§
From the * Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 2S2, Canada; A simple kinetic model is presented to explain the gating of a HERG-like voltage-gated K+ conductance described in the accompanying paper (Zhou, W., F.S. Cayabyab, P.S. Pennefather, L.C. Schlichter, and T.E.
DeCoursey. 1998. J. Gen. Physiol. 111:781-794). The model proposes two kinetically distinct closing pathways, a
rapid one favored by depolarization (deactivation) and a slow one favored by hyperpolarization (inactivation). The overlap of these two processes leads to a window current between In the previous paper (Zhou et al., 1998 The model postulates two kinetically distinct closing
pathways, one favored by hyperpolarization leading to
closed states that equilibrate slowly with the open state,
and the other favored by depolarization that equilibrates rapidly with the open state. Because the slowly
equilibrating closed states behave like classical absorbing inactivated states, it is convenient to consider these channels to be in a resting state at depolarized potentials and to activate and then inactivate upon hyperpolarization. Overlap in the voltage dependence of these
two closing pathways leads to a standing window current between The predictions of our sequential model are contrasted with those of an uncoupled model that assumes
independent activation and inactivation. Although such
a model can account for steady state behavior and
rapid gating of the current, under certain conditions
the two models diverge and the experimental data supports the coupled sequential model. This is particularly
evident in isotonic Cs+, where a delayed and transient
outward current develops on depolarization with a decay time constant more voltage dependent and slower
than the deactivation process observed at the same potential after a brief hyperpolarization.
We also compare our model to another coupled sequential model developed recently by Wang et al.
(1997) Experimental results.
Experimental results reported here were obtained with the same cells and experimental techniques described in the previous paper (Zhou et al., 1998 Simulations.
The simulated responses were generated using a
commercially available software package called Axon Engineer
(Aeon Software, Madison, WI). Details are described elsewhere
(Pennefather and DeCoursey, 1994 Theory
Various terminologies have been used to describe HERG and
HERG-like K+ currents. In describing our results (Zhou et al.,
1998 Playfair Neuroscience Unit,
Department
of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612
ABSTRACT
Top
Abstract
Introduction
Materials & Methods
Results
Discussion
References
50 and +20 mV with a peak at
36 mV of
~12% maximal conductance. The near absence of depolarization-activated outward current in microglia, compared with HERG channels expressed in oocytes or cardiac myocytes, can be explained if activation is shifted negatively in microglia. As seen with experimental data, availability predicted by the model was more steeply voltage
dependent, and the midpoint more positive when determined by making the holding potential progressively
more positive at intervals of 20 s (starting at
120 mV), rather than progressively more negative (starting at 40 mV). In the model, this hysteresis was generated by postulating slow and ultra-slow components of inactivation.
The ultra-slow component takes minutes to equilibrate at
40 mV but is steeply voltage dependent, leading to
protocol-dependent modulation of the HERG-like current. The data suggest that "deactivation" and "inactivation"
are coupled through the open state. This is particularly evident in isotonic Cs+, where a delayed and transient outward current develops on depolarization with a decay time constant more voltage dependent and slower than the
deactivation process observed at the same potential after a brief hyperpolarization.
INTRODUCTION
Top
Abstract
Introduction
Materials & Methods
Results
Discussion
References
), we described
in a microglial cell line, MLS-9, a K+ conductance resembling that generated by the human ether--à-go-go- related gene (HERG)1 in most respects. Two notable
differences include an almost complete absence of outward current during depolarizing pulses in symmetrical K+ salines and the existence of very slow gating around
40 mV. Here we describe a simple kinetic model that
describes the data reasonably well.
50 and +20 mV that may be important
for microglial biology. In addition, equilibration of inactivated states appears to take minutes at potentials
around the peak of the window current yet occurs
much more rapidly at more positive and negative potentials. This gating behavior leads to steady state levels
of HERG-like current that are not simply voltage dependent but also dependent on prior voltage history. Our model thus predicts that oscillations in microglial
membrane potential can have frequency- or use-dependent effects if the frequency of oscillation is faster than
the slow gating steps (see MacDonald et al., 1991
; Jassar
et al., 1993
).
to describe gating of HERG channels expressed
in oocytes. Although steady state inactivation appears
similar in the two models, steady state activation in oocytes appears to have a half-maximal potential that is 40 mV more positive. This difference accounts for the substantially greater outward current component observed
in symmetrical K+ salines with HERG expressed in oocytes compared with the HERG-like current in microglia. A hybrid model constructed with activation kinetics modified to generate a 40-mV shift in the voltage-
activation curve and inactivation kinetics identical to
the model of Wang et al. (1997)
predicts steady state
currents that overlap reasonably well with our observed
data. However, this hybrid model does not predict the
observed slow gating phenomena such as hysteresis in
the availability curves.
MATERIALS AND METHODS
Top
Abstract
Introduction
Materials & Methods
Results
Discussion
References
).
).
), we define activation as the fast onset of current with hyperpolarization, and inactivation as the slower closing that follows this opening. The term, deactivation, is used to describe the
fast closing that occurs at depolarized potentials. We will show
below that our data is well described by Scheme I. Scheme I postulates two kinetically distinct pathways of channel closing: a rapidly equilibrating pathway leading to Cr, a closed state favored by
depolarization, and a slowly equilibrating pathway leading sequentially to slowly and ultra-slowly equilibrating closed states (Cs
and Cus) favored by hyperpolarization. At
80 mV, most of the
channels reside in the slowly gating closed states that behave
functionally like inactivated states. On depolarization after inactivation, they revert back to the open state from which they rapidly
deactivate to state Cr. As a result, little or no tail current is generated during the depolarizing pulse. However, on repolarization,
those channels that have had an opportunity to convert to state
Cr activate rapidly before slowly converting back to state Cs.
View larger version (7K):
[in a new window]
Scheme I.
In showing that Scheme I adequately describes our data, we
have not engaged in systematic parameter optimization strategies. Rather, we have simply used our experimental data to suggest approximate values for the rate constants and their voltage
dependence and have shown that these nonoptimized parameters predict responses that are close to what are observed. The
rate constants used in our simulations of Scheme I and the experimental measurements used in constraining them are listed in
Table I. The rate constants k01, k10, k12, and k21 are anchored by
current relaxations at a voltage range where the model predicts
that the major determinant of the current relaxation after a voltage jump is one of those rate constants. The voltage dependence
of the change in measured time constant of the current relaxation in that voltage range (determined as described in Zhou et
al., 1998) is used to extrapolate the rate constant into ranges of
potential where the particular rate constant is not the prime determinant of gating kinetics.
|
|
|
The information enclosed in brackets beside the rate equations listed in Table I indicate the relaxation time constant, the range of potentials, and the data set used to define the rate equations. These first four rate constants (k01, k10, k12, k21) are the prime determinants of gating observed with standard protocols used to define activation and deactivation (see Fig. 2 A), and inactivation and recovery from inactivation (see Fig. 2 B) of the HERG-like current. The rate constants of ultra-slow inactivation are based on the hysteresis observed in measuring normal inactivation. These rates, k23 and k32, were established by adjusting them so that simulated results roughly matched the experimental observations.
|
|
For comparison, we have considered a gating model (Scheme II) in which deactivation and inactivation are independent. In that case, the open probability is defined as the product of the proportion of channels that are neither deactivated (N) nor inactivated (H) and the time course of current relaxation at a particular potential reflects whichever transition process is rate limiting at that potential.
|
We use the same rate equations to define Scheme II as Scheme I, except that k21 is shifted by 40 mV to compensate for the lack of coupling between activation and inactivation implicit in Scheme I, giving k'21 (see Table I). The appropriateness of this modification is shown in Fig. 1, where the steady state proportions of inactivated, open, and deactivated channels predicted by Schemes I-III are plotted. The shift in k21 to k'21 in Scheme II allows the curve describing steady state inactivation to superimpose almost exactly with the curve predicted by Scheme I.
|
Scheme III is based on kinetic parameters derived by Wang et
al. (1997) to describe HERG currents expressed in Xenopus oocytes. The behavior of HERG-like currents in microglia could be
mimicked with fairly minor adjustments to their parameters, with
the exception of the opening rate k01. Apparently, the steady state
activation curve is shifted negatively ~40 mV in microglia, primarily as the result of a slower and more voltage-dependent activation rate. Scheme III thus incorporates our value for the activation rate constant k01. This hybrid model predicts steady state behavior similar to that of the other two models (Fig. 1).
|
The rate equations describing this scheme are listed in Table I.
![]() |
RESULTS |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
The simulations illustrated in Fig. 2 A are driven by the
same protocol used to obtain the data in Fig. 5 A of Zhou
et al. (1998). The K+ conductance was activated by a brief
pulse to
120 mV from holding potential, Vhold = 0 mV,
followed by a step to a range of potentials. The test current at most potentials decayed rapidly as channels closed, in terms of our model, predominantly into state
Cr. The time constant of decay,
tail, was moderately voltage dependent, becoming faster at large positive potentials. At moderately negative potentials, the current no
longer decayed completely, consistent with a window
current existing in this voltage range. At larger negative
potentials, the current decayed anomalously slowly, and the simulations show that this is due to channels entering the inactivated or slowly equilibrating Cs states,
rather than the Cr or resting state. The turn-on of current during the brief hyperpolarizing step defines
act,
this becomes faster as the hyperpolarizing step is made
more negative, but the size of the outward tail seen upon
repolarization is not increased since activation is maximal by
120 mV (data not shown).
The simulations illustrated in Fig. 2 B are driven by
the protocol used to generate the data in Fig. 7 of Zhou
et al. (1998). A hyperpolarizing pulse to
120 mV from
0 mV is paired with a second pulse of the same type
with an incrementing interval. The decline of the current during the 300-ms hyperpolarizing pulse reflects
inactivation of the channels that activated rapidly after the voltage step. The time constant of this inactivation
(
i) increases with hyperpolarization and at
120 mV is
determined primarily by k12. That the channels are inactivated in the classic sense defined by Hodgkin and
Huxley (1952)
and not simply resting is demonstrated
by the fact that little current can be activated by the second hyperpolarizing pulse after short delays. The time constant of recovery from inactivation (
recovery) is monitored by the increase in activatable current with increasing delays between the paired pulses. At 0 mV, this
recovery time course is dominated by k21.
Because the rate equations defining ultra-slow inactivation were based on limited types of data, we explored how sensitive the simulated currents were to changes in these parameters. In addition, it is useful to know how the existence of an ultra-slow inactivation mechanism would manifest itself in experimental data. Arbitrarily multiplying k23 and k32 by a factor of four had little detectable effect on simulations driven by the protocols illustrated in Fig. 2 (data not shown). However, a second ultra-slow inactivation state must then be postulated to account for hysteresis and use dependence observed in certain protocols (see below). There is little difference in the predictions of the coupled or the independent models of activation and inactivation (Schemes I and II) for protocols such as are illustrated in Fig. 2 (data not shown). However, differences become apparent in the presence of Cs+, and under other conditions that accentuate the idiosyncratic gating properties of HERG-like currents.
Gating in the Presence of High [Cs+]o
The peculiar gating behavior previously observed in
Cs+ solutions for HERG channels exogenously expressed in Xenopus oocytes (Schönherr and Heinemann, 1996) also occurs in microglia cells. When Vhold
was 0 mV, small time-dependent inward Cs+ currents
were seen in isotonic Cs+ saline, which were ~5-10%
of the amplitude of K+ currents in the same cell in K+
saline (data not shown). This suggests that Cs+ permeability is 10% that of K+, a conclusion supported by the
observed reversal potential with 160 mM Cs+ outside
and 160 mM K+ inside. As a result of this change in reversal potential, outward currents are more apparent.
Fig. 3 A shows that when Vhold was 80 mV, outward
currents were observed at positive potentials, evidently
reflecting K+ efflux from the cell. These outward currents develop with a voltage-dependent delay and show
a steeply voltage-dependent decay phase. Both the rising and falling phases become markedly faster at more
positive potentials. By the end of the 1-s depolarizing
pulses, most of the channels had closed. After a brief
step to
80 mV to reopen a large proportion of channels, steps back to positive potentials elicited normal
tail currents, which decayed much more rapidly than
did the currents during the first depolarization.
|
Fig. 3 B shows that this behavior is well described by the coupled gating model (Scheme I). The presence of the weakly permeant Cs+ was modeled by reducing extracellular K+ to 10 mM and the rates of activation (k01) and deactivation (k10) were reduced by a factor of two while retaining the same voltage dependence, as was found experimentally (data not shown); otherwise, the same parameters were used as in the previous simulations. A small leak current is included to facilitate comparison with the real data in Fig. 3 A.
In terms of Scheme I, the rapid deactivation of the
second transient outward current is a simple tail current reflecting conversion from state O to Cr and is
dominated by rate constant k10. The decay phase of the
first transient outward current is a convolution of the
latency for channel recovery from inactivation and k10 (see Aldrich et al., 1983). Entry into the deactivated Cr
state occurs in a coupled sequential fashion such that
the channel must pass through several intermediate
states (including the open state) while recovering from
inactivation. As a result, there is a delay in the development of the transient outward current during the first
pulse, and the outward current decays much more
slowly than expected from
tail measured at the same
potential (i.e., during the second pulse).
In our simulations, this delayed transient outward
current was prominent only when conversion between
the inactivated states (Cs, Cus) and the resting state (Cr)
was constrained to pass through the open state (i.e., a
linear-coupled system). If rapid closing and slow closing
were assumed to be uncoupled and independent (Scheme II; compare Faravelli et al., 1996), the transient
outward current was also observed but showed little delay and had a final rate of decay that was simply dominated by k10 much like the decay of the second pulse
(Fig. 3 C). Because the slower gating process is more
steeply voltage dependent than the faster one, coupling imparts this steep voltage dependence to the rate
at which outward current decays during the first pulse
(Fig. 3, A and B). The uncoupled model, Scheme II,
predicts that this decay rate will exhibit the same modest voltage dependence of the fast process (Fig. 3 C). Therefore, in subsequent simulations we consider only
coupled sequential models (Schemes I and III).
Use Dependence of Current Availability
The experiment depicted in Fig. 4 illustrates the necessity of postulating a second inactivated state and suggests an explanation for hysteresis observed in the availability measurements (Fig. 4 E; Zhou et al., 1998). Identical test pulses to
120 mV were applied from different
Vhold, as labeled. When Vhold was initially 0 mV (Fig. 4 A)
or more positive, the conductance was fully available; i.e., all channels were in the rapidly equilibrating resting
state Cr and the test current during the pulse to
120
mV was maximal. 1 min after Vhold was changed to a
moderately negative potential (
40 mV), the test current evoked by stepping to
120 mV was still large (Fig.
4 B). During subsequent pulses (Fig. 4, C and D), the test
current was attenuated by >80%. These four records are superimposed on the right (Fig. 4 E). In contrast, when
Vhold was initially
80 mV where all of the channels were
in inactivated states Cs and Cus (Fig. 4 G), the test current
1 min after changing Vhold to
40 mV was quite small
(H). During a subsequent pulse, the test current increased somewhat (Fig. 4 I). Again, the four records are
superimposed at the end of the row in Fig. 4 J.
The key observation is that when Vhold was changed to
40 mV from the positive voltage range, in which Cr
predominates, there was very little decrement of availability even after 1 min (Fig. 4, A vs. B). There are two
implications: (a) conversion to Cs states (i.e., inactivation) proceeds exceedingly slowly at
40 mV (see also
Fig. 6 in Zhou et al., 1998
); and (b) inactivation develops in a sequentially coupled fashion from the open
state (conversion from Cr to Cus occurs through O and
Cs). Although some channels are open at
40 mV, as
can be seen from the distinct inward window current in
Fig. 4 B, the open probability is low. The observed time
constant of equilibration under these circumstances will be slowed by a factor approximately equal to the inverse of the open probability (i.e., Popen
1) (Bernasconi,
1976
; MacDonald et al., 1991
). The same argument holds for equilibration between Cs and Cus. A single hyperpolarizing test pulse opens many channels, "short-circuiting" this slow equilibration so that a pseudo-equilibrium can be reached much more rapidly.
|
The predictions of Scheme I for this protocol are
shown in Fig. 5. The model reproduces the use dependence fairly accurately. At least two Cs states were needed
to reproduce the very slow equilibration observed at 40
mV, as well as the kinetics and voltage dependence observed at more negative and positive potentials. Indeed,
the interaction between test pulse frequency and the establishment of the steady state response places important constraints on the rate equations defining the
equilibration between Cs and Cus. Subtle differences remain between experimental and simulated results (for
example, in Fig. 5 B the first response in the train is
slightly bigger than subsequent responses while the reverse is true in the experimental results), suggesting
that there may be more than two inactivated states.
Nevertheless, the simple model described by Scheme I
is remarkably robust in predicting the responses of the
HERG-like current to diverse voltage protocols.
During standard tail current measurements, anomalously slow closing at large negative potentials was observed (Fig. 5 A in Zhou et al., 1998). The idea that this
slow decay was due to inactivation is explored in the experiment depicted in Fig. 6. A brief 20-ms command to
120 mV from a holding potential of 0 mV, followed by a 180-ms command to a given test potential is repeated with a frequency of 1 Hz. When the tail current
was measured at
100 mV (where it decayed anomalously slowly, see Fig. 2 A), there was a use-dependent
build up of inactivation during repeated pulses (Fig. 6 A).
In contrast, when the pulse sequence eliciting a tail current at +40 mV was repeated at ~1 Hz (Fig. 6 B), there
was little or no accumulation of inactivation. When the
protocol in Fig. 6 A was repeated with a longer interval
between pulses (10 s), the use dependence was greatly
reduced (Fig. 6 D). The use dependence seen in Fig. 6
A is mimicked by our model (Fig. 6 C), as is the lack of
use dependence for the protocols in Fig. 6, B and D
(data not shown).
Hysteresis in Steady State Availability and Window Current Measurements
The voltage dependence and magnitudes of the rates
governing ultra-slow inactivation were deduced from
the use-dependent protocols (Figs. 4 and 6). Scheme I,
incorporating these parameters, predicted the observed
hysteresis of availability measurements obtained with
incrementing or decrementing conditioning commands 20 s in duration. This result is shown in Fig. 7, A
and B, respectively, where the predictions of Scheme I
and the hybrid Scheme III (based on the model of
Wang et al., 1997) are compared. Starting from +60
mV, a series of decrementing 20-mV steps in Vhold lasting 20 s were applied with availability measured at the
end of each step by a 300-ms pulse to
100 mV. The
peak test currents from these simulations are plotted in
Fig. 7, C and D (Schemes I and III, respectively), for
comparison with the actual data in Fig. 4 C of Zhou et
al. (1998)
. On the decrementing course of this protocol, both schemes predict similar results. Availability remains constant until the command potential drops below 0 mV and becomes negligible by the time the steps
reach
80 mV. However, the predictions of the two
schemes diverge for the incrementing limb. With Scheme III, no hysteresis is seen, while Scheme I predicts hysteresis comparable with that observed experimentally. For
Scheme I, the midpoint of a Boltzmann distribution
(V1/2) was 20 mV more positive on the way up and the
slope was somewhat steeper than on the way down.
The calculated window currents, derived from Popen
at the end of each 20-s sojourn at Vhold (including a linear leak to facilitate comparison with Fig. 4 D) are plotted in Fig. 7, E and F (Schemes I and III, respectively).
Once again, on the decrementing course of this protocol, both schemes predict similar results: the apparent steady state current at Vhold increases to a peak at 40 mV
and disappears at
80 mV. On the way up, Scheme I
predicted substantial hysteresis, and with Scheme III
there was no hysteresis.
The parameters used in our simulations to obtain this match were derived by trial and error. However, our simulations predict that greater constraints on ultra-slow inactivation could be obtained by varying the duration of the test pulses. This has not yet been attempted. It is notable that a similar degree of hysteresis was observed with Scheme II, which proposes independent activation and inactivation.
![]() |
DISCUSSION |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
HERG gating is state and use dependent (fast and slow closing
are coupled via a common open state).
Although many previous models of HERG (or HERG-like) channel gating assumed independent activation and inactivation (Shibasaki, 1987; Faravelli et al., 1996
; Ho et al., 1996
), there is
strong evidence suggesting coupling between these kinetic pathways, and a linear-coupled model has been
considered by a number of authors (Snyders and
Chaudhary, 1996
; Wang et al., 1997
). In particular, the
behavior of HERG channels in isotonic Cs+ solutions
can be explained most economically if the two types of
closing are mutually exclusive and the channels must
pass through intermediate states such as the open state
to interconvert. In high [Cs+]o, both HERG (Schönherr
and Heinemann, 1996
) and HERG-like channels in microglia (Fig. 3 A) close much more slowly at positive potentials if they are first inactivated by a prolonged hyperpolarizing prepulse. This phenomenon closely parallels
the model of Armstrong (1969)
explaining block of K+
channels by internal quaternary ammonium ions, and
the observations of Aldrich et al. (1983)
on the coupling of activation and inactivation in Na+ channels.
The inactivation of HERG channels that develops at negative potentials must be reversed before the channels can undergo fast closing at positive potentials.
A shift in the voltage dependence of activation explains the
absence of outward currents in microglia.
We compared our
model with a previous model of HERG expressed in oocytes (Wang et al., 1997) by constructing a "chimeric" model (Scheme III) in which our rate constants for activation/deactivation are combined with their parameters for the slower gating processes (inactivation/recovery). This exercise revealed that to describe our data
the voltage dependence of steady state activation (or deactivation) had to be shifted negatively by 40 mV.
The practical effect of this shift is that the overlap between activation and inactivation is much smaller in microglia, and this greatly reduces the size of outward currents seen when depolarizing pulses are applied from a
large negative Vhold in symmetrical K+ salines. The almost complete absence of outward currents is the main
observable difference in the properties of HERG-like
currents in microglia and HERG currents in other
cells. This phenomenological difference also explains
why HERG-like currents are often described as inactivating inward rectifiers. It is difficult to describe a K+
channel as a depolarization-activated delayed rectifier
when depolarizing pulses elicit little or no observable
outward current.
HERG-like currents in microglia are influenced by an ultra-slow inactivation process.
Comparison of our model with
others revealed another difference. To explain several
aspects of our data, it was necessary to postulate the existence of an ultra-slow inactivation process. Manifestations include incomplete recovery from inactivation
and pronounced hysteresis in the measurement of
quasi-steady state inactivation and window current.
The existence of an absorbing closed state with extremely slow equilibration in the voltage range near or
slightly positive to a normal resting potential range
would have significant effects on the physiological behavior of these channels. The slow kinetics of the inactivation process effectively introduces a lag in the feedback between voltage and gating. At a large negative
potential, all of the channels are inactivated and recover very slowly with moderate depolarization. However, the steep voltage dependence of the recovery kinetics means that a strong depolarization would greatly
enhance the availability of HERG-like channels and facilitate repolarization. The slow and incomplete inactivation at moderately negative potentials would permit
sustained K+ current that would persist tens of seconds
even at physiological membrane potentials, which in
these cells appears to be ~40 mV.
Nomenclature
The HERG channel has been described either as a depolarization-activated K+ channel with anomalously rapid
inactivation at positive potentials (Shibasaki, 1987; Trudeau et al., 1995
; Spector et al., 1996
; Smith et al.,
1996
), or a channel that activates and then inactivates upon hyperpolarization (Bauer et al., 1990
; Dousmanis
and Pennefather, 1992
; Arcangeli et al., 1995
; Trudeau
et al., 1995
; Bauer et al., 1996
; Ho et al., 1996
; Hu and
Shi, 1997
; Weinsberg et al., 1997
). The former terminology stems from the finding that HERG underlies a
component of IKr (Sanguinetti et al., 1995
), a "delayed
rectifier" current in cardiac muscle. As pointed out by
Faravelli et al. (1996)
, these two viewpoints are specular
they use different terms to describe identical phenomena, hence the choice of nomenclature is semantic. The fast gating mechanism opens the channels
upon hyperpolarization. The slow mechanism opens
channels upon depolarization. In the steady state, the
channels close at either extreme of voltage. In their original description of the phenomena of activation and inactivation, Hodgkin and Huxley (1952)
defined "inactivation" as the slower gating process. Because the Gestalt
of HERG-like currents in symmetrical K+ solutions is of a
channel conducting large inward currents and only
small outward currents, HERG-like currents in various
cells have invariably been described as inactivating inward-rectifier currents. Nevertheless, several rationales
have been presented for describing the rapidly equilibrating closed state as the inactivated state and designating HERG channels as outward rectifiers.
Analogy of properties.
Tetraethylammonium (TEA+) effects can be used to distinguish between N- and C-type
inactivation (Choi et al., 1991), the former inhibited by
internal and the latter by external TEA+. Because external TEA+ slows fast closing of HERG channels at positive
potentials, this closing has been considered analogous to
C-type inactivation (Smith et al., 1996
). However, internal quaternary ammonium ions interfere with the closing of delayed-rectifier channels at negative potentials (Armstrong, 1969
); thus, the effect of external TEA+ is
precisely what one would predict if HERG, like KAT1
(Anderson et al., 1992
; Cao et al., 1995
; Hoshi, 1995
),
were a K+ channel with functionally inverted gating
machinery. The slowing of HERG closing by increased
[K+]o (Wang et al., 1996
) is at first reminiscent of both
delayed rectifiers and inward rectifiers, in which closing
is slowed by increased [K+]o. However, because both
closing and inactivation of depolarization-activated delayed-rectifier K+ channels are slowed by elevated
[K+]o, this property cannot be used to distinguish between these gating processes.
Which gating process is more labile?
Traditionally, inactivation is thought of as being more labile than activation. The rapid channel closing at positive potentials (here called deactivation) can be removed by substitution of a single amino acid presumed to be in the outer
vestibule of the pore (Schönherr and Heinemann,
1996). Similarly, the stability of the open state of the
closely related eag channel is greatly enhanced by a single amino acid substitution, resulting in an effectively
voltage independent (and open) channel (Tang and
Papazian, 1997
). Both gating mechanisms therefore exhibit molecular lability.
Structural comparisons.
There are some similarities in
the primary amino acid sequence and proposed secondary structure of HERG and depolarization-activated K+
channels. However, there is just 15% homology with
Shaker channels and slightly higher with KAT1 (Warmke
and Ganetzky, 1994). Both HERG channels and depolarization-activated K+ channels have six putative membrane-spanning domains, but so does the hyperpolarization-activated inward-rectifier K+ channel (KAT1) in
plants (Anderson et al., 1992
; Cao et al., 1995
). Although clearly distinct from the animal inward rectifier family, HERG functionally resembles plant inward rectifiers. Regardless of structural considerations, there is
no unique molecular definition of activation and inactivation beyond simply whatever mechanism is found to
be responsible for gating processes that were already named on the basis of function. Several radically different mechanisms have been found to account for inactivation. Likewise, activation may arise from a variety of
molecular mechanisms in different types of channels.
In the absence of compelling reasons to do otherwise,
we prefer to use the classical Hodgkin-Huxley definitions and describe HERG-like channels in microglia as
existing in a resting state at depolarized potentials, and
as activating and inactivating on hyperpolarization.
![]() |
FOOTNOTES |
---|
Address correspondence to Peter S. Pennefather, Faculty of Pharmacy, University of Toronto, 19 Russell St., Toronto, Ontario M5S 2S2, Canada. E-mail: p.pennefather{at}utoronto.ca
Received for publication 5 August 1997 and accepted in revised form 18 March 1998.
Notes Added in Proof. Two recent papers have shown that fast and slow closing (what we have called deactivation and inactivation) can be modified apparently independently of one another. Zhou et al. (Zhou, A., Q.P. Xu, and M. Sanguinetti. 1998. A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation. J. Physiol. (Camb.). 509:129-137) showed how a point mutation in the pore region of the channel (S631A) shifts the voltage range over which deactivation occurs without affecting inactivation. Ho et al. (Ho, W.-K., I. Kim, C.O. Lee, and Y.E. Earm. 1998. Voltage-dependent blockade of HERG channels expessed in Xenopus oocytes by external Ca2+ and Mg2+. J. Physiol. (Camb.). 507:631-638) showed that reducing divalent cation levels could slow inactivation without affecting deactivation. Nevertheless, we find that both effects can be well described by modified versions of Scheme I, the coupled model (results not shown). As pointed out above, both independent and coupled models can predict similar findings, but only a coupled model can account for the results shown in Fig. 3 A. Additional evidence that the structure of HERG differs radically from Kv channels is its coassembly with minK, which may in fact line the conduction pathway (Tai, K.-K., and S.A.N. Goldstein. 1998. The conduction pore of a cardiac potassium channel. Nature. 391:605-608).This work was supported in part by a Grant-in-Aid from the Heart and Stroke Foundation of Ontario (P.S. Pennefather), and Research Grant HL-52671 (T.E. DeCoursey) and training grant T32-HL07692 (W. Zhou), both from the National Institutes of Health.
![]() |
Abbreviation used in this paper |
---|
HERG, human ether-à-go-go-related gene (erg) and its product.
![]() |
REFERENCES |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
1. | Aldrich, R.W., D.P. Corey, and C.F. Stevens. 1983. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306: 436-441 [Medline]. |
2. | Anderson, J.A., S.S. Huprikar, L.V. Kochian, W.J. Lucas, and R.F. Gaber. 1992. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89: 3736-3740 [Abstract]. |
3. | Arcangeli, A., L. Bianchi, A. Becchetti, L. Faravelli, M. Coronnello, E. Mini, M. Olivotto, and E. Wanke. 1995. A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J. Physiol. (Camb.). 489: 455-471 [Abstract]. |
4. |
Armstrong, C.M..
1969.
Inactivation of the potassium conductance
and related phenomena caused by quaternary ammonium ion
injection in squid axons.
J. Gen. Physiol.
54:
553-575
|
5. | Bauer, C.K., T. Falk, and J.R. Schwarz. 1996. An endogenous inactivating inward-rectifying potassium current in oocytes of Xenopus laevis. Pflügers Arch 432: 812-820 [Medline]. |
6. | Bauer, C.K., W. Meyerhof, and J.R. Schwarz. 1990. An inward-rectifying K+ current in clonal rat pituitary cells and its modulation by thyrotrophin-releasing hormone. J. Physiol. (Camb.). 429: 169-189 [Abstract]. |
7. | Bernasconi, C.F. 1976. Relaxation Kinetics. Academic Press Inc., New York. 288 pp. |
8. |
Cao, Y.,
N.M. Crawford, and
J.I. Schroeder.
1995.
Amino terminus
and the first four membrane-spanning segments of the Arabidopsis K+ channel KAT1 confer inward-rectification property of
plant-animal chimeric channels.
J. Biol. Chem.
270:
17697-17701
|
9. | Choi, K.L., R.W. Aldrich, and G. Yellen. 1991. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc. Natl. Acad. Sci. USA 88: 5092-5095 [Abstract]. |
10. | Dousmanis, A.G., and P.S. Pennefather. 1992. Inwardly rectifying potassium conductances in AtT20 clonal pituitary cells. Pflügers Arch 422: 98-104 [Medline]. |
11. | Faravelli, L., A. Arcangeli, M. Olivotto, and E. Wanke. 1996. A HERG-like K+ channel in rat F11 DRG cell line: pharmacological identification and biophysical characterization. J. Physiol (Camb.) 496: 13-23 [Abstract]. |
12. | Ho, W.-K., Y.E. Earm, S.H. Lee, H.F. Brown, and D. Noble. 1996. Voltage- and time-dependent block of delayed rectifier K+ current in rabbit sino-arterial node cells by external Ca2+ and Mg2+. J. Physiol. (Camb.). 494: 727-742 [Abstract]. |
13. | Hodgkin, A.L., and A.F. Huxley. 1952. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Camb.). 116: 497-506 [Medline]. |
14. | Hoshi, T.. 1995. Regulation of voltage dependence of the KAT1 channel by intracellular factors. J. Gen. Physiol. 105: 309-328 [Abstract]. |
15. | Hu, Q., and Y.L. Shi. 1997. Characterization of an inward-rectifying potassium current in NG10815 neuroblastoma×glioma cells. Pflügers Arch 433: 617-625 [Medline]. |
16. | Jassar, B.S., P.S. Pennefather, and P.A. Smith. 1993. Changes in sodium and calcium activity following axotomy of B-cells in Bullfrog sympathetic ganglion. J. Physiol. (Camb.). 472: 203-231 [Abstract]. |
17. | MacDonald, J.F., M.C. Bartlett, I. Mody, P. Pahapill, J.N. Reynolds, M.W. Salter, J.H. Schneiderman, and P.S. Pennefather. 1991. Actions of ketamine, phencyclidine and MK801 on NMDA receptor currents in cultured mouse hippocampal neurones. J. Physiol. (Camb.). 432: 483-508 [Abstract]. |
18. | Pennefather, P., and T.E. DeCoursey. 1994. A scheme to account for the effects of Rb+ and K+ on inward rectifier K channels of bovine artery endothelial cells. J. Gen. Physiol. 103: 549-581 [Abstract]. |
19. | Sanguinetti, M.C., C. Jiang, M.E. Curran, and M.T. Keating. 1995. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81: 299-307 [Medline]. |
20. | Schönherr, R., and S.H. Heinemann. 1996. Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J. Physiol. (Camb.). 493: 635-642 [Abstract]. |
21. | Shibasaki, T.. 1987. Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J. Physiol. (Camb.). 387: 227-250 [Abstract]. |
22. | Smith, P.L., T. Baukrowitz, and G. Yellen. 1996. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 379: 833-836 [Medline]. |
23. | Snyders, D.J., and A. Chaudhary. 1996. High affinity open channel block by dofetilide of HERG expressed in a human cell line. Mol. Pharmacol. 49: 949-955 [Abstract]. |
24. | Spector, P.S., M.E. Curran, A. Zou, M.T. Keating, and M.C. Sanguinetti. 1996. Fast inactivation causes rectification of the IKr channel. J. Gen. Physiol 107: 611-619 [Abstract]. |
25. |
Tang, C.-Y., and
D.M. Papazian.
1997.
Transfer of voltage independence from a rat olfactory channel to the Drosophila ether-à-go-go
K+ channel.
J. Gen. Physiol
109:
301-311
|
26. | Trudeau, M.C., J.W. Warmke, B. Ganetzky, and G.A. Robertson. 1995. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269: 92-95 [Medline]. |
27. | Wang, S., M.J. Morales, S. Liu, H.C. Strauss, and R.L. Rasmusson. 1996. Time, voltage and ionic concentration dependence of h-erg expressed in Xenopus oocytes. FEBS Lett 389: 167-173 [Medline]. |
28. | Wang, S., S. Liu, M.J. Morales, H.C. Strauss, and R.L. Rasmusson. 1997. A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes. J. Physiol. (Camb.) 502: 45-60 [Abstract]. |
29. | Warmke, J.W., and B. Ganetzky. 1994. A family of potassium channel genes related to eag in Drosophila and mammals. Proc. Natl. Acad. Sci. USA 91: 3438-3442 [Abstract]. |
30. | Weinsberg, F., C.K. Bauer, and J.R. Schwarz. 1997. The class III antiarrhythmic agent E-4031 selectively blocks the inactivating inward-rectifying potassium current in rat anterior pituitary tumor cells (GH3/B6 cells). Pflügers Arch 434: 1-10 [Medline]. |
31. |
Zhou, W.,
F.S. Cayabyab,
P.S. Pennefather,
L.C. Schlichter, and
T.E. DeCoursey.
1998.
HERG-like K+ channels in microglia.
J.
Gen. Physiol
111:
781-794
|