An overview of the determinants of CCR5 and CXCR4 co-receptor function

Tatjana Dragic1

Albert Einstein College of Medicine, Department of Microbiology and Immunology, 1300 Morris Park Ave, Bronx, NY 10461, USA1

Author for correspondence: Tatjana Dragic. Fax +1 718 430 8711. e-mail tdragic{at}aecom.yu.edu


   HIV-1 entry into target cells
Top
HIV-1 entry into target...
HIV-1 co-receptors
Determinants of CCR5 co-receptor...
Determinants of CXCR4 co...
Conclusions
References
 
Virus entry into target cells is the key first step of virus replication and is mediated by interactions between viral envelope glycoproteins and plasma membrane receptors. The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins gp120 and gp41 are non-covalently associated and form trimers on the surface of the virus particle (Moore et al., 1993 ). HIV-1 entry into target cells is initiated by the consecutive interaction of the soluble unit gp120 with CD4 and a co-receptor, whereas virus–cell membrane fusion is mediated by the transmembrane unit gp41 (Moore et al., 1993 ).

Gp120 is composed of five constant domains (C1–C5) and five variable loops (V1–V5), which are organized into an inner and an outer domain, connected by a four-stranded anti- parallel {beta}-sheet, called the bridging sheet. This domain includes the V1/V2 stem and two strands derived from C4 (Kwong et al., 1998 ; Wyatt et al., 1998 ; Wyatt & Sodroski, 1998 ). The first extracellular domain of the CD4 receptor (Bour et al., 1995 ; Wu et al., 1997a ) associates with a highly conserved groove at the interface of the inner and outer domains and the bridging sheet of gp120 (Kwong et al., 1998 ). Gp120–CD4 complex formation generates a large bonding energy that drives reordering of the gp120 core structure (Kwong et al., 1998 ; Myszka et al., 2000 ; Wyatt & Sodroski, 1998 ). Changes in the orientation of the V1/V2 and V3 loops, as well as the bridging sheet, cooperatively create/expose a co-receptor-binding site on gp120 (Kwong et al., 1998 ; Rizzuto et al., 1998 ; Wyatt & Sodroski, 1998 ). The predicted co-receptor-binding surface on gp120 has a hydrophobic core surrounded by a positively charged periphery and is composed of both conserved and variable residues (Kwong et al., 1998 ; Rizzuto et al., 1998 ). The gp120/co-receptor interaction drives additional conformational changes within the gp120/gp41 trimer that trigger the insertion of the gp41 fusion peptide into the plasma membrane (Chan et al., 1997 ; Weissenhorn et al., 1997 ).


   HIV-1 co-receptors
Top
HIV-1 entry into target...
HIV-1 co-receptors
Determinants of CCR5 co-receptor...
Determinants of CXCR4 co...
Conclusions
References
 
A number of CC- and CXC-chemokine receptors, belonging to the seven transmembrane G protein-coupled receptor family, have been shown to act as HIV-1 co-receptors in vitro (Zhang et al., 1998 ; Zhang & Moore, 1999 ). However, numerous studies have shown that CCR5 and CXCR4 are the major HIV-1 co-receptors in vivo (Zhang et al., 2000 ; Zhang & Moore, 1999 ). In particular, the resistance to infection by HIV-1 of {Delta}32/{Delta}32 individuals, who lack CCR5 entirely, and the protective effect of {Delta}32 heterozygosity on early disease progression demonstrate that this co-receptor is responsible for virus transmission and early stage HIV-1 replication (Bennetts et al., 1997 ; de Roda Husman et al., 1997 ; Garred et al., 1997 ; Huang et al., 1996 ; Meyer et al., 1997 ; Michael et al., 1997 ).

The selective use of the CCR5 and/or CXCR4 co-receptors to a large extent explains the cellular tropism of different HIV-1 isolates (Berger et al., 1998 ; Doms & Moore, 1997 ; Fenyo et al., 1997 ). CCR5 is the principal co-receptor for HIV-1 variants that are sexually transmitted and persist within the majority of infected individuals (R5 isolates). The appearance of variants that use CXCR4 or both co-receptors (X4 and R5X4 isolates) signals accelerated CD4+ T-cell loss and disease progression (Connor et al., 1997 ; Simmons et al., 1996 ). The phenotypic switch from R5 to X4 viruses in vivo typically occurs only after several years of infection. This is surprisingly slow given that changing only a few residues in gp120 can be sufficient to convert an R5 virus into an R5X4 virus in vitro and that such changes must be occurring continuously in vivo given the error rate of reverse transcription (Chan et al., 1999 ; Chavda et al., 1994 ; Chesebro et al., 1992 ; Cho et al., 1998 ; Cocchi et al., 1996 ; Harrowe & Cheng-Mayer, 1995 ; Hwang et al., 1991 ; Ivanoff et al., 1991 ; Kwong et al., 2000 ; Menzo et al., 1998 ; Moore & Nara, 1991 ; Morris et al., 1994 ; Page et al., 1992 ; Shioda et al., 1992 ; Trkola et al., 1996 ; Verrier et al., 1999 ; Wang et al., 1999a ; Wu et al., 1996 ). These observations imply that the transition to CXCR4 usage is specifically suppressed in vivo (Michael & Moore, 1999 ). It should be noted here that co-receptor usage and switching has been analysed most extensively for clade B isolates, which predominate in North America and Western Europe (Bazan et al., 1998 ; Berger, 1997 ). Non-clade B viruses now cause the vast majority of new HIV-1 infections worldwide and should therefore be the major focus of vaccine efforts and drug development efforts. Compared to clade B isolates, however, these viruses are understudied and their immunogenic and biological properties remain largely unknown.


   Determinants of CCR5 co-receptor function
Top
HIV-1 entry into target...
HIV-1 co-receptors
Determinants of CCR5 co-receptor...
Determinants of CXCR4 co...
Conclusions
References
 
Early attempts to identify the determinants of CCR5 co- receptor function relied on the use of chimera comprising segments of CCR5 and related chemokine receptors such as murine CCR5 or CCR2b, which do not mediate HIV-1 fusion and entry (Alkhatib et al., 1997a ; Atchison et al., 1996 ; Bieniasz et al., 1997 ; Doranz et al., 1997b ; Picard et al., 1997 ; Rucker et al., 1996 ; Wang et al., 1999b ). Results from these studies are difficult to interpret and reconcile because of differences in chimeric constructs, HIV-1 isolates and detection systems that were used to test the role of the CCR5 extracellular domains in co-receptor function. The general conclusion that can be drawn from these studies is that multiple CCR5 domains directly or indirectly contribute to its co-receptor activity, and that the CCR5 amino-terminal domain (Nt) plays a privileged role in virus fusion and entry. When the CCR5 Nt is grafted onto other chemokine receptors, such as CCR1 or CCR2b, it enables them to mediate virus fusion and entry (Atchison et al., 1996 ; Bieniasz et al., 1997 ; Doranz et al., 1997b ; Picard et al., 1997 ; Rucker et al., 1996 ). In contrast, no CCR5 extracellular loop alone can confer HIV-1 co-receptor activity upon another chemokine receptor. [The one exception is extracellular loop 1 (ECL1) of human CCR5 placed into murine CCR5 (Atchison et al., 1996 ; Picard et al., 1997 ).] Substituting the CCR5 Nt with the Nt of a related chemokine receptor such as CCR2b or murine CCR5, however, is not accompanied by a significant loss of CCR5 co-receptor function (Atchison et al., 1996 ; Bieniasz et al., 1997 ; Doranz et al., 1997b ; Picard et al., 1997 ; Rucker et al., 1996 ). Finally, it should be noted that deletion of the CCR5 carboxy-terminal domain or the Asp-Arg-Tyr sequence in the second intracellular loop has no effect on virus fusion and entry in vitro. Therefore, CCR5-mediated intracellular signalling and endocytosis are not required for its co-receptor activity in cell lines but may play a role in vivo (Alkhatib et al., 1997a ; Atchison et al., 1996 ; Doranz et al., 1997b ).

Point mutagenesis studies have provided a clearer picture of the determinants of CCR5 co-receptor function. It has been shown that the negatively charged and tyrosine residues in the CCR5 Nt (Asp-2, Tyr-3, Tyr-10, Asp-11, Tyr-14, Tyr-15 and Glu-18) are important for CD4-induced gp120–CCR5 binding and virus entry (Blanpain et al., 1999 ; Doranz et al., 1997b ; Dragic et al., 1998 ; Farzan et al., 1998 ; Rabut et al., 1998 ). Other Nt residues that were found to be involved in co-receptor function include Ser-6, Ser-7, Ile-9, Asn-13, Gln-21 and Lys-22 (Blanpain et al., 1999 ; Farzan et al., 1998 ; Rabut et al., 1998 ). Residues in the CCR5 extracellular loops that were found to influence co-receptor function include Gln-93 in ECL1 (Kuhmann et al., 1997 ); Gly-163 in the transmembrane helix 4 (TM4)/ECL2 junction (Siciliano et al., 1999 ); Tyr-184, Ser-185 and Arg-197 in ECL2 (Doranz et al., 1997b ; Ross et al., 1998 ); Asp-276 and Gln-280 in ECL3 (Doranz et al., 1997b ; Farzan et al., 1998 ). It should be noted that Gly-163 was only studied in the context of a Gly->Arg substitution; hence the introduction of a guanidinium rather than the loss of a hydrogen atom may be responsible for the lack of co-receptor function of this CCR5 mutant (Siciliano et al., 1999 ). Furthermore, residues 184 and 185, like residues 197 and 276, have to be substituted together in order to compromise virus fusion and entry (Doranz et al., 1997b ; Ross et al., 1998 ). Despite minor discrepancies between the different point mutagenesis studies, all lend support to the finding that a cluster of residues located in the CCR5 Nt is required for HIV-1 fusion and entry by participating in gp120 binding to CCR5.

Many reports have speculated on the role of CCR5 post- translational modifications in co-receptor function; the CCR5 Nt undergoes both O-glycosylation and tyrosine sulfation (Farzan et al., 1999 ). It is presently not known whether O- glycosylation plays a role in co-receptor function, but this possibility is suggested by the preponderance of amino- terminal serines that are important for virus entry. Moreover, N-linked oligosaccharides critically affect CXCR4 co-receptor function (Chabot et al., 2000 ). Inhibition of cellular sulfation pathways, including tyrosine sulfation, greatly decreases gp120 binding to CCR5 as well as the entry of R5 and R5X4 HIV-1 strains into target cells (Farzan et al., 1999 ). Two groups recently demonstrated that CCR5 Nt-based peptides containing sulfotyrosines, but not tyrosines or phosphotyrosines, specifically bind soluble gp120–CD4 complexes (Cormier et al., 2000 ; Farzan et al., 2000 ). Soluble envelope glycoproteins from both R5 and R5X4 strains bind to CCR5 Nt sulfopeptides, but soluble envelope glycoproteins from an X4 strain do not (Cormier et al., 2000 ). The CCR5 Nt therefore specifically interacts only with gp120 proteins from isolates that use this co-receptor. Recently, CCR5 Nt sulfopeptides were shown to bind to conserved residues in the C4/V3 stem region of gp120 (Cormier et al., 2001 ). Residues in the V3 crown, however, were shown to be important for gp120 binding to cell surface CCR5 but not to the Nt sulfopeptides (Cormier et al., 2001 ). Furthermore, the affinity of soluble gp120–CD4 for CCR5 Nt sulfopeptides is about 10–100-fold lower than for the native, membrane-associated co-receptor (Cormier et al., 2000 ; Trkola et al., 1996 ; Wu et al., 1996 ).These observations lend support to the idea that there is a second gp120-binding site on CCR5 that consolidates the association between the co-receptor and the envelope glycoprotein, lowering the Kd into the nanomolar range (Doranz et al., 1997b ; Dragic et al., 2000 ; Rucker et al., 1996 ).

The characterization of inhibitors of CCR5-mediated HIV-1 entry has provided further insight into the structure–function relationships of this co-receptor. Agents that target CCR5 co-receptor function belong to one of four categories of molecules: monoclonal antibodies (MAbs), chemokines and their derivatives, peptides and small molecules (<1 kDa). Anti-CCR5 MAbs whose epitopes include residues in the Nt strongly inhibit gp120 binding to CCR5 but only moderately inhibit HIV-1 fusion and entry, whereas MAbs whose epitopes include residues in ECL2 potently inhibit HIV-1 fusion and entry but only moderately inhibit gp120 binding (Lee et al., 1999 ; Olson et al., 1999 ; Wu et al., 1997b ). Anti-ECL2 MAbs, therefore, must act through a secondary mechanism in order to disrupt CCR5 co-receptor function more efficiently than anti-Nt MAbs. Possibly, these MAbs inhibit important post-gp120-binding steps, such as conformational changes in CCR5 or its oligomerization (Kuhmann et al., 2000 ). Chemokines and their derivatives inhibit HIV-1 fusion and entry both by blocking gp120 binding to CCR5 and by decreasing co- receptor availability on the cell surface (Alkhatib et al., 1997b ; Trkola et al., 1998 ).

Peptides based on the TM helices of CCR5 inhibit HIV-1 replication and chemokine-induced signalling (Tarasova et al., 1999 ), presumably by disrupting helix–helix interactions, which may influence CCR5 conformation and/or oligomerization (Kuhmann et al., 2000 ). The disruption of TM helix–helix interactions might also explain the inhibitory effect of TAK-779 on HIV-1 fusion and entry. TAK-779, a small- molecule CCR5 antagonist, inhibits gp120 binding to CCR5 by inserting into a pocket formed by TM helices 1, 2, 3 and 7 (Baba et al., 1999 ; Dragic et al., 2000 ). Whatever the mechanism of inhibition by these different agents may be, the data thus far suggest that CCR5 co-receptor function is not limited to gp120 binding to the co-receptor Nt. Other regions of this co-receptor have functions that are necessary for the successful completion of virus fusion and entry either by providing a secondary gp120-binding site on CCR5, and/or by mediating conformational changes or the oligomerization of CCR5. Possibly, CCR5 interactions with CD4 or other cell surface molecules also contribute to its co-receptor function (Golding et al., 1999 ; Lapham et al., 1996 ).


   Determinants of CXCR4 co-receptor function
Top
HIV-1 entry into target...
HIV-1 co-receptors
Determinants of CCR5 co-receptor...
Determinants of CXCR4 co...
Conclusions
References
 
The determinants of CXCR4 co-receptor function were studied using chimera of CXCR4 and related chemokine receptors such as CXCR2 or rat and murine CXCR4, which do not mediate virus fusion and entry (Brelot et al., 1997 ; Doranz et al., 1999 ; Lu et al., 1997 ; Reeves et al., 1998 ; Willett et al., 1998 ). No single domain of CXCR4 can confer co-receptor activity upon CXCR2 (Doranz et al., 1999 ; Lu et al., 1997 ). Replacing the CXCR4 Nt by that of CXCR2 does not abolish co-receptor activity, but replacing the CXCR4 ECL2 by that of CXCR2 generates a non-functional chimeric co-receptor (Doranz et al., 1999 ; Lu et al., 1997 ). Substitution of the CXCR4 Nt by that of CCR5 generates a hybrid co-receptor capable of mediating fusion of both R5 and X4 isolates, albeit inefficiently (Doranz et al., 1997b ). Sequence differences between human and murine CXCR4 ECL2s are responsible for murine CXCR4 lack of co-receptor activity (Parolin et al., 1998 ). Using a rat/human CXCR4 chimera, it was shown that the HIV-1NDK isolate requires both the Nt and ECL2 for efficient fusion and entry, whereas HIV-1LAI only requires the presence of the CXCR4 ECL2 (Brelot et al., 1997 ). HIV-2ROD also requires both the CXCR4 Nt and ECL2 for fusion and entry (Reeves et al., 1998 ; Willett et al., 1998 ). The general conclusion from all of these studies is that the CXCR4 Nt and ECL2 are essential for its co-receptor activity, but are not used equally by all HIV-1 and HIV-2 isolates.

Studies of CXCR4 point mutants did not delineate more precisely a region of CXCR4 that plays a pivotal role in virus fusion and entry. Several mutations enable CXCR4 to mediate weak fusion and entry of R5 strains, including conversion of Asp-187 to a neutral residue (Chabot & Broder, 2000 ; Wang et al., 1998 ), alanine substitutions of Arg-30 and Asp-193 (Chabot et al., 1999 ), and removal of an N-linked glycosylation site in the CXCR4 Nt (Chabot et al., 2000 ). Charged residues Asp-193, Arg-183 and Arg-188 in ECL2 were shown to differently affect the entry of various HIV-1 strains; for example, only HIV-1NDK was sensitive to substitutions of Asp-193, whereas all other test strains were sensitive to changes in Arg-183 and Arg-188 (Brelot et al., 1999 ). In a recent report, Glu-15 and Glu-32 in the Nt, Asp-97 in ECL1 and Arg-188 in ECL2 were found to be involved in CXCR4-mediated entry of X4 and R5X4 isolates (Chabot et al., 1999 ). Another study found that multiple substitutions of Tyr-7, Asp-10, Tyr-12, Asp-20, Tyr-21, Asp-22, Ser-23 and Glu-26 in the Nt and Asp-182, Tyr-184, Asp-187, Tyr-190 and Asp-193 in ECL2 influence HIV-1 entry, albeit in an isolate-dependent manner (Kajumo et al., 2000 ). No clear patterns of CXCR4 amino acid usage by X4 and R5X4 isolates, taken as phenotypic groups, were observed (Kajumo et al., 2000 ). A study by Brelot et al. (2000) confirms the role of Tyr-7, -12 and -21 in the Nt, as well as Asp-193 in ECL2 and Asp-262 in ECL3, in CXCR4 co-receptor function. Presumably, Tyr, Asp and Glu residues important for CXCR4-mediated virus entry are implicated in gp120 binding. It should be noted here that the CXCR4 Nt is sulfated, presumably due to the presence of sulfotyrosines. Inhibition of cellular sulfation pathways, including tyrosine sulfation, blocks CXCR4-mediated HIV-1 entry (unpublished results from the author’s laboratory). It is therefore probable that, like gp120 binding to CCR5, gp120 binding to CXCR4 requires the presence of sulfotyrosines.

The use of MAbs, chemokines and their derivatives, peptides and small molecules (<1 kDa) that inhibit CXCR4-mediated HIV-1 entry has provided further insight into the structure–function relationships of this co-receptor. Little is known, however, about the mechanisms of action of these agents. Lack of a practical and reproducible binding assay has made it difficult to determine whether inhibitors of CXCR4- mediated entry block gp120 binding to the co-receptor. Also, surprisingly few anti-CXCR4 MAbs have been generated and only one has been extensively characterized. MAb 12G5 recognizes an epitope in ECL2 and inhibits HIV-1 fusion and entry both in an isolate- and a cell type-specific manner (McKnight et al., 1997 ; Strizki et al., 1997 ). Differences in gp120 affinities for CXCR4 and post-translational modifications of CXCR4 in different cell types could account for these discrepancies. Other anti-CXCR4 MAbs, whose epitopes remain to be determined, also variably inhibit the entry of the HIV-1NL-43 isolate (Hori et al., 1998 ).

The CXCR4 ligand SDF-1{alpha} and its derivatives inhibit HIV-1 fusion and entry by decreasing co-receptor availability on the cell surface and by inhibiting gp120 binding to CXCR4 (Amara et al., 1997 ; Bleul et al., 1996 ; Doranz et al., 1999 ; Bandres et al., 1998 ). Peptides consisting of the 16 amino-terminal residues of SDF-1{alpha} are sufficient to inhibit HIV-1 entry (Heveker et al., 1998 ). Positively charged peptides, such as T22, presumably inhibit gp120–CXCR4 binding by associating with the negatively charged surface of CXCR4 (Arakaki et al., 1999 ; Doranz et al., 1997a ; Murakami et al., 1997 , 1999 ; O’Brien et al., 1996 ; Tamamura et al., 1998a , b ; Xu et al., 1999 ). Peptides derived from CXCR4 TM helices inhibit HIV-1 entry, presumably by disrupting CXCR4 conformation and/or oligomerization (Tarasova et al., 1999 ).

Small molecules such as distamycin analogues and bicyclams potently inhibit CXCR4 co-receptor function (Este et al., 1999 ; Howard et al., 1998a , b ; Schols et al., 1997a , b ). The antiviral activity of the AMD3100 bicyclam was shown to depend on residues in ECL2 and TM4 of CXCR4 (Donzella et al., 1998 ; Labrosse et al., 1998 ). A recent study identified Asp-171 in TM4 and Asp-262 in TM6 as being essential for inhibition of SDF-1{alpha} binding and HIV-1 antiviral activity (Gerlach et al., 2001 ). Upon binding to these residues AMD3100 spans the main ligand-binding cavity of CXCR4 and probably constrains the receptor in an inactive conformation. Surprisingly, an AMD3100-resistant X4 isolate continues to use CXCR4 as a co-receptor (Schols et al., 1997a , 1998 ). Furthermore, replication of this isolate can no longer be inhibited by SDF-1{alpha}, but continues to be sensitive to T22, suggesting that AMD3100 and SDF-1{alpha}, but not T22, inhibit entry by convergent mechanisms. Resistance to AMD3100 and SDF-1{alpha} is associated with the accumulation of mutations in both constant and variable domains of gp120 (Schols et al., 1997a , 1998 ). These changes probably allow the virus to exploit a different docking site on CXCR4. Alternatively, the resistant isolates may recognize an altered conformation of the original binding site.


   Conclusions
Top
HIV-1 entry into target...
HIV-1 co-receptors
Determinants of CCR5 co-receptor...
Determinants of CXCR4 co...
Conclusions
References
 
The evidence accumulated to date indicates that there are similarities and differences in the way envelope glycoproteins from R5 and X4 HIV-1 isolates interact with their respective co-receptors. Similarities between CCR5 and CXCR4 gp120-binding sites are further underscored by the ability of R5X4 isolates to interact with both co-receptors. Negatively charged and tyrosine residues dispersed throughout the extracellular domain of CXCR4 are involved in co-receptor function, but each X4 HIV-1 isolate uses a slightly different subset of amino acids in order to gain entry into target cells. In contrast to X4 isolates, all R5 isolates characterized to date interact with the same cluster of negatively charged and sulfotyrosine residues in the CCR5 Nt. Furthermore, the CCR5 Nt specifically associates with residues in the C4/V3 stem region of gp120. Since the majority of these gp120 residues are conserved between R5 and X4 isolates, subtle differences in amino acid sequence and/or conformation of the C4/V3 stem region of gp120 probably determine co-receptor specificity and may account for the ability of a few residue changes in gp120 to induce a switch in co-receptor usage.

It is notable, however, that all chemokine receptors described to date have Tyr-Asp-Glu-rich regions in their extracellular domains, yet most do not mediate HIV-1 entry, and some do so only poorly. It also seems that the Nts of most if not all chemokine receptors contain sulfotyrosines. Hence, the unique features that make CCR5 and CXCR4 efficient HIV-1 co-receptors remain to be identified. Perhaps it is the way that the different Tyr-Asp-Glu motifs are exhibited on the surfaces of these receptors, or their ability to interact with CD4, or each other, or other molecules on the cell surface, that ultimately renders them efficient mediators of virus entry.


   References
Top
HIV-1 entry into target...
HIV-1 co-receptors
Determinants of CCR5 co-receptor...
Determinants of CXCR4 co...
Conclusions
References
 
Alkhatib, G., Ahuja, S. S., Light, D., Mummidi, S., Berger, E. A. & Ahuja, S. K. (1997a). CC chemokine receptor 5-mediated signaling and HIV-1 co-receptor activity share common structural determinants. Critical residues in the third extracellular loop support HIV-1 fusion. Journal of Biological Chemistry 272, 19771-19776.[Abstract/Free Full Text]

Alkhatib, G., Locati, M., Kennedy, P. E., Murphy, P. M. & Berger, E. A. (1997b). HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology 234, 340-348.[Medline]

Amara, A., Gall, S. L., Schwartz, O., Salamero, J., Montes, M., Loetscher, P., Baggiolini, M., Virelizier, J. L. & Arenzana-Seisdedos, F. (1997). HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. Journal of Experimental Medicine 186, 139-146.[Abstract/Free Full Text]

Arakaki, R., Tamamura, H., Premanathan, M., Kanbara, K., Ramanan, S., Mochizuki, K., Baba, M., Fujii, N. & Nakashima, H. (1999). T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. Journal of Virology 73, 1719-1723.[Abstract/Free Full Text]

Atchison, R. E., Gosling, J., Monteclaro, F. S., Franci, C., Digilio, L., Charo, I. F. & Goldsmith, M. A. (1996). Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science 274, 1924-1926.[Abstract/Free Full Text]

Baba, M., Nishimura, O., Kanzaki, N., Okamoto, M., Sawada, H., Iizawa, Y., Shiraishi, M., Aramaki, Y., Okonogi, K., Ogawa, Y., Meguro, K. & Fujino, M. (1999). A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proceedings of the National Academy of Sciences, USA 96, 5698-5703.[Abstract/Free Full Text]

Bandres, J. C., Wang, Q. F., O’Leary, J., Baleaux, F., Amara, A., Hoxie, J. A., Zolla-Pazner, S. & Gorny, M. K. (1998). Human immunodeficiency virus (HIV) envelope binds to CXCR4 independently of CD4, and binding can be enhanced by interaction with soluble CD4 or by HIV envelope deglycosylation. Journal of Virology 72, 2500-2504.[Abstract/Free Full Text]

Bazan, H. A., Alkhatib, G., Broder, C. C. & Berger, E. A. (1998). Patterns of CCR5, CXCR4, and CCR3 usage by envelope glycoproteins from human immunodeficiency virus type 1 primary isolates. Journal of Virology 72, 4485-4491.[Abstract/Free Full Text]

Bennetts, B. H., Teutsch, S. M., Buhler, M. M., Heard, R. N. & Stewart, G. J. (1997). The CCR5 deletion mutation fails to protect against multiple sclerosis. Human Immunology 58, 52-59.[Medline]

Berger, E. (1997). HIV entry and tropism: the chemokine receptor expression. AIDS 11 (suppl. A), S3–S16.

Berger, E. A., Doms, R. W., Fenyo, E. M., Korber, B. T., Littman, D. R., Moore, J. P., Sattentau, Q. J., Schuitemaker, H., Sodroski, J. & Weiss, R. A. (1998). A new classification for HIV-1 [letter]. Nature 391, 240.[Medline]

Bieniasz, P. D., Fridell, R. A., Aramori, I., Ferguson, S. S., Caron, M. G. & Cullen, B. R. (1997). HIV-1-induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR-5 co-receptor. EMBO Journal 16, 2599-2609.[Abstract/Free Full Text]

Blanpain, C., Doranz, B. J., Vakili, J., Rucker, J., Govaerts, C., Baik, S. S. W., Lorthioir, O., Migeotte, I., Libert, F., Baleux, F., Vassart, G., Doms, R. W. & Parmentier, M. (1999). Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 env protein. Journal of Biological Chemistry 274, 34719-34727.[Abstract/Free Full Text]

Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J. & Springer, T. A. (1996). The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829-833.[Medline]

Bour, S., Geleziunas, R. & Winberg, M. A. (1995). The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Microbiological Reviews 59, 63-93.[Abstract]

Brelot, A., Heveker, N., Pleskoff, O., Sol, N. & Alizon, M. (1997). Role of the first and third extracellular domains of CXCR-4 in human immunodeficiency virus coreceptor activity. Journal of Virology 71, 4744-4751.[Abstract]

Brelot, A., Heveker, N., Adema, K., Hosie, M. J., Willett, B. & Alizon, M. (1999). Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. Journal of Virology 73, 2576-2586.[Abstract/Free Full Text]

Brelot, A., Heveker, N., Montes, M. & Alizon, M. (2000). Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. Journal of Biological Chemistry 275, 23736-23744.[Abstract/Free Full Text]

Chabot, D. J. & Broder, C. C. (2000). Substitutions in a homologous region of extracellular loop 2 of CXCR4 and CCR5 alter coreceptor activities for HIV-1 membrane fusion and virus entry. Journal of Biological Chemistry 275, 23774-23782.[Abstract/Free Full Text]

Chabot, D. J., Zhang, P. F., Quinnan, G. V. & Broder, C. C. (1999). Mutagenesis of CXCR4 identifies important domains for human immunodeficiency virus type 1 X4 isolate envelope-mediated membrane fusion and virus entry and reveals cryptic coreceptor activity for R5 isolates. Journal of Virology 73, 6598-6609.[Abstract/Free Full Text]

Chabot, D. J., Chen, H., Dimitrov, D. S. & Broder, C. C. (2000). N-linked glycosylation of CXCR4 masks coreceptor function for CCR5- dependent human immunodeficiency virus type 1 isolates. Journal of Virology 74, 4404-4413.[Abstract/Free Full Text]

Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. (1997). Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263-273.[Medline]

Chan, S. Y., Speck, R. F., Power, C., Gaffen, S. L., Chesebro, B. & Goldsmith, M. A. (1999). V3 recombinants indicate a central role for CCR5 as a coreceptor in tissue infection by human immunodeficiency virus type 1. Journal of Virology 73, 2350-2358.[Abstract/Free Full Text]

Chavda, S. C., Griffin, P., Han-Liu, Z., Keys, B., Vekony, M. A. & Cann, A. J. (1994). Molecular determinants of the V3 loop of human immunodeficiency virus type 1 glycoprotein gp120 responsible for controlling cell tropism. Journal of General Virology 75, 3249-3253.[Abstract]

Chesebro, B., Wehrly, K., Nishio, J. & Perryman, S. (1992). Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. Journal of Virology 66, 6547-6554.[Abstract]

Cho, M. W., Lee, M. K., Carney, M. C., Berson, J. F., Doms, R. W. & Martin, M. A. (1998). Identification of determinants on a dualtropic human immunodeficiency virus type 1 envelope glycoprotein that confer usage of CXCR4. Journal of Virology 72, 2509-2515.[Abstract/Free Full Text]

Cocchi, F., DeVico, A. L., Garzino-Demo, A., Cara, A., Gallo, R. C. & Lusso, P. (1996). The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection [see comments]. Nature Medicine 2, 1244-1247.[Medline]

Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S. & Landau, N. R. (1997). Change in coreceptor use coreceptor use correlates with disease progression in HIV-1-infected individuals. Journal of Experimental Medicine 185, 621-628.[Abstract/Free Full Text]

Cormier, E. G., Persuh, M., Thompson, A. D., Lin, S. W., Sakmar, T. P., Olson, W. C. & Dragic, T. (2000). Specific interaction of CCR5 amino-terminal domain peptides containing sulfo-tyrosines with HIV-1 envelope glycoprotein gp120. Proceedings of the National Academy of Sciences, USA 97, 5762-5767.[Abstract/Free Full Text]

Cormier, E. G., Tran, D., Yukhayeva, L., Olson, W. C. & Dragic, T. (2001). Mapping the determinants of the CCR5 amino-terminal sulfopeptide interaction with soluble human immunodeficiency virus type 1 gp120/CD4 complexes. Journal of Virology 75, 5541-5549.[Abstract/Free Full Text]

de Roda Husman, A. M., Koot, M., Cornelissen, M., Keet, I. P., Brouwer, M., Broersen, S. M., Bakker, M., Roos, M. T., Prins, M., de Wolf, F., Coutinho, R. A., Miedema, F., Goudsmit, J. & Schuitemaker, H. (1997). Association between CCR5 genotype and the clinical course of HIV-1 infection [see comments]. Annals of Internal Medicine 127, 882-890.[Abstract/Free Full Text]

Doms, R. W. & Moore, J. P. (1997). HIV-1 coreceptor use: a molecular window into viral tropism. HIV Molecular Immunology Database, III-1–III-12.

Donzella, G. A., Schols, D., Lin, S. W., Este, J. A., Nagashima, K. A., Maddon, P. J., Allaway, G. P., Sakmar, T. P., Henson, G., De Clercq, E. & Moore, J. P. (1998). AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Medicine 4, 72-77.[Medline]

Doranz, B. J., Grovit-Ferbas, K., Sharron, M. P., Mao, S. H., Goetz, M. B., Daar, E. S., Doms, R. W. & O’Brien, W. A. (1997a). A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. Journal of Experimental Medicine 186, 1395-1400.[Abstract/Free Full Text]

Doranz, B. J., Lu, Z. H., Rucker, J., Zhang, T. Y., Sharron, M., Cen, Y. H., Wang, Z. X., Guo, H. H., Du, J. G., Accavitti, M. A., Doms, R. W. & Peiper, S. C. (1997b). Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. Journal of Virology 71, 6305-6314.[Abstract]

Doranz, B., Orsini, M., Turner, J., Hoffman, T., Berson, J., Hoxie, J., Peiper, S., Brass, L. & Doms, R. (1999). Identification of CXCR4 domains that support co-receptor and chemokine receptor functions. Journal of Virology 73, 2757-2761.

Dragic, T., Trkola, A., Lin, S. W., Nagashima, K. A., Kajumo, F., Zhao, L., Olson, W. C., Wu, L., Mackay, C. R., Allaway, G. P., Sakmar, T. P., Moore, J. P. & Maddon, P. J. (1998). Amino-terminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry. Journal of Virology 72, 279-285.[Abstract/Free Full Text]

Dragic, T., Trkola, A., Thompson, D. A., Cormier, E. G., Kajumo, F. A., Maxwell, E., Lin, S. W., Ying, W., Smith, S. O., Sakmar, T. P. & Moore, J. P. (2000). A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proceedings of the National Academy of Sciences, USA 97, 5639-5644.[Abstract/Free Full Text]

Este, J. A., Cabrera, C., De Clercq, E., Struyf, S., Van Damme, J., Bridger, G., Skerlj, R. T., Abrams, M. J., Henson, G., Gutierrez, A., Clotet, B. & Schols, D. (1999). Activity of different bicyclam derivatives against human immunodeficiency virus depends on their interaction with the CXCR4 chemokine receptor. Molecular Pharmacology 55, 67-73.[Abstract/Free Full Text]

Farzan, M., Choe, H., Vaca, L., Martin, K., Sun, Y., Desjardins, E., Ruffing, N., Wu, L., Wyatt, R., Gerard, N., Gerard, C. & Sodroski, J. (1998). A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5. Journal of Virology 72, 1160-1164.[Abstract/Free Full Text]

Farzan, M., Mirzabekov, T., Kolchinsky, P., Wyatt, R., Cayabyab, M., Gerard, N. P., Gerard, C., Sodroski, J. & Choe, H. (1999). Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667-676.[Medline]

Farzan, M., Vasilieva, N., Schnitzler, C. E., Chung, S., Robinson, J., Gerard, N. P., Gerard, C., Choe, H. & Sodroski, J. (2000). A tyrosine-sulfated peptide based on the N-terminus of CCR5 interacts with a CD4-enhanced epitope of the HIV-1 gp120 envelope glycoprotein and inhibits HIV-1 entry. Journal of Biological Chemistry 275, 33516-33521.[Abstract/Free Full Text]

Fenyo, E. M., Schuitemaker, H., Asjo, B. & McKeating, J. (1997). The history of HIV-1 biological phenotypes past, present, and future. HIV Molecular Immunology Database, III-13–III-18.

Garred, P., Eugen-Olsen, J., Iversen, A. K., Benfield, T. L., Svejgaard, A. & Hofmann, B. (1997). Dual effect of CCR5 delta 32 gene deletion in HIV-1-infected patients. Copenhagen AIDS Study Group [letter] [see comments]. Lancet 349, 1884.[Medline]

Gerlach, L. O., Skerlj, R., Bridgers, G. J. & Schwartz, T. W. (2001). Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. Journal of Biological Chemistry 276, 14153-14160.[Abstract/Free Full Text]

Golding, H., Ouyang, J., Zaitseva, M., Broder, C. C., Dimitrov, D. S. & Lapham, C. (1999). Increased association of glycoprotein 120-CD4 with HIV type 1 coreceptors in the presence of complex-enhanced anti-CD4 monoclonal antibodies. AIDS Research and Human Retroviruses 15, 149-159.[Medline]

Harrowe, G. & Cheng-Mayer, C. (1995). Amino acid substitutions in the V3 loop are responsible for adaptation to growth in transformed T-cell lines of a primary human immunodeficiency virus type 1. Virology 210, 490-494.[Medline]

Heveker, N., Montes, M., Germeroth, L., Amara, A., Trautmann, A., Alizon, M. & Schneider-Mergener, J. (1998). Dissociation of the signalling and antiviral properties of SDF-1-derived small peptides. Current Biology 8, 369-376.[Medline]

Hori, T., Sakaida, H., Sato, A., Nakajima, T., Shida, H., Yoshie, O. & Uchiyama, T. (1998). Detection and delineation of CXCR4 (fusin) as an entry and fusion cofactor for T-cell tropic HIV-1 by three different monoclonal antibodies. Journal of Immunology 160, 180-188.[Abstract/Free Full Text]

Howard, O. M., Korte, T., Tarasova, N. I., Grimm, M., Turpin, J. A., Rice, W. G., Michejda, C. J., Blumenthal, R. & Oppenheim, J. J. (1998a). Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor-mediated function. Journal of Leukocyte Biology 64, 6-13.[Abstract]

Howard, O. M., Oppenheim, J. J., Hollingshead, M. G., Covey, J. M., Bigelow, J., McCormack, J. J., Buckheit, R. W.Jr, Clanton, D. J., Turpin, J. A. & Rice, W. G. (1998b). Inhibition of in vitro and in vivo HIV replication by a distamycin analogue that interferes with chemokine receptor function: a candidate for chemotherapeutic and microbicidal application. Journal of Medicinal Chemistry 41, 2184-2193.[Medline]

Huang, Y., Paxton, W. A., Wolinsky, S. M., Neumann, A. U., Zhang, L., He, T., Kang, S., Ceradini, D., Jin, Z., Yazdanbakhsh, K., Kunstman, K., Erickson, D., Dragon, E., Landau, N. R., Phair, J., Ho, D. D. & Koup, R. A. (1996). The role of a mutant CCR5 allele in HIV-1 transmission and disease progression [see comments]. Nature Medicine 2, 1240-1243.[Medline]

Hwang, S. S., Boyle, T. J., Lyerly, H. K. & Cullen, B. R. (1991). Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253, 71-74.[Medline]

Ivanoff, L., Looney, D., McDanal, C., Morris, J., Wong-Staal, F., Langlois, A., Petteway, S. & Matthews, T. (1991). Alteration of HIV-1 infectivity and neutralization by a single amino acid replacement in the V3 loop domain. AIDS Research and Human Retroviruses 7, 595-603.[Medline]

Kajumo, F., Thompson, D. A. D., Guo, Y. & Dragic, T. (2000). Entry of R5X4 and X4 human immunodeficiency virus type 1 strains is mediated by negatively charged and tyrosine residues in the amino-terminal domain and the second extracellular loop of CXCR4. Virology 271, 240-247.[Medline]

Kuhmann, S. E., Platt, E. J., Kozak, S. L. & Kabat, D. (1997). Polymorphisms in the CCR5 genes of African green monkeys and mice implicate specific amino acids in infections by simian and human immunodeficiency viruses. Journal of Virology 71, 8642-8656.[Abstract]

Kuhmann, S. E., Platt, E. J., Kozak, S. L. & Kabat, D. (2000). Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. Journal of Virology 74, 7005-7015.[Abstract/Free Full Text]

Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J. & Hendrickson, W. A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody [see comments]. Nature 393, 648-659.[Medline]

Kwong, P. D., Wyatt, R., Sattentau, Q. J., Sodroski, J. & Hendrickson, W. A. (2000). Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. Journal of Virology 74, 1961-1972.[Abstract/Free Full Text]

Labrosse, B., Brelot, A., Heveker, N., Sol, N., Schols, D., De Clercq, E. & Alizon, M. (1998). Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. Journal of Virology 72, 6381-6388.[Abstract/Free Full Text]

Lapham, C. K., Ouyang, J., Chandrasekhar, B., Nguyen, N. Y., Dimitrov, D. S. & Golding, H. (1996). Evidence for cell-surface association between fusin and the CD4–gp120 complex in human cell lines [see comments]. Science 274, 602-605.[Abstract/Free Full Text]

Lee, B., Sharron, M., Blanpain, C., Doranz, B. J., Vakili, J., Setoh, P., Berg, E., Liu, G., Guy, H. R., Durell, S. R., Parmentier, M., Chang, C. N., Price, K., Tsang, M. & Doms, R. W. (1999). Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. Journal of Biological Chemistry 274, 9617-9626.[Abstract/Free Full Text]

Lu, Z., Berson, J. F., Chen, Y., Turner, J. D., Zhang, T., Sharron, M., Jenks, M. H., Wang, Z., Kim, J., Rucker, J., Hoxie, J. A., Peiper, S. C. & Doms, R. W. (1997). Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proceedings of the National Academy of Sciences, USA 94, 6426-6431.[Abstract/Free Full Text]

McKnight, A., Wilkinson, D., Simmons, G., Talbot, S., Picard, L., Ahuja, M., Marsh, M., Hoxie, J. A. & Clapham, P. R. (1997). Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. Journal of Virology 71, 1692-1696.[Abstract]

Menzo, S., Sampaolesi, R., Vicenzi, E., Santagostino, E., Liuzzi, G., Chirianni, A., Piazza, M., Cohen, O. J., Bagnarelli, P. & Clementi, M. (1998). Rare mutations in a domain crucial for V3-loop structure prevail in replicating HIV from long-term non-progressors. AIDS 12, 985-997.[Medline]

Meyer, L., Magierowska, M., Hubert, J. B., Rouzioux, C., Deveau, C., Sanson, F., Debre, P., Delfraissy, J. F. & Theodorou, I. (1997). Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: relationship with viral load. The SEROCO Study Group. AIDS 11, 73-78.

Michael, N. L. & Moore, J. P. (1999). HIV-1 entry inhibitors: evading the issue [news]. Nature Medicine 5, 740-742.[Medline]

Michael, N. L., Louie, L. G., Rohrbaugh, A. L., Schultz, K. A., Dayhoff, D. E., Wang, C. E. & Sheppard, H. W. (1997). The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression [see comments]. Nature Medicine 3, 1160-1162.[Medline]

Moore, J. P. & Nara, P. L. (1991). The role of the V3 domain of gp120 in HIV infection. AIDS 5 (suppl. 2), 21–33.

Moore, J. P., Jameson, B. A., Weiss, R. A. & Sattentau, Q. J. (1993). The HIV–cell fusion reaction. In Viral Fusion Mechanisms, pp. 233–289. Edited by J. Bentz. Boca Raton: CRC Press.

Morris, J. F., Sternberg, E. J., Gutshall, L., Petteway, S. R.Jr & Ivanoff, L. A. (1994). Effect of a single amino acid substitution in the V3 domain of the human immunodeficiency virus type 1: generation of revertant viruses to overcome defects in infectivity in specific cell types. Journal of Virology 68, 8380-8385.[Abstract]

Murakami, T., Nakajima, T., Koyanagi, Y., Tachibana, K., Fujii, N., Tamamura, H., Yoshida, N., Waki, M., Matsumoto, A., Yoshie, O., Kishimoto, T., Yamamoto, N. & Nagasawa, T. (1997). A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. Journal of Experimental Medicine 186, 1389-1393.[Abstract/Free Full Text]

Murakami, T., Zhang, T. Y., Koyanagi, Y., Tanaka, Y., Kim, J., Suzuki, Y., Minoguchi, S., Tamamura, H., Waki, M., Matsumoto, A., Fujii, N., Shida, H., Hoxie, J. A., Peiper, S. C. & Yamamoto, N. (1999). Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection. Journal of Virology 73, 7489-7496.[Abstract/Free Full Text]

Myszka, D. G., Sweet, R. W., Hensley, P., Brigham-Burke, M., Kwong, P. D., Hendrickson, W. A., Wyatt, R., Sodroski, J. & Doyle, M. L. (2000). Energetics of the HIV gp120-CD4 binding reaction. Proceedings of the National Academy of Sciences, USA 97, 9026-9031.[Abstract/Free Full Text]

O’Brien, W. A., Sumner-Smith, M., Mao, S. H., Sadeghi, S., Zhao, J. Q. & Chen, I. S. (1996). Anti-human immunodeficiency virus type 1 activity of an oligocationic compound mediated via gp120 V3 interactions. Journal of Virology 70, 2825-2831.[Abstract]

Olson, W. C., Rabut, G. E., Nagashima, K. A., Tran, D. N., Anselma, D. J., Monard, S. P., Segal, J. P., Thompson, D. A., Kajumo, F., Guo, Y., Moore, J. P., Maddon, P. J. & Dragic, T. (1999). Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. Journal of Virology 73, 4145-4155.[Abstract/Free Full Text]

Page, K., Stearns, S. & Littman, D. (1992). Analysis of mutations in the V3 domain of gp160 that affect fusion and infectivity. Journal of Virology 66, 524-533.[Abstract]

Parolin, C., Borsetti, A., Choe, H., Farzan, M., Kolchinsky, P., Heesen, M., Ma, Q., Gerard, C., Palu, G., Dorf, M. E., Springer, T. & Sodroski, J. (1998). Use of murine CXCR-4 as a second receptor by some T-cell-tropic human immunodeficiency viruses. Journal of Virology 72, 1652-1656.[Abstract/Free Full Text]

Picard, L., Simmons, G., Power, C. A., Meyer, A., Weiss, R. A. & Clapham, P. R. (1997). Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion. Journal of Virology 71, 5003-5011.[Abstract]

Rabut, G. E., Konner, J. A., Kajumo, F., Moore, J. P. & Dragic, T. (1998). Alanine substitutions of polar and nonpolar residues in the amino-terminal domain of CCR5 differently impair entry of macrophage- and dualtropic isolates of human immunodeficiency virus type 1. Journal of Virology 72, 3464-3468.[Abstract/Free Full Text]

Reeves, J. D., Heveker, N., Brelot, A., Alizon, M., Clapham, P. R. & Picard, L. (1998). The second extracellular loop of CXCR4 is involved in CD4-independent entry of human immunodeficiency virus type 2. Journal of General Virology 79, 1793-1799.[Abstract]

Rizzuto, C. D., Wyatt, R., Hernandez-Ramos, N., Sun, Y., Kwong, P. D., Hendrickson, W. A. & Sodroski, J. (1998). A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding [see comments]. Science 280, 1949-1953.[Abstract/Free Full Text]

Ross, T. M., Bieniasz, P. D. & Cullen, B. R. (1998). Multiple residues contribute to the inability of murine CCR-5 to function as a coreceptor for macrophage-tropic human immunodeficiency virus type 1 isolates. Journal of Virology 72, 1918-1924.[Abstract/Free Full Text]

Rucker, J., Samson, M., Doranz, B. J., Libert, F., Berson, J. F., Yi, Y., Smyth, R. J., Collman, R. G., Broder, C. C., Vassart, G., Doms, R. W. & Parmentier, M. (1996). Regions in beta-chemokine receptors CCR5 and CCR2b that determine HIV-1 cofactor specificity. Cell 87, 437-446.[Medline]

Schols, D., Este, J. A., Henson, G. & De Clercq, E. (1997a). Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Research 35, 147-156.[Medline]

Schols, D., Struyf, S., Van Damme, J., Este, J. A., Henson, G. & De Clercq, E. (1997b). Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. Journal of Experimental Medicine 186, 1383-1388.[Abstract/Free Full Text]

Schols, D., Este, J. A., Cabrera, C. & De Clercq, E. (1998). T-cell-line-tropic human immunodeficiency virus type 1 that is made resistant to stromal cell-derived factor 1alpha contains mutations in the envelope gp120 but does not show a switch in coreceptor use. Journal of Virology 72, 4032-4037.[Abstract/Free Full Text]

Shioda, T., Levy, J. A. & Cheng-Mayer, C. (1992). Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 89, 9434-9438.[Abstract]

Siciliano, S. J., Kuhmann, S. E., Weng, Y., Madani, N., Springer, M. S., Lineberger, J. E., Danzeisen, R., Miller, M. D., Kavanaugh, M. P., DeMartino, J. A. & Kabat, D. (1999). A critical site in the core of the CCR5 chemokine receptor required for binding and infectivity of human immunodeficiency virus type 1. Journal of Biological Chemistry 274, 1905-1913.[Abstract/Free Full Text]

Simmons, G., Wilkinson, D., Reeves, J. D., Dittmar, M. T., Beddows, S., Weber, J., Carnegie, G., Desselberger, U., Gray, P. W., Weiss, R. A. & Clapham, P. R. (1996). Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. Journal of Virology 70, 8355-8360.[Abstract]

Strizki, J. M., Turner, J. D., Collman, R. G., Hoxie, J. & Gonzalez-Scarano, F. (1997). A monoclonal antibody (12G5) directed against CXCR-4 inhibits infection with the dual-tropic human immunodeficiency virus type 1 isolate HIV-1(89·6) but not the T-tropic isolate HIV-1(HxB). Journal of Virology 71, 5678-5683.[Abstract]

Tamamura, H., Imai, M., Ishihara, T., Masuda, M., Funakoshi, H., Oyake, H., Murakami, T., Arakaki, R., Nakashima, H., Otaka, A., Ibuka, T., Waki, M., Matsumoto, A., Yamamoto, N. & Fujii, N. (1998a). Pharmacophore identification of a chemokine receptor (CXCR4) antagonist, T22 ([Tyr(5,12),Lys7]-polyphemusin II), which specifically blocks T cell-line-tropic HIV-1 infection. Bioorganic and Medicinal Chemistry 6, 1033-1041.[Medline]

Tamamura, H., Xu, Y., Hattori, T., Zhang, X., Arakaki, R., Kanbara, K., Omagari, A., Otaka, A., Ibuka, T., Yamamoto, N., Nakashima, H. & Fujii, N. (1998b). A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Biochemical and Biophysical Research Communications 253, 877-882.[Medline]

Tarasova, N. I., Rice, W. G. & Michejda, C. J. (1999). Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interactions. Journal of Biological Chemistry 274, 34911-34915.[Abstract/Free Full Text]

Trkola, A., Dragic, T., Arthos, J., Binley, J., Olson, W., Allaway, G., Cheng-Mayer, C., Robinson, J., Maddon, P. & Moore, J. (1996). CD4-dependent, antibody sensitive interactions between HIV-1 and its co-receptor CCR5. Nature 384, 184-186.[Medline]

Trkola, A., Paxton, W. A., Monard, S. P., Hoxie, J. A., Siani, M. A., Thompson, D. A., Wu, L., Mackay, C. R., Horuk, R. & Moore, J. P. (1998). Genetic subtype-independent inhibition of human immunodeficiency virus type 1 replication by CC and CXC chemokines. Journal of Virology 72, 396-404.[Abstract/Free Full Text]

Verrier, F., Borman, A. M., Brand, D. & Girard, M. (1999). Role of the HIV type 1 glycoprotein 120 V3 loop in determining coreceptor usage. AIDS Research and Human Retroviruses 15, 731-743.[Medline]

Wang, Z. X., Berson, J. F., Zhang, T. Y., Cen, Y. H., Sun, Y., Sharron, M., Lu, Z. H. & Peiper, S. C. (1998). CXCR4 sequences involved in coreceptor determination of human immunodeficiency virus type-1 tropism. Unmasking of activity with M-tropic Env glycoproteins. Journal of Biological Chemistry 273, 15007-15015.[Abstract/Free Full Text]

Wang, W. K., Dudek, T., Essex, M. & Lee, T. H. (1999a). Hypervariable region 3 residues of HIV type 1 gp120 involved in CCR5 coreceptor utilization: therapeutic and prophylactic implications. Proceedings of the National Academy of Sciences, USA 96, 4558-4562.[Abstract/Free Full Text]

Wang, Z., Lee, B., Murray, J. L., Bonneau, F., Sun, Y., Schweickart, V., Zhang, T. & Peiper, S. C. (1999b). CCR5 HIV-1 coreceptor activity. Journal of Biological Chemistry 274, 28413-28419.[Abstract/Free Full Text]

Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. (1997). Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426-430.[Medline]

Willett, B. J., Adema, K., Heveker, N., Brelot, A., Picard, L., Alizon, M., Turner, J. D., Hoxie, J. A., Peiper, S., Neil, J. C. & Hosie, M. J. (1998). The second extracellular loop of CXCR4 determines its function as a receptor for feline immunodeficiency virus. Journal of Virology 72, 6475–6481; erratum 8460.[Abstract/Free Full Text]

Wu, L., Gerard, N. P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A. A., Desjardin, E., Newman, W., Gerard, C. & Sodroski, J. (1996). CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 [see comments]. Nature 384, 179-183.[Medline]

Wu, H., Kwong, P. D. & Hendrickson, W. A. (1997a). Dimeric association and segmental variability in the structure of human CD4. Nature 387, 527-530.[Medline]

Wu, L., LaRosa, G., Kassam, N., Gordon, C. J., Heath, H., Ruffing, N., Chen, H., Humblias, J., Samson, M., Parmentier, M., Moore, J. P. & Mackay, C. R. (1997b). Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. Journal of Experimental Medicine 186, 1373-1381.[Abstract/Free Full Text]

Wyatt, R. & Sodroski, J. (1998). The HIV-1 envelope glycoproteins: fusogens, antigens and immunogens. Science 280, 1884-1888.[Abstract/Free Full Text]

Wyatt, R., Kwong, P. D., Desjardins, E., Sweet, R., Robinson, J., Hendrickson, W. & Sodroski, J. (1998). The antigenic structure of the human immunodeficiency virus gp120 envelope glycoprotein. Nature 393, 705-710.[Medline]

Xu, Y., Tamamura, H., Arakaki, R., Nakashima, H., Zhang, X., Fujii, N., Uchiyama, T. & Hattori, T. (1999). Marked increase in anti-HIV activity, as well as inhibitory activity against HIV entry mediated by CXCR4, linked to enhancement of the binding ability of tachyplesin analogs to CXCR4. AIDS Research and Human Retroviruses 15, 419-427.[Medline]

Zhang, Y. J. & Moore, J. P. (1999). Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry? Journal of Virology 73, 3443-3448.[Abstract/Free Full Text]

Zhang, L., He, T., Huang, Y., Chen, Z., Guo, Y., Wu, S., Kunstman, K. J., Brown, R. C., Phair, J. P., Neumann, A. U., Ho, D. D. & Wolinsky, S. M. (1998). Chemokine coreceptor usage by diverse primary isolates of human immunodeficiency virus type 1. Journal of Virology 72, 9307-9312.[Abstract/Free Full Text]

Zhang, Y., Lou, B., Lal, R. B., Gettie, A., Marx, P. A. & Moore, J. P. (2000). Use of inhibitors to evaluate coreceptor usage by simian and simian/human immunodeficiency viruses and human immunodeficiency virus type 2 in primary cells. Journal of Virology 74, 6893-6910.[Abstract/Free Full Text]