From the Graduate School Neurosciences Amsterdam, Research Institute of Neuroscience, Vrije Universiteit, Faculty of Biology, 1081 HV Amsterdam, Netherlands
The neuropeptide Phe-Met-Arg-Phe-amide (FMRFa) dose dependently (ED50 = 23 nM) activated a
K+ current in the peptidergic caudodorsal neurones that regulate egg laying in the mollusc Lymnaea stagnalis. Under standard conditions ([K+]o = 1.7 mM), only outward current responses occurred. In high K+ salines ([K+]o = 20 or 57 mM), current reversal occurred close to the theoretical reversal potential for K+. In both salines, no responses were measured below 120 mV. Between
120 mV and the K+ reversal potential, currents were inward
with maximal amplitudes at ~
60 mV. Thus, U-shaped current-voltage relations were obtained, implying that the
response is voltage dependent. The conductance depended both on membrane potential and extracellular K+
concentration. The voltage sensitivity was characterized by an e-fold change in conductance per ~14 mV at all
[K+]o. Since this result was also obtained in nearly symmetrical K+ conditions, it is concluded that channel gating
is voltage dependent. In addition, outward rectification occurs in asymmetric K+ concentrations. Onset kinetics of
the response were slow (rise time ~650 ms at
40 mV). However, when FMRFa was applied while holding the cell
at
120 mV, to prevent activation of the current but allow activation of the signal transduction pathway, a subsequent step to
40 mV revealed a much more rapid current onset. Thus, onset kinetics are largely determined by
steps preceding channel activation. With FMRFa applied at
120 mV, the time constant of activation during the
subsequent test pulse decreased from ~36 ms at
60 mV to ~13 ms at
30 mV, confirming that channel opening is voltage dependent. The current inactivated voltage dependently. The rate and degree of inactivation progressively increased from
120 to
50 mV. The current is blocked by internal tetraethylammonium and by bath-
applied 4-aminopyridine, tetraethylammonium, Ba2+, and, partially, Cd2+ and Cs+. The response to FMRFa was affected by intracellular GTP
S. The response was inhibited by blockers of phospholipase A2 and lipoxygenases, but
not by a cyclo-oxygenase blocker. Bath-applied arachidonic acid induced a slow outward current and occluded the
response to FMRFa. These results suggest that the FMRFa receptor couples via a G-protein to the lipoxygenase
pathway of arachidonic acid metabolism. The biophysical and pharmacological properties of this transmitter operated, but voltage-dependent K+ current distinguish it from other receptor-driven K+ currents such as the S-current- and G-protein-dependent inward rectifiers.
K+ channels are a major target of inhibitory synaptic
transmitters and neuropeptides. Gating of postsynaptic
receptor-driven K+ channels may directly depend on
G-proteins or involve second messenger pathways (see
reviews by Brown, 1990; Brown and Birnbaumer, 1990
;
Clapham, 1994
; Wickman and Clapham, 1995
). Examples of the first category are offered by various G-protein-activated inward rectifier K+ channels (GIRKs),1
such as the cardiac muscarinic K+ channels (reviewed
by Kurachi et al., 1992
; Kurachi, 1995
) and dopamine-activated K+ channels in rat substantia nigra neurons
(Kim et al., 1995
) and lactotrophs (Einhorn et al., 1991
;
Einhorn and Oxford, 1993
), and possibly striatal neurons (Greiff et al., 1995a
, 1995b
). Gating of GIRKs is believed to involve a direct action of the
subunit on
the channel (Logothetis et al., 1987
; Wickman et al.,
1994
; Kunkel and Peralta, 1995
). Related to GIRKs, and
to some extent also directly regulated by G-protein
subunits (Terzic et al., 1994
), are the ATP/ADP-dependent IK-ATP channels in heart cells, neurones, and pancreatic
cells (see reviews by Nichols and Lederer, 1991
; Takano and Noma, 1993
; Terzic et al., 1995
). Examples of postsynaptic receptor-driven K+ channels
that are gated through second messengers are the S-K channels in Aplysia (reviewed by Belardetti and Siegelbaum, 1988
), which are regulated through arachidonic
acid and cAMP. In the case of GIRKs, the inward rectifying properties of the channels result in enhanced effectiveness of transmission at near resting membrane
potentials. On the other hand, the second messenger-dependent, but largely voltage-independent, S-K channels also contribute to the repolarizing phase of the action potential.
Members of the Phe-Met-Arg-Phe-NH2 (FMRFa) family of neuropeptides are putative neurotransmitters in
vertebrates and invertebrates (Brussaard et al., 1988;
Raffa, 1988
). In the molluscan central nervous system,
FMRFa acts on K+ channels in sensory, motor-, and
neuroendocrine neurones. Notably, in sensory neurons
of Aplysia, FMRFa stimulates the S-K current (Belardetti
and Siegelbaum, 1988
) through activation of the
arachidonic acid pathway (Buttner et al., 1989
), while,
in addition, it activates protein phosphatase-1 (Endo et
al., 1995
), thus counteracting a phosphorylating pathway, activated by serotonin and acting through PKA
that suppresses S-K channels (Sweatt et al., 1989
). The
largely voltage independent S-K channel (Shuster et al.,
1991
) is further reported to be stretch sensitive (Vandorpe et al., 1994
). S-K or S-K-like current responses
were also reported in other identified neurons in Aplysia (Brezina et al., 1987
) and in Helisoma (Bahls et al.,
1992
). In various other cases, however, it is unclear whether similar K+-dependent responses to FMRFa and
other transmitters involve S-K channels (Sasaki and
Sato, 1987
; Belkin and Abrams, 1993
; Brezina et al.,
1994
). It seems clear, however, that alternative pathways (i.e., not involving arachidonic acid) are employed to activate similar K+ currents in different neurones (Bolshakov et al., 1993
; Kehoe, 1995
).
We have analyzed in detail the properties of the FMRFa-
activated K+ current (IK-F) in the caudodorsal neurones
(CDCs) of the mollusc Lymnaea stagnalis, using the
whole cell voltage clamp approach. CDCs, which control egg laying by secreting an egg-laying hormone (Vreugdenhil et al., 1988), form a homogenous set of
neuroendocrine cells in the central nervous system and
were previously demonstrated to be strongly inhibited
by FMRFa (Brussaard et al., 1988
) acting through a specific receptor (Brussaard et al., 1989
). We report here
that FMRFa activates a novel K+ current that is characterized by a combined voltage- and receptor-dependent gating mechanism, with both factors being necessary
for opening of the channels. In addition, we probed
the signal transduction pathway between receptor and
channel and report that the response appears to involve the formation of arachidonic acid and its metabolites.
Animals and Preparation
Adult L. stagnalis (20-30-mm shell height), bred in our laboratory, were used. They were kept under a 12-12 h light-dark regimen at 20°C. For all experiments, isolated cells in primary culture were used. To isolate the cells, the central nervous system was dissected and incubated for 40 min at 35°C in medium containing 2 mg/ml trypsin (type 3; Sigma Chemical Co., St. Louis, MO). To check that the FMRFa receptors were not strongly affected by this treatment, some isolations were performed after incubation at room temperature in medium containing 1.33 mg/ ml collagenase/dispase (Boehringer Mannheim, Mannheim, Germany) and 0.67 mg/ml trypsin. Next, dissociation was performed by careful mechanical dissection with forceps and a fine needle. Dissociated cells were held in 3 ml HEPES buffered saline (HBS; see below) in tissue culture dishes (Costar Corp., Cambridge, MA) for at least 1 h. Before start of the experiments, the bath volume was reduced to 1.5 ml and experiments were done with constant perfusion (~2 ml/min).
Salines and Drugs
Unless otherwise stated, the experiments were done in HBS containing (mM): 30 NaCl, 1.7 KCl, 10 NaCH3SO4, 5 NaHCO3, 4 CaCl2, 1.5 MgCl2, 10 HEPES, pH 7.8, adjusted with 7 mM NaOH. In addition, two high potassium salines were used. 20 K+-HBS contained 20 mM KCl, replacing 20 mM NaCl. In 57 K+-HBS, 50 mM KCl replaced all NaCl, NaCH3SO4, and NaHCO3, while pH was adjusted with 7 mM KOH. For whole-cell voltage clamp recordings, a pipette medium was used, containing (mM): 29 KCl, 2.3 CaCl2, 2 MgATP, 0.1 TrisGTP, 11 EGTA, 10 HEPES, pH 7.4, adjusted with 35-38 mM KOH.
FMRFa was obtained from Peninsula Laboratories Europe Ltd.
(St. Helens, UK), guanosine 5-O(3-thiotrisphosphate) lithium
salt (GTP
S) from Boehringer Mannheim, and 4-aminopyridine
(4-AP), 4-bromophenacylbromide (4-bpb), nordihydroguaiaretic
acid (NDGA), and indomethacin from Sigma Chemical Co.
FMRFa was applied to the cell by means of Y-tube application.
The Y-tube system allows rapid, gravity-driven application of a saline through a pipette, which is positioned close to the cell.
Driven by negative pressure, a continuous flow of saline is transported through the pipette to a waste chamber. Switching of an
electrically operated valve disrupts this flow and opens the arm
that is connected to open air, releasing the negative pressure and
allowing the saline to flow out of the pipette, over the cell. To
measure the rapidity of this system, we applied a high potassium
saline (57 mM K+) via the Y-tube system to a cell bathed in low
potassium saline (1.7 mM K+). This local change in driving force
for potassium results in a rapid change in holding current, being
a direct measure for the change of the potassium concentration.
Y-tube application proved rather rapid, reaching 90% of its final
level in 171 ± 33 ms (n = 5). Wash of the saline took place in 4.8 ± 0.5 s (n = 3).
4-AP, 4-bpb, NDGA, and indomethacin were applied to the cell
by bath perfusion and, where appropriate, also added to the
FMRFa solution. Stocks of these blockers (except for 4-AP, which
was diluted in distilled water) were made in DMSO in a concentration of 101 M. Final concentration of DMSO in the bath was
0.01% for 4-bpb and 0.005% for NDGA and indomethacine.
GTP
S was applied by adding it to the pipette medium, replacing
TrisGTP.
Electrophysiological Recordings
Whole cell voltage clamp recordings were made using an 8900 amplifier (Dagan Corp., Minneapolis, MN) with a 1- or 10-G
feedback resistance, or an Axoclamp 200A amplifier (Axon Instruments, Foster City, CA).
Electrodes were pulled on a Flaming/Brown P-87 puller (Sutter Instruments, Co., Novato, CA) and heat polished, resulting in electrodes with resistances of 4-6 M, yielding seal resistances of
4-10 G
. The series resistance (6-10 M
) was compensated for ~70%. With current amplitudes being <1 nA, the maximal resulting voltage error did not exceed 3 mV. To reduce fast capacitances, the pipettes were coated with Sylgard (Dow Corning, Seneffe, Belgium). Voltage protocols, data acquisition, and analysis
were computer controlled using a 1401 AD/DA interface (CED,
Cambridge, UK), employing software developed in our laboratory or using a Digidata 1200 with pCLAMP 6 software (Axon Instruments). Samples of 1,024 points or more per sweep were
taken and stored on floppy disk. In most experiments, the currents were filtered at 100 Hz. For the tail current measurements
(see Fig. 4) and the experiments on activation kinetics (see Fig.
5), high sampling rates and filtering frequencies were used.
Unless otherwise stated, data are presented as means ± SEM.
Under current clamp conditions, FMRFa caused a hyperpolarization accompanied by a decrease in input resistance of the cells, while
the reversal potential depended on [K+]o, indicating
that the response is due to opening of K+ channels
(Brussaard et al., 1988). Under voltage clamp, application of FMRFa elicited an outward current with slow kinetics when applied at voltages positive to
80 mV.
The response to FMRFa was dose dependent (Fig. 1).
The threshold for activation of the current was 10
9 M,
the ED50 was 2.3 × 10
8 M, and the response saturated
at 10
6 M (n = 5). Unless otherwise stated, we applied
FMRFa at 10
6 M in all subsequent experiments.
To construct a current-voltage (I-V) relation, we applied a voltage protocol with a holding potential of
60 mV from which pulses ranging from
120 to 0 mV
in 10-mV steps were given. After the onset of the voltage step, we waited 10 s before application of FMRFa
was started to allow voltage-dependent currents, gated at voltages above
30 mV, to settle to a steady state.
The response amplitude was then measured as the
maximal current during FMRFa application minus the
current directly preceding application of the peptide.
The resulting current voltage relation (Fig. 2, A and
B) shows that only outward current responses were recorded and that the current did not reverse (voltage
range 120 to 0 mV). To confirm the presumed K+ selectivity of the response, we determined if the current
reversed in high extracellular K+ concentrations. With
20 mM K+ in the outside medium, the current reversed
at
24.4 ± 1.1 mV (n = 6), close to the theoretical reversal potential for K+ of
29 mV (Fig. 2, C and D).
Bathed in a K+ concentration of 57 mM K+, the current
reversed at
5.2 ± 1.1 mV (n = 7), again close to the
theoretical K+ reversal potential of
3 mV (Fig. 2, E
and F). Furthermore, when all intracellular K+ ions
were substituted by Cs+ ions, no outward current was
seen upon application of FMRFa. Finally, several K+
channel blockers blocked the FMRFa response (see below). We conclude from these results that FMRFa activated a K+ current.
Voltage dependence of activation.
In standard HBS (1.7 mM K+), the FMRFa-activated current did not reverse.
This might be due to (a) outward rectification due to
the K+ gradient, and (b) voltage dependence of the
current. To distinguish between these hypotheses, we
compared the I-V relations in standard HBS, 20 K+-HBS, and 57 K+-HBS (Fig. 2). In both high K+ salines,
reversal of IK-F was observed, but a strong asymmetry between inward and outward currents remained. However, this asymmetry clearly differs from the asymmetry
predicted by the Goldman-Hodgkin-Katz equation (see
Hille, 1994) on the basis of the K+ gradient (Fig. 2, B,
D, and F). Notably, we observed U-shaped I-V relations
at 20 and 57 mM [K+]o, while the Goldman-Hodgkin-Katz equation predicts monotonously increasing relations
between I and V. The decreasing current amplitude at
potentials below
60 mV (in spite of the increasing
driving force) and the lack of responses at potentials
below
120 mV in both salines imply that the K+ channels involved in this response are, to a certain extent, voltage dependent.
To assess the steepness of the voltage dependence,
activation curves were constructed from the I-V data,
plotting the conductance against the applied voltage.
The conductance was calculated from the maximum
current amplitude and the driving force for potassium. The driving force was calculated using the theoretical
reversal potential (92 mV) for the experiments in
standard HBS (1.7 mM K+) and the experimentally determined K+ reversal potentials for 20 and 57 K+-HBS.
To be able to measure the I-V relations for all three
K+ concentrations in one cell, a reduced protocol (80
to 0 mV), shortening the duration of the experiment,
was used. In three experiments, such a reduced I-V protocol was applied and the results of these three experiments were pooled. Plots of the mean conductance
against voltage (Fig. 3 A) show that the conductance
depends on (a) the membrane potential and (b) the
extracellular K+ concentration. In low potassium (1.7 mM K+), where only outward currents occur, the conductance is lowest. With high extracellular K+ concentrations, yielding mainly inward currents, the conductance is largest.
For further analysis, more complete I-V data (120
to 0 mV) from different cells (two K+ concentrations
per cell) were compared. In most experiments it was
not possible to isolate IK-F at potentials >0 mV since at these potentials large voltage-gated current responses
occur that are to some extent also affected by FMRFa
(Brussaard et al., 1990
, 1991
; Dreijer et al., 1995
). To
compare the conductances in the different K+ concentrations, the data were fitted with a single Boltzmann equation (Fig. 3 B). These experiments confirm the
above results, that the conductance is both voltage and
[K+]o dependent. The potential of maximal activation,
Vhalf, differed significantly between 1.7 and 57 mM K+,
being highest in 1.7 (
39.8 ± 0.9 mV) and lowest in 57 (
61.6 ± 3.0 mV) mM K+ (Fig. 3 C; unpaired t test, P < 0.01; n = 4). The average slope factors (the voltage required for an e-fold change in conductance) were ~14
mV and did not differ significantly for 1.7, 20, or 57 mM K+, indicating that the voltage sensitivity is not dependent on [K]o. It should be noted, however, that
while Fig. 2 clearly shows that the voltage dependence
is much stronger than expected on the basis of asymmetric K+ conditions, rectification may contribute to
the voltage dependence observed in 1.7 and 20 mM K+
salines (see also DISCUSSION).
To confirm the presumed voltage dependence of
channel gating, we next determined the instantaneous
current-voltage relationship of the FMRFa response using a tail current protocol. FMRFa responses were
evoked at a fixed potential of 30 or
50 mV followed
by a variable tail step ranging from 0 to
140 mV. The
FMRFa-induced currents were obtained by subtracting
control responses from those in the presence of FMRFa
(Fig. 4, A and B). The instantaneous I-V relation of IK-F
was determined by measuring the current amplitude
immediately after stepping to the tail potential. For comparison, the I-V relation was measured 80 ms after
the start of the tail potential. In these experiments, saline with 20 mM [K+]o was used. The instantaneous I-V
relations did not show the decrease in current response
at potentials <
60 mV, but considerable outward rectification remained (Fig. 4 C). The traces of the tail currents at potentials <
60 mV, however, revealed a rapid
deactivation phase (Fig. 4 B). In accordance, the I-V relations at t = 80 ms regained the voltage dependence
of the response at hyperpolarized membrane potentials
(Fig. 4 C). Thus, channels that are opened by FMRFa at
the test potential rapidly deactivate upon stepping to
hyperpolarized tail potentials. This result demonstrates
that voltage dependence stems from a step in channel
gating. In addition, the instantaneous I-V relation
shows that the current flow through the channels is
outwardly rectifying. The outward rectification was
stronger than predicted by the Goldman-Hodgkin-Katz
equation on the basis of asymmetric ion concentrations
(Fig. 4 C). Qualitatively similar results were obtained regardless of the potential at which the FMRFa response
was first evoked (
10,
30,
40,
50, or
60 mV; n = 7 cells).
The kinetics of the
response were slow. At 106 M, the current reached a
maximum in almost a second and decayed within tens of seconds. At lower doses, the rise phase of the response was considerably prolonged (Fig. 1 A). The rise
time of the response comprises ligand-receptor interaction, possibly cytoplasmic or membrane-bound signal
transduction steps, and activation of the channel.
When FMRFa was applied at a voltage of 40 mV, the
response reached its maximum in 648 ± 42 ms (n = 15). Since the Y-tube system allowed application of
FMRFa in ~170 ms (see MATERIALS AND METHODS),
the application was not rate limiting. To investigate the
activation kinetics of the channels, we employed the
voltage dependence of the response, as illustrated in
Fig. 5 A. FMRFa was applied at a voltage of
120 mV, a
few seconds before a voltage step to
40 mV was made
to activate the current. The rise time of IK-F, evoked by
the step to
40 mV, appeared to be much faster then.
These results suggest that the rise time upon direct application of FMRFa at
40 mV is determined by relatively slow processes as receptor activation and subsequent signal transduction steps. If FMRFa is applied at
120 mV, the receptor will be activated and signal
transduction starts. Channel opening, however, will only occur upon the subsequent voltage step to a depolarized voltage.
In a separate series of experiments, a similar approach was used to assess activation kinetics quantitatively (Fig. 5, B-D). The signal-to-noise ratio obtained
with the high sampling rate and cut off filtering frequency used limited the analysis to potentials of 60
mV. To avoid contamination with voltage-gated currents that may be influenced by FMRFa, we did not use
data of
20 mV and more positive potentials (see also
Fig. 5 B, which illustrates that the voltage-gated currents activated by steps to
40 or
30 mV are sufficiently small to be ignored). Thus, the analysis was restricted to the voltage range from
60 up to
30 mV.
The time constants of activation were determined by
fitting single exponentials to the isolated IK-F current
traces obtained by subtraction of responses in the absence and presence of FMRFa using a prepulse protocol as described above (Fig. 5, B and C). For comparison, Fig. 5 C also shows IK-F current traces that were obtained by applying FMRFa with the cell at the test
potential. Whereas the latter traces revealed activation
time constants of ~300 ms at each potential, the fast responses to test pulses after FMRFa application at
120
mV had activation time constants that were >10 times
faster and decreased at more depolarized test potentials. The results are summarized in Fig. 5 D. The time
constants at
50 (31.0 ± 13.21 ms),
40 (21.4 ± 6.1 ms), and
30 (13.5 ± 3.1 ms) mV were significantly different (paired t test, P < 0.02, n = 7). We conclude
from these data that channel opening is fast and voltage dependent.
Inactivation of IK-F
When FMRFa is continuously applied, the current reaches its maximum and then slowly decreases (Figs. 1 and 5). The processes underlying this decrease might be receptor desensitization, desensitization at another level in the signal-transduction route, or channel inactivation. To discriminate between these processes, we examined whether the decay rate depends on concentration or voltage. If desensitization of the receptor is involved, the decay will depend on the concentration of the ligand. If the underlying process concerns channel inactivation, the time constant of the decay should not depend on concentration but possibly on voltage.
Concentration independence of current decay.The decay
of IK-F during 30- or 45-s applications of 106 and 5 × 10
8 M FMRFa was measured at
30 and
40 mV (Fig.
6 A). The time course of the decay was fitted with a single exponential curve. The mean values of the time
constants thus obtained were all ~14 s and did not significantly differ for the two concentrations at either potential (two way analysis of variance, ANOVA, P > 0.05, n = 4 for each treatment; Fig. 6 B). Since, even in 45-s
current traces, the current decay was incomplete and
~25% of the peak amplitude remained, we also determined the percentage decline at t = 30 s after the onset
of the response for the two concentrations. These percentages (mean values of ~67%) also did not differ significantly (two way ANOVA, P >> 0.05, data not
shown). These data show that, at least in this range, neither the decay rate nor the amount of decay is dependent on concentration. This suggests that the current
decay is not caused by desensitization of the receptor or a following signal transduction step.
Voltage dependence of inactivation.
There was no significant difference in the decay rates of IK-F responses
evoked with 106 M FMRFa at
30 (13.0 ± 2.2 s, n = 4),
40 (14.2 ± 3.2 s, n = 4), or
50 (14.7 ± 2.8 s, n = 3)
mV (ANOVA, P > 0.05). To measure the voltage dependence of inactivation over the complete voltage range of
120 to
30 mV, a prepulse protocol was
used. In this protocol, prepulses of 15-s duration to various potentials (ranging from
120 to 0 mV in 10-mV
steps) were given, followed by an 8-s step to the test potential of
40 mV. FMRFa was applied 1 s after the start
of the prepulse. The decrease in current amplitude at
40 mV as a function of increasing prepulse potential
was used as a measure for the amount of inactivation
that has taken place during the prepulse (Fig. 7). To allow complete recovery from inactivation, each test
pulse was followed by an interval of 80 s, during which
the cell was kept at
80 mV holding potential. The
largest current response at
40 mV was obtained with a
prepulse to
120 mV. Increasing the voltage of the
prepulse resulted in smaller currents at the test pulse of
40 mV, with on average the lowest current at
50
mV. Further increase of the prepulse voltage did not induce stronger inactivation. This is in line with the
above result that the decays at
50,
40, and
30 mV did not differ (see also Fig. 6 B). Fig. 7 B summarizes
the dependence of inactivation on prepulse voltage
(n = 7).
To confirm the absence of inactivation at hyperpolarized potentials, FMRFa was applied for 20 min at 120
mV, a voltage at which the FMRFa channel is not activated. During this time, short (1.5 s) voltage steps to
40 mV were made every 60 s. These voltage steps activated IK-F but were too short to cause significant inactivation. Over the time course of 20 min of FMRFa application, no decrease in amplitude of successive current
responses was observed (n = 4; not shown).
To measure the time course of inactivation at hyperpolarized voltages, prepulses of varying duration were
applied and followed by a test pulse to 40 mV.
Prepulses to
120,
100, and
80 mV were given and
FMRFa was applied from 1 s after the start of the prepulse until the end of the test pulse (Fig. 8 A). The
amplitude of IK-F during the test pulse was measured
and plotted against the duration of the FMRFa application preceding the test pulse (Fig. 8 B). At
120 mV,
the current hardly inactivated. At higher voltages, inactivation progressively increased. The increase in the
rate and degree of inactivation at potentials increasing
from
120 to
80 mV was consistently observed in
four cells, thus confirming the voltage dependence of
the inactivation rate.
The above results all point to voltage-dependent inactivation of IK-F.
Recovery from inactivation.With the application method
we used, FMRFa was washed away in 4 s. The cells, however, had to recover for ~60 s from an application of
2-5 s. With smaller intervals, the response to a subsequent application of FMRFa was decreased. Apparently, recovery from inactivation is very slow at the
holding potential of 60 mV that was used in most experiments.
Recovery did not take place when, during FMRFa application, a voltage step to 120 mV was made in order
to shut the channel. This was tested in a protocol
where, under continuous application of FMRFa, the
clamp potential was first set at
40 mV to induce inactivation of the response, then at
120 mV for up to 10 min, and finally again at
40 mV. The final step back
to
40 mV did not reveal recovery of the response (n = 3; not shown). It follows that recovery from inactivation
only took place when FMRFa was washed away.
Pharmacological Properties of IK-F
Basic pharmacological properties of IK-F were assessed by eliciting responses in the absence and presence of the blocker of choice in the external medium, using the protocol illustrated in Fig. 1. In this way, 4-AP, tetraethylammonium (TEA), Ba2+, Cd2+, and Cs+ were tested. The decrease in response amplitude was measured after 10 min of incubation with the blocker. Furthermore, we tested the effect of intracellular application of TEA by including the blocker in the pipette medium. In these experiments, block was measured as the decline in response amplitude over the first 30 min after establishing the whole cell configuration. Table I lists the results. In short, (nearly) complete block of IK-F is obtained with 10 mM internal TEA, 10 mM extracellular TEA, 1 mM 4-AP, and 1 mM Ba2+. Approximately 50% block was obtained with 0.5 mM external Cd2+ and 1 mM external Cs+. Apart from the block by 4-AP, all blocking effects were rapidly (within 10 min) reversed upon wash.
Table I. Pharmacological Properties of IK-F |
Signal Transduction
Second messenger involvement.The slow onset kinetics of
the FMRFa response may be explained by signal transduction steps preceding channel activation. To illustrate the involvement of second messengers, we employed the voltage dependence of the response. FMRFa
was applied for 2 s at 120 mV and, following a variable time interval after washing away FMRFa, the channel was activated by stepping to
40 mV (Fig. 9 A). The
IK-F responses progressively decreased with increasing time intervals. Fig. 9 B shows that the relation between
response amplitude and time interval duration follows
a sigmoid curve (n = 7 cells). Most likely, this curve reflects the time-dependent decrease in availability of
the relevant second messenger. Current activation remained possible, however, up to 20 s after FMRFa had
been washed away.
G-protein coupling.
To study whether the FMRFa response involves activation of G-proteins, we asked
whether GTPS interfered with the response. GTP
S, a
nonhydrolyzable GTP analogue, is expected to cause
persistent activation of the
subunit and prevent its
binding to the
subunit. For this experiment, FMRFa
was applied for 2 s at a test potential of
40 mV, and
this application was repeated every 60 s. During the
60-s interval, the cell was kept at a holding potential of
60 mV. Without GTP
S, but with GTP in the pipette,
this procedure can be continued for 20-30 min without
losing current (Fig. 10 A; n = 5). With GTP
S instead
of GTP in the pipette, we saw a gradual rise in holding
current, arising because the responses did not completely reverse upon washing away FMRFa. This increase in holding current reached a maximum and
then reversed slowly. The most obvious effect of GTP
S,
however, was a steady decline in amplitude of the responses to FMRFa (Fig. 10 B; n = 7). The effect of GTP
S
took 10-15 min to establish, a time course that reasonably meets the expectation for a cell of 50-µm diameter and a series resistance of ~6 M
(Pusch and Neher,
1988
). When the same cell was sealed again with a pipette containing GTP instead of GTP
S, the effect of
GTP
S appeared to reverse slowly (Fig. 10 B). The observation that intracellular dialysis with GTP
S, replacing endogenous GTP, led to incomplete wash out of
the current responses and a gradual rise in holding current, is explained by continuous activation of the signal
transduction pathway by the GTP
S-bound G-protein.
The reversal of this phenomenon and the time-dependent decrease of the FMRFa-activated current is explained by assuming that continuous activation of the
signal transduction pathway will induce channel inactivation. Similar results were obtained with presumed
G-protein-coupled responses to dopamine in Lymnaea
neurones (Van Tol-Steye et al., 1997
).
Coupling to arachidonic acid metabolism.
Three blockers
that interfere with enzymes involved in the formation
or degradation of arachidonic acid (AA) were used to find out whether AA or its metabolites are involved in
the coupling of the FMRFa receptor to the channel.
These experiments were performed by 2-s applications
of FMRFa at a test potential of 40 mV repeated every
60 s, before and after application of the relevant
blocker. First step in the arachidonic acid metabolism
is the release of AA from membrane phospholipids, a
reaction that is catalyzed by the enzyme phospholipase
A2 (Axelrod et al., 1988
). This enzyme can be effectively
blocked by 4-bromophenacyl-bromide (Piomelli et al.,
1987
). Applying 4-bpb (10
5 M) by bath perfusion
leads to irreversible rundown of the current (Fig. 11 A;
n = 5), suggesting that arachidonic acid is involved in
this response.
After formation of arachidonic acid, it is metabolized
via three different routes. The first enzymes in these
routes are either 12-lipoxygenase, 5-lipoxygenase (yielding eicosanoids), or cyclo-oxygenase (yielding prostaglandins). To determine which of these routes is involved in the FMRFa response, we tested the actions of
nordihydroguairetic acid, which blocks lipoxygenases,
and indomethacin, which blocks cyclo-oxygenase without affecting lipoxygenase activity (Piomelli et al.,
1987). Bath perfusion with NDGA caused a gradual
rundown of the response (Fig. 11 B; n = 3). However,
indomethacin did not have an effect on the FMRFa response (Fig. 11 C; n = 3). These experiments suggest
that a lipoxygenase, rather than cyclo-oxygenase, is involved in the intracellular signaling process.
To test whether arachidonic acid is indeed the messenger through which FMRFa activates the channel, we
examined whether exogenously applied AA interferes
with the FMRFa response. Application of arachidonic
acid (5 × 104 M) to the cell at a test potential of
40
mV activated an outward current that was as large as or
even larger than the current activated by FMRFa at that
voltage (n = 5). Fig. 12 A shows examples of the AA-
induced current. In this experiment, arachidonic acid
was applied for 50 s at
40 mV and this application was
repeated at intervals of 120 s. Each subsequent application resulted in a larger current than the one before.
Apparently, the AA-induced current response does not
completely reverse within 120 s, possibly due to incomplete wash out.
To test whether the same channels that are opened
by FMRFa are also opened by AA, we examined whether
the currents to AA and to FMRFa show summation.
Arachidonic acid was applied for 120 s at 60 mV.
FMRFa was then applied in 5-s pulses during voltage steps to
40 mV at the end of the AA pulse and at increasing intervals after the AA pulse. AA induced an
outward current of ~100 pA at the holding potential of
60 mV, and of ~350 pA upon stepping to
40 mV.
The first IK-F response, directly after the 120-s AA pulse,
was smallest, while subsequent IK-F responses progressively increased with time after AA application (Fig. 12 B).
This result indicates that AA and FMRFa address the
same channels.
The present results define a voltage-dependent, neuronal K+ current that requires the presence of the neuropeptide FMRFa to be activated. Its biophysical properties exclude, however, that IK-F arises through facilitation of classical voltage-gated currents by FMRFa.
These voltage-gated currents have a much faster activation and inactivation rate (A-current) and/or their voltage dependence is strongly different, with Vhalf being at
least 40 mV more positive (delayed rectifier and Ca2+-dependent K+ current), and the slope of the activation
curves being steeper (Kits and Lodder, unpublished
data). Activation of IK-F will result in a hyperpolarization
and a decrease in excitability of the cell. Thus, the current is functionally similar to other receptor-driven K+
currents, such as vertebrate neuronal K+ currents activated by dopamine, opiates, and a number of other transmitters acting on G-protein-coupled receptors,
and the FMRFa-activated S-K current in Aplysia and
other molluscs (see references in INTRODUCTION). In
addition, if spiking is not completely suppressed by
FMRFa, IK-F will quicken spike repolarization. However,
unlike what has been reported for S-K channels (Critz
et al., 1991; Hochner and Kandel, 1992
), we have no indications that IK-F is active in the absence of FMRFa and
it is therefore unlikely to play a role in spike repolarization under control conditions. In spite of the functional similarities, IK-F clearly differs from these channel types in biophysical and pharmacological characteristics (see below), indicating that it represents a novel K+
current (sub)type.
Signal Transduction of the FMRFa Response
The present results strongly suggest that the K+ channels involved in the FMRFa response are activated
through the arachidonic acid pathway. Inhibition of
PLA2 by 4-bpb, as well as inhibition of lipoxygenase by
indomethacin, strongly reduced the response to FMRFa,
suggesting that block of these enzymes interrupts the signal transduction. On the other hand, NDGA, which
blocks cyclo-oxygenase, did not affect the response, suggesting that lipoxygenase products (eicosanoids) are
instrumental in the response to FMRFa. This signal
transduction pathway is similar to the way in which S-K channels are activated (Belardetti and Siegelbaum,
1988; Buttner et al., 1989
). Our experiments did not
address the question whether additional signal transduction pathways converge upon this channel. Previously, it was shown, however, that the FMRFa response
was not affected by increasing cAMP (Brussaard et al.,
1988
). Still, like S-K channels, the IK-F channels may be
subject to cAMP regulation, but FMRFa may antagonize
and override possible cAMP effects.
Kinetics of the FMRFa Response
Activation of a second messenger-mediated signal transduction route provides an explanation for the slow onset of the response (~650 ms) when FMRFa is applied
at a voltage of 40 mV. The rate of rise of the response
is much faster when channel activation at
40 mV is
preceded by application of FMRFa at
120 mV, at
which potential only receptor activation and second
messenger formation will take place. The subsequent
step to
40 mV elicits the current response with a
much shorter rising phase (<<100 ms). These observations suggest that activation of the arachidonic acid signal transduction pathway accounts for the major part
(several hundreds of milliseconds) of the activation
time of the response, while the final step of channel
opening proceeds fast. In addition, channel opening is a voltage-dependent step with activation time constants
decreasing at more depolarized test potentials.
Inactivation
The amount and the rate of decay of the IK-F response
do not depend on the FMRFa concentration applied,
but they are clearly dependent on voltage (see Figs. 7
and 8). This makes it very likely that the decay is caused
by voltage-dependent inactivation of the channels and
not by a desensitization process acting on a preceding
signal transduction step or the FMRFa receptor. This conclusion is supported by previous observations that
the suppression of the excitability by FMRFa of CDCs in
situ (Brussaard et al., 1988) and the inhibition of the
voltage-gated Na+ and Ca2+ currents (Brussaard et al.,
1990
, 1991
; Dreijer et al., 1995
) do not desensitize during prolonged incubation with FMRFa (>10 min). The
underlying assumption that a single FMRFa receptor is involved in all responses is supported by their similar
concentration dependence (ED50
2 × 10
8 M for IK-F)
and by the identical agonist structure requirements of
the different responses to FMRFa (Brussaard et al.,
1989
). Thus, the voltage dependence of IK-F decay and
the lack of desensitization of the other responses to
FMRFa all suggest that the reduction of IK-F during prolonged or repeated application of FMRFa is not due to
desensitization but to voltage-dependent inactivation.
Voltage Dependence
The current-voltage and the conductance-voltage relationships derived from them show a moderate but clear
voltage dependence of the FMRFa-operated current.
Boltzmann plots yielded a slope factor of 12-16, indicating that the voltage dependence arises from 1.5-2
equivalent gating charges in the channel. Our analysis of the voltage dependence of conductance will, to
some extent, overestimate the voltage dependence of
channel gating in 1.7 and 20 mM K+ because the contribution of Goldman-Hodgkin-Katz rectification is neglected. (This objection does not hold for the 57 K+
condition, yielding nearly symmetrical K+ concentrations, where Goldman-Hodgkin-Katz rectification is
negligible.) Comparison of the experimentally obtained
data of Fig. 3 with the predictions obtained by calculating conductance on the basis of Goldman-Hodgkin-Katz I-V curves in 20 and 1.7 K+ salines, pointed out
that the contribution of rectification to the overall voltage dependence in the voltage range of 80 to 0 mV is
~25% in 20 K+, but >50% in 1.7 K+. Nevertheless,
even in 1.7 [K]o, rectification fails to explain the voltage dependence completely.
Our conclusion that channel gating is voltage dependent is based on the following evidence: (a) a clear voltage dependence of conductance was observed in
nearly symmetrical K+ conditions. (b) The instantaneous I-V relation (reflecting conductance properties
of the opened channels) failed to show the voltage dependence of the response, but revealed only outward
rectification. In addition, clear voltage-dependent deactivation was observed during tail currents at <60 mV.
(c) While activation is normally slow, fast activation was
observed upon stepping to
40 mV after applying
FMRFa to a cell at
120 mV. This suggests that only
channel opening is impeded at
120 mV. (d) Activation time constants decreased from ~36 to ~13 ms
over the voltage range of
60 to
30 mV. (e) A voltage-dependent step in receptor activation is ruled out since a step to
40 mV after a transient application of FMRFa
with the cell at
120 mV (thus failing to generate a current response) still evokes a response, even if the step
to
40 mV is given up to 20 s after washing out FMRFa.
Interestingly, we found that the voltage dependence shifts to more negative potentials with increasing external K+ concentrations. In addition, the conductance voltage plots reveal that the FMRFa-activated conductance increases with increasing [K+]o. These phenomena are probably related to outward rectification due to asymmetric K+ concentrations that will limit current amplitudes (and thus conductance derived from this) at voltages near the reversal potential. The outward rectification is most clear from the instantaneous current- voltage relation (Fig. 4). Goldman-Hodgkin-Katz fits do not completely describe this relationship, suggesting that, in addition to asymmetrical K+ concentrations, intrinsic channel properties may contribute to it. Furthermore, it is possible that at 1.7 and 20 mM [K+]o, the external potassium concentration limits the absolute value of the conductance for inward current, thus contributing to the observed decreased conductance at decreased [K+]o.
The above findings imply three possible mechanisms
that reduce the amplitude of the FMRFa-induced current at low potentials: (a) voltage dependence of activation, (b) outward rectification due to asymmetrical K+
concentrations and, possibly, intrinsic channel properties, and (c) submaximal conductance of inward currents at low [K+]o. These mechanisms explain the lack
of inward currents at potentials of <80 mV in 1.7 mM
[K]o. At the same time, however, these mechanisms will
reinforce FMRFa-induced inhibition in depolarized or
active cells.
Relation of IK-F to Other Receptor-driven Channels
Clearly, IK-F does not classify as a GIRK or classical inward rectifier. Firstly, our results imply that PLA2 activity is required for the FMRFa response to occur, which
excludes direct gating of the channels by a G-protein
subunit. Although, for instance, cardiac KACh channels
are stimulated by lipoxygenase products, this pathway is
not used by muscarinic stimulation and most likely this pathway stimulates KACh channels by acting on the
G-protein involved (Kurachi et al., 1989, 1992
). Secondly, the voltage-dependence curves of IK-F do not
reveal inward rectification. Thirdly, the voltage dependence of IK-F channel gating, like that of inward rectifiers, depends on [K]o, but in the opposite way. While
inward rectifiers shift their voltage dependence towards
more positive potentials with increasing [K+]o, due to
relief of internal Mg2+ block by an inward K+ current
(see Hille, 1994
), increasing [K+]o shifts the voltage dependence of IK-F towards more negative potentials and
increases the conductance. In fact, as discussed above,
outward rectification of IK-F will contribute to this phenomenon. The appearance of inward currents may depend on competition between K+ and a blocking ion in
the outer mouth of the channel, only resulting in inward current flow when [K+]o is sufficiently high. The
steepness of voltage dependence falls between that of
classical IRKs (or inward rectifier K+ channels) (2.5-5)
and that of GIRKs like the muscarinic K+ channel (0.5-1).
Functionally, as well as regarding the signal transduction pathway coupling the channels to the FMRFa receptor, IK-F closely resembles the S-K current. However,
both biophysical and pharmacological differences between IK-F and IS-K are observed. The voltage dependence of activation and inactivation constitutes a major
difference in biophysical properties. Regarding the
voltage dependence of activation, IK-F is characterized
by a more hyperpolarized voltage range (at low [K+]o
V1/2 = 40 mV for I K-F vs. >0 mV for IS-K) and a steeper slope (14 mV for IK-F vs. 30-100 mV for IS-K) (Shuster et
al., 1991
). Pollock et al. (1985)
measured the I-V relation of IS-K also in high K+ saline, and observed outward
rectification but no U-shaped I-V curve. Similarly, the
S-K-like channel studied by Brezina et al. (1987)
only
displays Goldman-Hodgkin-Katz rectification. Whereas these results point to differences with IK-F, it should be
noted that many studies on IS-K concern single channel
recordings (Shuster et al., 1991
), rather than macroscopic currents (but see Klein et al., 1982
; Pollock et
al., 1985
; Baxter and Byrne, 1989
). The fast channel activation kinetics of IK-F constitute another biophysical difference from IS-K, the latter being characterized by
slow activation, even at depolarized potentials (
20
mV) (Klein et al., 1982
; Baxter and Byrne, 1989
). Finally, our data strongly suggest voltage-dependent inactivation of IK-F, which does not hold for the S-K current (Klein et al., 1982
; Pollock et al., 1985
; Baxter and
Byrne, 1989
).
Pharmacologically, IK-F differs from IS-K in many respects. Externally applied 4-AP (1 mM), TEA (10 mM),
and Ba (1 mM) all completely blocked IK-F, whereas
these agents do not affect IS-K in concentrations up to
10 mM (Pollock et al., 1985; Shuster and Siegelbaum,
1987
; Baxter and Byrne, 1989
). Also, internal TEA is a
more effective blocker of IK-F (~75% block of IK-F at 10 mM vs. a Kd of 40 mM for IS-K). Furthermore, IK-F is
blocked for ~50% by 0.5 mM Cd2+, which contrasts the
lack of block of IS-K by the related divalent ion Co2+,
even at 10 mM (Shuster and Siegelbaum, 1987
). The
higher sensitivity of IK-F to internal and external TEA
may to some extent be caused by the circumstance that
the ionic strength of Lymnaea salines is much less than
that of Aplysia salines (total ion concentration ~120 vs.
~1,200 mM, respectively). However, the discrepancies with respect to the effects of 4-AP and external divalent
ions point to real differences in channel properties.
The strong block by divalent ions Ba2+ and Cd2+ is reminiscent of divalent ion block in classical voltage-gated K+ channels, where gating requires interaction with
Ca2+ ions (Armstrong and Lopez Barneo, 1987; Armstrong and Miller, 1990
; Begenisich, 1988
). Thus it is
likely that the divalent ion block of IK-F relates to its voltage dependence and marks a difference with IS-K.
In spite of these differences, at the molecular level
channels carrying IK-F may be closely related to S-K
channels. Interestingly, a possible molecular candidate
for the S-K channel (aKv5.1) is not related to the inward rectifiers but to the Shaker family (Zhao et al.,
1994).
Divergence of FMRFa Responses
FMRFa has a strong inhibitory effect on the CDCs. It
rapidly suppresses discharges of CDCs, both in situ and
in isolated CDCs (Brussaard et al., 1988). The inhibition by FMRFa in CDCs involves at least three different
actions: inhibition of the voltage-activated sodium current (Brussaard et al., 1990
, 1991
a), suppression of the
slowly inactivating HVA calcium current (Dreijer et al.,
1995
), and activation of a potassium current (Brussaard
et al., 1988
; and this paper). The simultaneous activation of three cooperative inhibitory mechanisms explains the strong inhibition of the CDCs by FMRFa.
Although multiple receptors for FMRFa and related
RFamides are assumed to exist in the molluscan nervous system (Cottrel and Davies, 1987; Payza, 1987
), it
was concluded from structure activity studies that the
multiple responses to FMRFa in CDCs are mediated by
a single receptor type (Brussaard et al., 1989
). This implies that the divergence of the FMRFa responses may
occur at the level of the G-protein or the primary effector of the G-protein. A common signal transduction
route is unlikely since the suppression of calcium channels is not mediated by the arachidonic acid pathway and probably involves a direct effect of the G-protein
on the channel (Dreijer et al., 1995
), while stimulation
of K+ channels takes place via the arachidonic acid
route. No data are available on the route by which sodium channels are affected. Divergence of FMRFa effects was also observed in bag cell neurons of Aplysia
californica, where FMRFa inhibits discharges by activation of both potassium and chloride currents and
suppression of a voltage-dependent calcium current
(Fisher et al., 1993
) and in Helisoma B5 neurons, where
presynaptic inhibition by FMRFa is brought about by
modulation of calcium channels and of the secretory
machinery (Man-Son-Hing et al., 1989
) and activation
of a K+ current (Bahls et al., 1992
). In these cells it is
not known whether a single or multiple receptors are
involved.
The strong inhibitory action of FMRFa on CDCs is
spread over the CDC network by three different mechanisms. First, FMRFamidergic axons come in close apposition to the CDCs at several spots, suggesting numerous synaptic or synapselike contacts with the CDCs
(Brussaard et al., 1988). Secondly, the CDC network is
electrotonically coupled, allowing effective spread of
especially slow phenomena like the FMRFa-induced hyperpolarization (Vlieger et al., 1980). The results of the
present work imply a third route. Arachidonic acid,
used as second messenger in the signal transduction
route, may diffuse from its site of formation to adjacent
cells, thus spreading the inhibition.
Address correspondence to Dr. K.S. Kits, Graduate School Neurosciences Amsterdam, Research Institute of Neuroscience, Vrije Universiteit, Faculty of Biology, De Boelelaan 1087, 1081 HV Amsterdam, Netherlands. Fax: 20 4447123; E-mail: ksk{at}bio.vu.nl
Received for publication 15 April 1997 and accepted in revised form 28 August 1997.
1 Abbreviations used in this paper: 4-AP, 4-aminopyridine; 4-bpb, 4-bromophenacylbromide; AA, arachidonic acid; CDC, caudodorsal neurone; FMRFa, Phe-Met-Arg-Phe-amide; GIRK, G-protein-activated inward rectifier K+ channel; HBS, HEPES buffered saline; I-V, current- voltage; NDGA, nordihydroguaiaretic acid; TEA, tetraethylammonium.We thank Dr. A.B. Brussaard, Dr. H.D. Mansvelder, Dr. P. van Soest, and Prof. T.A. de Vlieger for comments on the manuscript. M.J. Veerman was on a grant of the Netherlands Organization for Scientific Research.
1. | Armstrong, C.M., J. Lopez, and Barneo. 1987. External calcium ions are required for potassium channel gating in squid neurons. Science (Wash. DC). 236: 712-714 [Medline]. |
2. | Armstrong, C.M., and C. Miller. 1990. Do voltage-dependent K+ channels require Ca2+? A critical test employing a heterologous expression system. Proc. Natl. Acad. Sci. USA. 87: 7579-7582 [Abstract]. |
3. | Axelrod, J., R.M. Burch, and C.L. Jelsema. 1988. Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci. 11: 117-123 [Medline]. |
4. | Bahls, F.H., J.E. Richmond, W.L. Smith, and P.G. Haydon. 1992. A lipoxygenase pathway of arachidonic acid metabolism mediates FMRFamide activation of a potassium current in an identified neuron of Helisoma. Neurosci. Lett. 138: 165-168 [Medline]. |
5. |
Baxter, D.A., and
J.H. Byrne.
1989.
Serotonergic modulation of two
potassium curents in the pleural sensory neurons of Aplysia.
J.
Neurophysiol.
62:
665-679
|
6. | Begenisich, T.. 1988. The role of divalent cations in potassium channels. Trends Neurosci. 11: 270-273 [Medline]. |
7. | Belardetti, F., and S.A. Siegelbaum. 1988. Up- and down-modulation of single K+ channels by distinct second messengers. Trends Neurosci. 11: 232-238 [Medline]. |
8. | Belkin, K.J., and T.W. Abrams. 1993. FMRFamide produces biphasic modulation of the LFS motor neurons in the neural circuit of the siphon withdrawal reflex of Aplysia by activating Na+ and K+ currents. J. Neurosci. 13: 5139-5152 [Abstract]. |
9. | Bolshakov, V.U., S.A. Gapon, A.N. Katchman, and L.G. Magazanik. 1993. Activation of a common potassium channel in molluscan neurones by glutamate, dopamine and muscarinic agonist. J. Physiol. (Camb.). 468: 11-33 [Abstract]. |
10. | Brezina, V., C.G. Evans, and K.R. Weiss. 1994. Activation of K current in the accessory radula closer muscle of Aplysia californica by neuromodulators that depress its contractions. J. Neurosci. 14: 4412-4432 [Abstract]. |
11. | Brezina, V., R. Eckert, and C. Erxleben. 1987. Modulation of potassium conductances by an endogenous neuropeptide in neurones of Aplysia californica. J. Physiol. (Camb.). 382: 267-290 [Abstract]. |
12. | Brown, A.M.. 1990. G-proteins and potassium currents in neurons. Annu. Rev. Physiol. 52: 215-242 [Medline]. |
13. | Brown, A.M., and L. Birnbaumer. 1990. Ionic channels and their regulation by G-protein subunits. Annu. Rev. Physiol. 52: 197-213 [Medline]. |
14. | Brussaard, A.B., A. Ter, Maat, T.A. de Vlieger, and K.S. Kits. 1990. Inhibitory modulation of neuronal voltage-dependent sodium current by Phe-Met-Arg-Phe-amide. Neurosci. Lett. 111: 325-332 [Medline]. |
15. | Brussaard, A.B., J.C. Lodder, A. Ter, Maat, T.A. de Vlieger, and K.S. Kits. 1991. Inhibitory modulation by FMRFamide of the voltage gated sodium current in identified neurones in Lymnaea stagnalis. J. Physiol. (Camb.). 441: 385-404 [Abstract]. |
16. | Brussaard, A.B., K.S. Kits, A. Ter, Maat, J. van Minnen, and P.J. Moed. 1988. Dual inhibitory action of FMRFamide on peptidergic neurons controlling egg laying behavior in the pond snail. Brain Res. 447: 35-51 [Medline]. |
17. | Brussaard, A.B., K.S. Kits, A. Ter, and Maat. 1989. One receptor type mediates two independent effects of FMRFa on neurosecretory cells of Lymnaea. Peptides (Tarryt.). 10: 289-297 . |
18. | Buttner, N., S.A. Siegelbaum, and A. Volterra. 1989. Direct modulation of Aplysia S-K+ channels by 12-lipoxygenase metabolite of arachidonic acid. Nature (Lond.). 342: 553-555 [Medline]. |
19. | Clapham, D.E.. 1994. Direct G-protein activation of ion channels? Annu. Rev. Neurosci. 17: 441-464 [Medline]. |
20. | Cottrell, G.A., and N.W. Davies. 1987. Multiple receptor sites for a molluscan peptide (FMRFamide) and related peptides of Helix. J. Physiol. (Camb.). 382: 51-68 [Abstract]. |
21. |
Critz, S.D.,
D.A. Baxter, and
J.H. Byrne.
1991.
Modulatory effects of
serotonin, FMRFamide, and myomodulin on the duration of action potentials, excitability, and membrane currents in tail sensory neurons of Aplysia.
J. Neurophysiol.
66:
1912-1926
|
22. | de Vlieger, T.A., K.S. Kits, A. Ter, Maat, and J.C. Lodder. 1980. Morphology and electrophysiology of the ovulation hormone producing neuroendocrine cells of the freshwater snail Lymnaea stagnalis. J. Exp. Biol. 84: 259-271 [Abstract]. |
23. | Dreijer, A.M.C., S. Verheule, and K.S. Kits. 1995. Inhibition of a slowly inactivating high-voltage-activated calcium current by the neuropeptide FMRFa in molluscan neuroendocrine cells. Invert. Neurosci. 1: 75-86 . |
24. | Einhorn, L.C., and G.S. Oxford. 1993. Guanine nucleotide binding proteins mediate D2 dopamine receptor activation of a potassium channel in rat lactotrophs. J. Physiol. (Lond.). 462: 563-578 [Abstract]. |
25. | Einhorn, L.C., K.A. Gregorson, and G.S. Oxford. 1991. D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole cell and single channel recordings. J. Neurosci. 11: 3727-3737 [Abstract]. |
26. | Endo, S., S.D. Critz, J.H. Byrne, and S. Shenolikar. 1995. Protein phosphatase-1 regulates outward K+ currents in sensory neurons of Aplysia calcifornica. J. Neurochem. 64: 1833-1840 [Medline]. |
27. |
Fisher, T.,
C.-H. Lin, and
L.K. Kaczmarek.
1993.
The peptide
FMRFamide terminates a discharge in Aplysia bag cell neurons
by modulating calcium, potassium and chloride conductances.
J.
Neurophys.
69:
2164-2173
.
|
28. | Greiff, G.J., Y.-J. Lin, and J.E. Freedman. 1995a. Role of cyclic AMP in dopamine modulation of potassium channels on rat striatal neurons: regulation of a subconductance state. Synapse (NY). 21: 275-277 . [Medline] |
29. | Greiff, G.J., Y.-J. Lin, J.-C. Liu, and J.E. Freedman. 1995b. Dopamine-modulated potassium channels on rat striatal neurons: specific activation and cellular expression. J. Neurosci. 15: 4533-4544 [Abstract]. |
30. | Hille, B. 1994. Ionic channels of excitable membranes. 2nd ed. Sinauer Associates, Sunderland, MA. pp. 341-484. |
31. | Hochner, B., and E.R. Kandel. 1992. Modulation of a transient K+ current in the pleural sensory neurons of Aplysia by serotonin and cAMP: implications for spike broadening. Proc. Natl. Acad. Sci. USA. 89: 11476-11480 [Abstract]. |
32. | Kehoe, J.S.. 1995. Glutamate activates a K+ conductance increase in Aplysia neurons that appears to be independent of G proteins. Neuron. 13: 691-702 . |
33. | Kim, K.-M., Y. Nakajima, and S. Nakajima. 1995. G protein coupled inward rectifier modulated by dopamine agonists in cultured substantia nigra neurons. Neuroscience. 69: 1145-1158 [Medline]. |
34. | Klein, M., J. Camardo, and E.R. Kandel. 1982. Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia. Proc. Nat. Acad. Sci. USA. 79: 5713-5717 [Abstract]. |
35. | Kunkel, M.T., and E.G. Peralta. 1995. Identification of domains conferring G-protein regulation on inward rectifier potassium channels. Cell. 83: 443-449 [Medline]. |
36. | Kurachi, Y.. 1995. G protein regulation of cardiac muscarinic potassium channel. Am. J. Physiol. 269: 821-830 . |
37. | Kurachi, Y., H. Ito, T. Sugimoto, T. Shimizu, I. Miki, and M. Ui. 1989. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature (Lond.). 337: 555-557 [Medline]. |
38. | Kurachi, Y., R.T. Tung, H. Ito, and T. Nakajima. 1992. G protein activation of cardiac muscarinic K+ channels. Prog. Neurobiol. (Oxf.). 39: 229-246 [Medline]. |
39. |
Logothetis, D.E.,
Y. Kurachi,
J. Galper,
E.J. Neer, and
D.E. Clapham.
1987.
The ![]() ![]() |
40. | Man-Son-Hing, H., M.J. Zoran, K. Lukowiak, and P.G. Haydon. 1989. A neuromodulator of synaptic transmission acts on the secretory apparatus as well as on ion channels. Nature (Lond.). 341: 237-239 [Medline]. |
41. |
Nichols, C.G., and
W.J. Lederer.
1991.
Adenosine triphosphate-sensitive potassium channels in the cardiovascular system.
Am. J. Physiol
261:
H1675-H1686
|
42. | Payza, K.. 1987. FMRFamide receptors in Helix aspersa. Peptides (Tarryt.). 8: 1065-1074 . |
43. | Piomelli, D., A. Volterra, N. Dale, S.A. Siegelbaum, E.R. Kandel, J.H. Schwartz, and F. Berlardetti. 1987. Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells. Nature (Lond.). 328: 38-43 [Medline]. |
44. |
Pollock, J.D.,
L. Bernier, and
J.S. Camardo.
1985.
Serotonin and cyclic adenosine 3![]() ![]() |
45. | Pusch, M., and E. Neher. 1988. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflügers Arch. 411: 204-211 [Medline]. |
46. | Raffa, R.B.. 1988. The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals. Peptides (Tarryt.). 9: 915-922 . |
47. | Sasaki, K., and M. Sato. 1987. A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and actylcholine receptors. Nature (Lond.). 325: 259-262 [Medline]. |
48. | Shuster, M.J., and S.A. Siegelbaum. 1987. Pharmacological characterization of the serotonin-sensitive potassium channel of Aplysia sensory neurons. J. Gen. Physiol. 90: 587-608 [Abstract]. |
49. | Shuster, M.J., J.S. Camardo, and S.A. Siegelbaum. 1991. Comparison of the serotonin-sensitive and Ca2+-activated K+ channels in Aplysia sensory neurons. J. Physiol. (Camb.). 440: 601-621 [Abstract]. |
50. | Sweatt, J.D., A. Volterra, B. Edmonds, K.A. Karl, S.A. Siegelbaum, and E.R. Kandel. 1989. FMRFamide reverses protein phosphorylation produced by 5-HT and cAMP in Aplysia sensory neurons. Nature (Lond.). 342: 275-278 [Medline]. |
51. | Takano, M., and A. Noma. 1993. The ATP-sensitive K+ channel. Prog. Neurobiol. (Oxf.). 41: 21-30 [Medline]. |
52. | Terzic, A., A. Jahangir, and Y. Kurachi. 1995. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am. J. Physiol. 38: C525-C545 . |
53. | Terzic, A., R.T. Tung, A. Inanobe, T. Katada, and Y. Kurachi. 1994. G-proteins activate ATP-sensitive K+ channels by antagonizing the ATP-dependent gating. Neuron. 12: 885-893 [Medline]. |
54. | Vandorpe, D.H., D.L. Small, A.R. Dabrowski, and C.E. Morris. 1994. FMRFa and membrane stretch as activators of the Aplysia S-channel. Biophys. J. 66: 46-58 [Abstract]. |
55. | Van Tol-Steye, H., J.C. Lodder, R.J. Planta, H. van Heerikhuizen, and K.S. Kits. 1997. Convergence of multiple G-protein-coupled receptors onto a single type of potassium channel. Brain Res. In press. |
56. | Vreugdenhil, E., J.F. Jackson, T. Bouwmeester, A.B. Smit, J. van Minnen, H. van Heerikhuizen, J. Klootwijk, and J. Joosse. 1988. Isolation, characterization, and evolutionary aspects of a cDNA clone encoding multiple neuropeptides involved in the stereotyped egg-laying behavior of the freshwater snail, Lymnaea stagnalis. J. Neurosci. 8: 4184-4191 [Abstract]. |
57. |
Wickman, K., and
D.E. Clapham.
1995.
Ion channel regulation by
G-proteins.
Physiol. Rev.
75:
865-885
|
58. |
Wickman, K.D.,
J.A. Iniguez-Lluhi,
P.A. Davenport,
R. Taussig,
G.B. Krapivinsky,
M.E. Linder,
A.G. Gilman, and
D.E. Clapham.
1994.
Recombinant G-protein ![]() ![]() |
59. | Zhao, B., F. Rassendren, B.-K. Kaang, Y. Furukawa, T. Kubo, and E.R. Kandel. 1994. A new class of non-inactivating K+ channels from Aplysia capable of contributing to the resting potential and firing patterns of neurons. Neuron. 13: 1205-1213 [Medline]. |