David Sidransky
Affiliations of authors: Y. Cohen, E. Mambo, Z. Guo, G. Wu, B. Trink, W. H. Westra, D. Sidransky (Division of Head and Neck Cancer Research, Department of OtolaryngologyHead and Neck Surgery), M. Xing, P. W. Ladenson (Division of Endocrinology and Metabolism), The Johns Hopkins University School of Medicine, Baltimore, MD; U. Beller, Department of Obstetrics and Gynecology, Shaare Zedek Medical Center, Ben-Gurion University of the Negev, Jerusalem, Israel.
Correspondence to: David Sidransky, M.D., Division of Head and Neck Cancer Research, Department of OtolaryngologyHead and Neck Surgery, The Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg. 818, Baltimore, MD 21205-2196 (e-mail: dsidrans{at}jhmi.edu).
ABSTRACT
The BRAF gene has been found to be activated by mutation in human cancers, predominantly in malignant melanoma. We tested 476 primary tumors, including 214 lung, 126 head and neck, 54 thyroid, 27 bladder, 38 cervical, and 17 prostate cancers, for the BRAF T1796A mutation by polymerase chain reaction (PCR)restriction enzyme analysis of BRAF exon 15. In 24 (69%) of the 35 papillary thyroid carcinomas examined, we found a missense thymine (T)
adenine (A) transversion at nucleotide 1796 in the BRAF gene (T1796A). The T1796A mutation was detected in four lung cancers and in six head and neck cancers but not in bladder, cervical, or prostate cancers. Our data suggest that activating BRAF mutations may be an important event in the development of papillary thyroid cancer.
The RAF proteins are highly conserved serine/threonine protein kinases that have an important role in cell proliferation, differentiation, and programmed cell death (1). The RAF proteins activate mitogen-activated protein kinase kinase (MEK), which in turn activates the mitogen-activated protein kinase (MAPK) pathway (2). Inappropriate and/or continuous activation of this pathway provides a potent promitogenic force resulting in abnormal proliferation and differentiation in many human cancers (3). Davies et al. (4) reported that BRAF is frequently mutated in a variety of human tumors, especially in malignant melanoma and colon carcinoma. The most common reported mutation was a missense thymine (T)
adenine (A) transversion at nucleotide 1796 (T1796A; amino acid change in the BRAF protein = Val599
Glu599) observed in 80% of the malignant melanoma tumors. Functional analysis revealed that this transversion was the only detected mutation that caused constitutive activation of BRAF kinase activity, independent of RAS activation, by converting BRAF into a dominant transforming protein (4). In this study, we investigated the frequency of BRAF T1796A mutation and further elucidated the importance of this mutation in various primary human tumors.
We screened 476 primary tumors, including 214 lung, 126 head and neck, 54 thyroid, 27 bladder, 38 cervical, and 17 prostate cancers for the BRAF T1796A mutation by polymerase chain reaction (PCR)restriction enzyme analysis. The samples were obtained from patients treated at The Johns Hopkins Medical Institutions (Baltimore, MD) and were collected in our tissue bank. Written informed consent was obtained from each patient in accordance with the institutional review board at The Johns Hopkins Medical Institutions. PCR amplification of exon 15 followed by digestion of the exon 15 products by the restriction endonuclease TspRI identified the BRAF T1796A mutation. TspRI digestion of the PCR fragment yielded three major bands at 125 base pairs (bp), 87 bp, and 12 bp in the wild-type allele. The T1796A mutation abolished the restriction site, resulting in a prominent 212-bp band from the mutant allele and residual bands from the normal allele (Fig. 1, A
). Reamplification of BRAF exon 15 followed by direct manual sequencing of five samples validated the results of the TspRI assay (Fig. 1, B
). As positive controls for the BRAF T1796A mutation, we used melanoma cell lines HTB71, HTB72, and A2058; for negative controls, we used cell lines ME180 (cervical cancer) and HCT116 (colorectal carcinoma).

View larger version (59K):
[in this window]
[in a new window]
|
Fig. 1. TspRI restriction enzyme analysis (A) and exon 15 sequence analysis (B) of BRAF. A) Restriction pattern of the T1796A mutation. Lane M = mutant T299; lane WT = wild-type T486. B) Manual DNA sequence gel of exon 15 from papillary thyroid samples harboring the T1796A mutation (arrowhead). Lane 1 = T569; lane 2 = T203; lane 3 = a thyroid adenomatous hyperplasia (T530) negative for the T1796A mutation; lane 4 = T228; lane 5 = T171; and lane 6 = melanoma cell line HTB72 that carries a homozygous T1796A mutation. The sequence is to the right.
|
|
The BRAF T1796A mutation was identified in 24 (69%) of 35 papillary thyroid carcinomas (Table 1
), six (4.8%) of 126 head and neck cancers, and four (1.9%) of 214 lung cancers. Moreover, we analyzed nine common thyroid cell lines (KAK1, KAT5, KAT7, KAT10, DRO, ARO, MRO 871, WRO821, and C643) and found the same BRAF mutation in six (67%) of the nine lines. We also completely sequenced exons 11 and 15 in all T1796A-negative papillary thyroid cancers and in 10 T1796A-positive tumors but did not identify additional BRAF mutations. We did not identify any mutations in bladder, cervical, and prostate primary tumors, and no mutation was identified in biopsy samples from 20 patients with benign thyroid conditions (nodular goiter, follicular adenoma, atypical follicular adenoma, and adenomatous hyperplasia), 13 patients with follicular thyroid carcinoma, three patients with medullary thyroid carcinoma, and three patients with Hürthle cell carcinoma.
Papillary and follicular thyroid carcinomas originate from thyroid follicular epithelial cells. To date, oncogenic mutations in RAS and RET/PTC rearrangements have been observed in follicular thyroid carcinoma and papillary thyroid carcinomas, respectively (5,6). RAS mutations are common in follicular thyroid cancers, reaching 50% in some studies, but are less common (5%20%) in papillary thyroid tumors (5). Our observation of a high frequency of BRAF-activating mutations in papillary thyroid carcinoma suggests that BRAF activation and, in turn, activation of the RAF/MEK/MAPK signaling pathway, is a common biologic mechanism in the development of human papillary thyroid carcinoma. This observation is also consistent with the reported inverse association between the presence of BRAF and RAS mutations in other cancer types (4,7,8). The relationship between BRAF T1796A mutation and RET/PTC rearrangements remains to be explored.
The importance of the RAS pathway in thyroid cancers is further suggested by the common presence of RET mutations in medullary thyroid tumors and their transforming effect through activation of the RAS/RAF/MEK pathway (9). Moreover, activation of the RAS/RAF/MEK/MAPK pathway is known to induce genomic instability in thyroid PCCL-3 cells (10), and inhibition of the MAPK pathway has led to decreased cellular proliferation of human thyroid cancer cell lines (11). Thus, activation at various points in the RAS/RAF/MEK/MAPK pathway is a key event in the most common type of malignant thyroid tumor. The high frequency of BRAF mutations in melanoma and papillary thyroid carcinoma suggests that inhibition of BRAF activity by the newly developed RAF kinase inhibitors (12) may offer a new strategy in the treatment of these tumors. Our results have identified the BRAF T1796A mutation and likely activation of the RAF/MEK/MAPK signaling pathway as a major mechanism in the development of primary papillary thyroid carcinoma.
NOTES
M. Xing and E. Mambo contributed equally to this work.
REFERENCES
1 Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 2001;93:5362.[CrossRef][Medline]
2 Duesbery NS, Webb CP, Vande Woude GF. MEK wars, a new front in the battle against cancer. Nat Med 1999;5:7367.[CrossRef][Medline]
3 Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, et al. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 2001;56:12755.[Abstract/Free Full Text]
4 Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:94954.[CrossRef][Medline]
5 Gimm O. Thyroid cancer. Cancer Lett 2001;163:14356.[CrossRef][Medline]
6 Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990;60:55763.[Medline]
7 Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002;418:934.[CrossRef][Medline]
8 Singer G, Oldt R III, Cohen Y, Wang BG, Sidransky D, Kurman RJ, et al. Mutations in BRAF and KRAS characterize the development of low-grade serous ovarian carcinoma. J Natl Cancer Inst. In press 2003.
9 Ludwig L, Kessler H, Wagner M, Hoang-Vu C, Dralle H, Adler G, et al. Nuclear factor-kappaB is constitutively active in C-cell carcinoma and required for RET-induced transformation. Cancer Res 2001;61:452635.[Abstract/Free Full Text]
10 Saavedra HI, Knauf JA, Shirokawa JM, Wang J, Ouyang B, Elisei R, et al. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 2000;19:394854.[CrossRef][Medline]
11 Specht MC, Barden CB, Fahey TJ 3rd. p44/p42-MAP kinase expression in papillary thyroid carcinomas. Surgery 2001;130:93640.[CrossRef][Medline]
12 Lyons JF, Wilhelm S, Hibner B, Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001;8:21925.[Abstract/Free Full Text]
Manuscript received September 25, 2002;
revised January 30, 2003;
accepted February 6, 2003.
This article has been cited by other articles in HighWire Press-hosted journals:
-
Salvatore, G., De Falco, V., Salerno, P., Nappi, T. C., Pepe, S., Troncone, G., Carlomagno, F., Melillo, R. M., Wilhelm, S. M., Santoro, M.
(2006). BRAF Is a Therapeutic Target in Aggressive Thyroid Carcinoma. Clin Cancer Res
12: 1623-1629
[Abstract]
[Full Text]
-
Canchola, A. J., Horn-Ross, P. L., Purdie, D. M.
(2006). Risk of Second Primary Malignancies in Women with Papillary Thyroid Cancer. Am. J. Epidemiol.
163: 521-527
[Abstract]
[Full Text]
-
Sapio, M. R., Posca, D., Troncone, G., Pettinato, G., Palombini, L., Rossi, G., Fenzi, G., Vitale, M.
(2006). Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). eur j endocrinol
154: 341-348
[Abstract]
[Full Text]
-
Panka, D. J., Wang, W., Atkins, M. B., Mier, J. W.
(2006). The Raf Inhibitor BAY 43-9006 (Sorafenib) Induces Caspase-Independent Apoptosis in Melanoma Cells. Cancer Res
66: 1611-1619
[Abstract]
[Full Text]
-
Grbovic, O. M., Basso, A. D., Sawai, A., Ye, Q., Friedlander, P., Solit, D., Rosen, N.
(2006). V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl. Acad. Sci. U. S. A.
103: 57-62
[Abstract]
[Full Text]
-
He, H., Jazdzewski, K., Li, W., Liyanarachchi, S., Nagy, R., Volinia, S., Calin, G. A., Liu, C.-g., Franssila, K., Suster, S., Kloos, R. T., Croce, C. M., de la Chapelle, A.
(2005). The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. U. S. A.
102: 19075-19080
[Abstract]
[Full Text]
-
Xing, M., Westra, W. H., Tufano, R. P., Cohen, Y., Rosenbaum, E., Rhoden, K. J., Carson, K. A., Vasko, V., Larin, A., Tallini, G., Tolaney, S., Holt, E. H., Hui, P., Umbricht, C. B., Basaria, S., Ewertz, M., Tufaro, A. P., Califano, J. A., Ringel, M. D., Zeiger, M. A., Sidransky, D., Ladenson, P. W.
(2005). BRAF Mutation Predicts a Poorer Clinical Prognosis for Papillary Thyroid Cancer. J Clin Endocrinol Metab
90: 6373-6379
[Abstract]
[Full Text]
-
Rahmani, M., Davis, E. M., Bauer, C., Dent, P., Grant, S.
(2005). Apoptosis Induced by the Kinase Inhibitor BAY 43-9006 in Human Leukemia Cells Involves Down-regulation of Mcl-1 through Inhibition of Translation. J. Biol. Chem.
280: 35217-35227
[Abstract]
[Full Text]
-
Beeram, M., Patnaik, A., Rowinsky, E. K.
(2005). Raf: A Strategic Target for Therapeutic Development Against Cancer. J Clin Oncol
23: 6771-6790
[Abstract]
[Full Text]
-
Vasko, V., Hu, S., Wu, G., Xing, J. C., Larin, A., Savchenko, V., Trink, B., Xing, M.
(2005). High Prevalence and Possible de Novo Formation of BRAF Mutation in Metastasized Papillary Thyroid Cancer in Lymph Nodes. J Clin Endocrinol Metab
90: 5265-5269
[Abstract]
[Full Text]
-
Guarino, V., Faviana, P., Salvatore, G., Castellone, M. D., Cirafici, A. M., De Falco, V., Celetti, A., Giannini, R., Basolo, F., Melillo, R. M., Santoro, M.
(2005). Osteopontin Is Overexpressed in Human Papillary Thyroid Carcinomas and Enhances Thyroid Carcinoma Cell Invasiveness. J Clin Endocrinol Metab
90: 5270-5278
[Abstract]
[Full Text]
-
Kobel, M., Pohl, G., Schmitt, W. D., Hauptmann, S., Wang, T.-L., Shih, I.-M.
(2005). Activation of Mitogen-Activated Protein Kinase Is Required for Migration and Invasion of Placental Site Trophoblastic Tumor. Am J Pathol
167: 879-885
[Abstract]
[Full Text]
-
Goldenberg-Cohen, N., Cohen, Y., Rosenbaum, E., Herscovici, Z., Chowers, I., Weinberger, D., Pe'er, J., Sidransky, D.
(2005). T1799A BRAF Mutations in Conjunctival Melanocytic Lesions. IOVS
46: 3027-3030
[Abstract]
[Full Text]
-
Adjei, A. A., Hidalgo, M.
(2005). Intracellular Signal Transduction Pathway Proteins As Targets for Cancer Therapy. J Clin Oncol
23: 5386-5403
[Abstract]
[Full Text]
-
Wu, G., Mambo, E., Guo, Z., Hu, S., Huang, X., Gollin, S. M., Trink, B., Ladenson, P. W., Sidransky, D., Xing, M.
(2005). Uncommon Mutation, but Common Amplifications, of the PIK3CA Gene in Thyroid Tumors. J Clin Endocrinol Metab
90: 4688-4693
[Abstract]
[Full Text]
-
Hoque, M. O., Rosenbaum, E., Westra, W. H., Xing, M., Ladenson, P., Zeiger, M. A., Sidransky, D., Umbricht, C. B.
(2005). Quantitative Assessment of Promoter Methylation Profiles in Thyroid Neoplasms. J Clin Endocrinol Metab
90: 4011-4018
[Abstract]
[Full Text]
-
Hatch, M., Ron, E., Bouville, A., Zablotska, L., Howe, G.
(2005). The Chernobyl Disaster: Cancer following the Accident at the Chernobyl Nuclear Power Plant. Epidemiol Rev
27: 56-66
[Full Text]
-
Shattuck, T. M., Westra, W. H., Ladenson, P. W., Arnold, A.
(2005). Independent Clonal Origins of Distinct Tumor Foci in Multifocal Papillary Thyroid Carcinoma. NEJM
352: 2406-2412
[Abstract]
[Full Text]
-
Rossi, S, Fugazzola, L, De Pasquale, L, Braidotti, P, Cirello, V, Beck-Peccoz, P, Bosari, S, Bastagli, A
(2005). Medullary and papillary carcinoma of the thyroid gland occurring as a collision tumour: report of three cases with molecular analysis and review of the literature. Endocr Relat Cancer
12: 281-289
[Abstract]
[Full Text]
-
Xing, M
(2005). BRAF mutation in thyroid cancer. Endocr Relat Cancer
12: 245-262
[Abstract]
[Full Text]
-
Knauf, J. A., Ma, X., Smith, E. P., Zhang, L., Mitsutake, N., Liao, X.-H., Refetoff, S., Nikiforov, Y. E., Fagin, J. A.
(2005). Targeted Expression of BRAFV600E in Thyroid Cells of Transgenic Mice Results in Papillary Thyroid Cancers that Undergo Dedifferentiation. Cancer Res
65: 4238-4245
[Abstract]
[Full Text]
-
Porra, V., Ferraro-Peyret, C., Durand, C., Selmi-Ruby, S., Giroud, H., Berger-Dutrieux, N., Decaussin, M., Peix, J.-L., Bournaud, C., Orgiazzi, J., Borson-Chazot, F., Dante, R., Rousset, B.
(2005). Silencing of the Tumor Suppressor Gene SLC5A8 Is Associated with BRAF Mutations in Classical Papillary Thyroid Carcinomas. J Clin Endocrinol Metab
90: 3028-3035
[Abstract]
[Full Text]
-
Caudill, C. M., Zhu, Z., Ciampi, R., Stringer, J. R., Nikiforov, Y. E.
(2005). Dose-Dependent Generation of RET/PTC in Human Thyroid Cells after in Vitro Exposure to {gamma}-Radiation: A Model of Carcinogenic Chromosomal Rearrangement Induced by Ionizing Radiation. J Clin Endocrinol Metab
90: 2364-2369
[Abstract]
[Full Text]
-
Melillo, R. M., Castellone, M. D., Guarino, V., De Falco, V., Cirafici, A. M., Salvatore, G., Caiazzo, F., Basolo, F., Giannini, R., Kruhoffer, M., Orntoft, T., Fusco, A., Santoro, M.
(2005). The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J. Clin. Invest.
115: 1068-1081
[Abstract]
[Full Text]
-
Mitsutake, N., Knauf, J. A., Mitsutake, S., Mesa, C. Jr., Zhang, L., Fagin, J. A.
(2005). Conditional BRAFV600E Expression Induces DNA Synthesis, Apoptosis, Dedifferentiation, and Chromosomal Instability in Thyroid PCCL3 Cells. Cancer Res
65: 2465-2473
[Abstract]
[Full Text]
-
Motti, M. L., Califano, D., Troncone, G., De Marco, C., Migliaccio, I., Palmieri, E., Pezzullo, L., Palombini, L., Fusco, A., Viglietto, G.
(2005). Complex Regulation of the Cyclin-Dependent Kinase Inhibitor p27kip1 in Thyroid Cancer Cells by the PI3K/AKT Pathway: Regulation of p27kip1 Expression and Localization. Am J Pathol
166: 737-749
[Abstract]
[Full Text]
-
Sorrentino, R., Libertini, S., Pallante, P. L., Troncone, G., Palombini, L., Bavetsias, V., Spalletti-Cernia, D., Laccetti, P., Linardopoulos, S., Chieffi, P., Fusco, A., Portella, G.
(2005). Aurora B Overexpression Associates with the Thyroid Carcinoma Undifferentiated Phenotype and Is Required for Thyroid Carcinoma Cell Proliferation. J Clin Endocrinol Metab
90: 928-935
[Abstract]
[Full Text]
-
Ciampi, R., Knauf, J. A., Kerler, R., Gandhi, M., Zhu, Z., Nikiforova, M. N., Rabes, H. M., Fagin, J. A., Nikiforov, Y. E.
(2005). Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest.
115: 94-101
[Abstract]
[Full Text]
-
Perren, A, Schmid, S, Locher, T, Saremaslani, P, Bonvin, C, Heitz, P U, Komminoth, P
(2004). BRAF and endocrine tumors: mutations are frequent in papillary thyroid carcinomas, rare in endocrine tumors of the gastrointestinal tract and not detected in other endocrine tumors. Endocr Relat Cancer
11: 855-860
[Abstract]
[Full Text]
-
Fagin, J A
(2004). How thyroid tumors start and why it matters: kinase mutants as targets for solid cancer pharmacotherapy. J Endocrinol
183: 249-256
[Abstract]
[Full Text]
-
Salvatore, G., Giannini, R., Faviana, P., Caleo, A., Migliaccio, I., Fagin, J. A., Nikiforov, Y. E., Troncone, G., Palombini, L., Basolo, F., Santoro, M.
(2004). Analysis of BRAF Point Mutation and RET/PTC Rearrangement Refines the Fine-Needle Aspiration Diagnosis of Papillary Thyroid Carcinoma. J Clin Endocrinol Metab
89: 5175-5180
[Abstract]
[Full Text]
-
Fagin, J. A.
(2004). Challenging Dogma in Thyroid Cancer Molecular Genetics--Role of RET/PTC and BRAF in Tumor Initiation. J Clin Endocrinol Metab
89: 4264-4266
[Full Text]
-
Lima, J., Trovisco, V., Soares, P., Maximo, V., Magalhaes, J., Salvatore, G., Santoro, M., Bogdanova, T., Tronko, M., Abrosimov, A., Jeremiah, S., Thomas, G., Williams, D., Sobrinho-Simoes, M.
(2004). BRAF Mutations Are Not a Major Event in Post-Chernobyl Childhood Thyroid Carcinomas. J Clin Endocrinol Metab
89: 4267-4271
[Abstract]
[Full Text]
-
Kumagai, A., Namba, H., Saenko, V. A., Ashizawa, K., Ohtsuru, A., Ito, M., Ishikawa, N., Sugino, K., Ito, K., Jeremiah, S., Thomas, G. A., Bogdanova, T. I., Tronko, M. D., Nagayasu, T., Shibata, Y., Yamashita, S.
(2004). Low Frequency of BRAFT1796A Mutations in Childhood Thyroid Carcinomas. J Clin Endocrinol Metab
89: 4280-4284
[Abstract]
[Full Text]
-
Umbricht, C. B., Conrad, G. T., Clark, D. P., Westra, W. H., Smith, D. C., Zahurak, M., Saji, M., Smallridge, R. C., Goodman, S., Zeiger, M. A.
(2004). Human Telomerase Reverse Transcriptase Gene Expression and the Surgical Management of Suspicious Thyroid Tumors. Clin Cancer Res
10: 5762-5768
[Abstract]
[Full Text]
-
VDOVICHENKO, K K, MARKOVA, S I, BELOKHVOSTOV, A S
(2004). Mutant Form of BRAF Gene in Blood Plasma of Cancer Patients. Annals NYAS Online
1022: 228-231
[Full Text]
-
TABACK, B., HOON, D. S. B.
(2004). Circulating Nucleic Acids and Proteomics of Plasma/Serum: Clinical Utility. Annals NYAS Online
1022: 1-8
[Abstract]
[Full Text]
-
Kambara, T, Simms, L A, Whitehall, V L J, Spring, K J, Wynter, C V A, Walsh, M D, Barker, M A, Arnold, S, McGivern, A, Matsubara, N, Tanaka, N, Higuchi, T, Young, J, Jass, J R, Leggett, B A
(2004). BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut
53: 1137-1144
[Abstract]
[Full Text]
-
Xing, M., Tufano, R. P., Tufaro, A. P., Basaria, S., Ewertz, M., Rosenbaum, E., Byrne, P. J., Wang, J., Sidransky, D., Ladenson, P. W.
(2004). Detection of BRAF Mutation on Fine Needle Aspiration Biopsy Specimens: A New Diagnostic Tool for Papillary Thyroid Cancer. J Clin Endocrinol Metab
89: 2867-2872
[Abstract]
[Full Text]
-
Cohen, Y., Rosenbaum, E., Begum, S., Goldenberg, D., Esche, C., Lavie, O., Sidransky, D., Westra, W. H.
(2004). Exon 15 BRAF Mutations Are Uncommon in Melanomas Arising in Nonsun-Exposed Sites. Clin Cancer Res
10: 3444-3447
[Abstract]
[Full Text]
-
Ikenoue, T., Hikiba, Y., Kanai, F., Aragaki, J., Tanaka, Y., Imamura, J., Imamura, T., Ohta, M., Ijichi, H., Tateishi, K., Kawakami, T., Matsumura, M., Kawabe, T., Omata, M.
(2004). Different Effects of Point Mutations within the B-Raf Glycine-Rich Loop in Colorectal Tumors on Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase/Extracellular Signal-Regulated Kinase and Nuclear Factor {kappa}B Pathway and Cellular Transformation. Cancer Res
64: 3428-3435
[Abstract]
[Full Text]
-
Puxeddu, E., Moretti, S., Elisei, R., Romei, C., Pascucci, R., Martinelli, M., Marino, C., Avenia, N., Rossi, E. D., Fadda, G., Cavaliere, A., Ribacchi, R., Falorni, A., Pontecorvi, A., Pacini, F., Pinchera, A., Santeusanio, F.
(2004). BRAFV599E Mutation Is the Leading Genetic Event in Adult Sporadic Papillary Thyroid Carcinomas. J Clin Endocrinol Metab
89: 2414-2420
[Abstract]
[Full Text]
-
Cohen, Y., Rosenbaum, E., Clark, D. P., Zeiger, M. A., Umbricht, C. B., Tufano, R. P., Sidransky, D., Westra, W. H.
(2004). Mutational Analysis of BRAF in Fine Needle Aspiration Biopsies of the Thyroid: A Potential Application for the Preoperative Assessment of Thyroid Nodules. Clin Cancer Res
10: 2761-2765
[Abstract]
[Full Text]
-
Shinozaki, M., Fujimoto, A., Morton, D. L., Hoon, D. S. B.
(2004). Incidence of BRAF Oncogene Mutation and Clinical Relevance for Primary Cutaneous Melanomas. Clin Cancer Res
10: 1753-1757
[Abstract]
[Full Text]
-
Xing, M., Vasko, V., Tallini, G., Larin, A., Wu, G., Udelsman, R., Ringel, M. D., Ladenson, P. W., Sidransky, D.
(2004). BRAF T1796A Transversion Mutation in Various Thyroid Neoplasms. J Clin Endocrinol Metab
89: 1365-1368
[Abstract]
[Full Text]
-
Xing, M., Cohen, Y., Mambo, E., Tallini, G., Udelsman, R., Ladenson, P. W., Sidransky, D.
(2004). Early Occurrence of RASSF1A Hypermethylation and Its Mutual Exclusion with BRAF Mutation in Thyroid Tumorigenesis. Cancer Res
64: 1664-1668
[Abstract]
[Full Text]
-
Casula, M., Colombino, M., Satta, M. P., Cossu, A., Ascierto, P. A., Bianchi-Scarra, G., Castiglia, D., Budroni, M., Rozzo, C., Manca, A., Lissia, A., Carboni, A., Petretto, E., Satriano, S. M.R., Botti, G., Mantelli, M., Ghiorzo, P., Stratton, M. R., Tanda, F., Palmieri, G.
(2004). BRAF Gene Is Somatically Mutated but Does Not Make a Major Contribution to Malignant Melanoma Susceptibility: The Italian Melanoma Intergroup Study. J Clin Oncol
22: 286-292
[Abstract]
[Full Text]
-
Ikenoue, T., Hikiba, Y., Kanai, F., Tanaka, Y., Imamura, J., Imamura, T., Ohta, M., Ijichi, H., Tateishi, K., Kawakami, T., Aragaki, J., Matsumura, M., Kawabe, T., Omata, M.
(2003). Functional Analysis of Mutations within the Kinase Activation Segment of B-Raf in Human Colorectal Tumors. Cancer Res
63: 8132-8137
[Abstract]
[Full Text]
-
Nikiforova, M. N., Kimura, E. T., Gandhi, M., Biddinger, P. W., Knauf, J. A., Basolo, F., Zhu, Z., Giannini, R., Salvatore, G., Fusco, A., Santoro, M., Fagin, J. A., Nikiforov, Y. E.
(2003). BRAF Mutations in Thyroid Tumors Are Restricted to Papillary Carcinomas and Anaplastic or Poorly Differentiated Carcinomas Arising from Papillary Carcinomas. J Clin Endocrinol Metab
88: 5399-5404
[Abstract]
[Full Text]
-
Calipel, A., Lefevre, G., Pouponnot, C., Mouriaux, F., Eychene, A., Mascarelli, F.
(2003). Mutation of B-Raf in Human Choroidal Melanoma Cells Mediates Cell Proliferation and Transformation through the MEK/ERK Pathway. J. Biol. Chem.
278: 42409-42418
[Abstract]
[Full Text]
-
Cruz, F. III, Rubin, B. P., Wilson, D., Town, A., Schroeder, A., Haley, A., Bainbridge, T., Heinrich, M. C., Corless, C. L.
(2003). Absence of BRAF and NRAS Mutations in Uveal Melanoma. Cancer Res
63: 5761-5766
[Abstract]
[Full Text]
-
Kumar, R., Angelini, S., Czene, K., Sauroja, I., Hahka-Kemppinen, M., Pyrhonen, S., Hemminki, K.
(2003). BRAF Mutations in Metastatic Melanoma: A Possible Association with Clinical Outcome. Clin Cancer Res
9: 3362-3368
[Abstract]
[Full Text]
-
Wang, B. G., Huang, H.-Y., Chen, Y.-C., Bristow, R. E., Kassauei, K., Cheng, C.-C., Roden, R., Sokoll, L. J., Chan, D. W., Shih, I.-M.
(2003). Increased Plasma DNA Integrity in Cancer Patients. Cancer Res
63: 3966-3968
[Abstract]
[Full Text]
-
Cohen, Y., Goldenberg-Cohen, N., Parrella, P., Chowers, I., Merbs, S. L., Pe'er, J., Sidransky, D.
(2003). Lack of BRAF Mutation in Primary Uveal Melanoma. IOVS
44: 2876-2878
[Abstract]
[Full Text]
 |
|