Address correspondence to Tak Wah Mak, Advanced Medical Discovery Institute, 620 University Ave., Toronto, Ontario M5G 2C1, Canada. Phone: 416-204-5302; Fax: 416-204-5300; E-mail: tmak{at}uhnres.utoronto.ca
![]() |
Abstract |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Key Words: PTEN mutation marginal zone B cells class switch recombination activation-induced cytidine deaminase
In previous work, we showed that a null mutation of Pten in mice (Pten-/- mice; reference 6) is embryonic lethal. Using Pten-/- mouse embryonic fibroblasts (MEFs), we demonstrated that PKB/Akt is hyperactivated in the absence of Pten (7). Furthermore, Pten+/- mice frequently develop lymphoid hyperplasia, T cell lymphomas, and endometrial, prostatic, and breast cancers (6, 8, 9). Autoimmune disorders are also prevalent in Pten+/- mice (10). In T cellspecific Pten-deficient mice, we showed that CD4+ lymphomas and autoimmune disorders arise due to impaired thymic negative selection and peripheral tolerance (11). Since Pten mutations occur in human B cell malignancies (1214), we investigated the role of Pten in B cell development and B cellassociated autoimmunity and oncogenesis.
B cells can be classified as either B1 or B2 cells. B1 cells occur mainly in the pleural and peritoneal cavities and are associated with the production of autoreactive antibodies (15). B2 cells are found chiefly in the periphery and comprise transitional T1 and T2 cells, and mature follicular B (FOB) cells and marginal zone B (MZB) cells. FOB cells form the follicular structures of the secondary lymphoid organs and are capable of recirculation. The much smaller MZB fraction resides in the spleen at the boundary between the red pulp and white pulp (16). These cells may be the first splenocytes to encounter blood-borne bacterial pathogens (16, 17). Splenic MZB cells, but not FOB cells, have high levels of surface immunoglobulin M (IgM) and the complement receptor CD21, and low levels of IgD and CD23 (18, 19). Both MZB and FOB cells undergo immunoglobulin class switching in response to antigen stimulation and cytokines (20). Class switch recombination (CSR) requires the activity of the RNA editing enzyme AID (21) but the underlying mechanism is unknown.
To investigate the role of Pten in B cells, we generated bPtenflox/flox mice using the Cre-loxP system. We report that Pten governs B cell subsets especially in B1, FOB, and MZB cells and is required for normal immunoglobulin class switching.
PCR Analysis of Pten Genotypes.
Southern and Western Blots.
Flow Cytometric Analysis and Cell Purification.
Histological Analysis of Splenic Sections.
Analysis of Humoral Responses.
Lymphocyte Activation in Culture.
RT-PCR.
For amplification of the AID transcript, the primer pair of 5'-GAGGGAGTCAAGAAAGTCACGCTGGA-3' and 5'-GGCTGAGGTTAGGGTTCCATCTCAG-3' was used in 30 cycles of PCR. For amplification of MSH2 transcripts, the primers 5'-CTAAGGAGACGCTGCAGTTG-3' and 5'-TACTGGCGAACCAGAAGAAG-3' were used. For amplification of the HPRT transcript, the primers 5'-GATTAGCGATGATGAACCAGG-3' and 5'-ACAGTAGCTCTTCAGTCTGATA-3' were used.
Digestion-Circularization-PCR.
B Cell Proliferation.
Apoptosis of "Small Dense" B Cells.
B Cell Migration Assay.
Introduction
Top
Abstract
Introduction
Materials and Methods
Results
Discussion
References
PTEN is a tumor suppressor gene mutated in many human sporadic cancers (1) and in hereditary cancer syndromes such as Cowden disease and Bannayan-Zonana syndrome (2, 3). Functionally, PTEN is a dual protein and lipid phosphatase (4, 5). The major substrate of PTEN is phosphatidyl inositol-3,4,5-triphosphate (PIP3),* a second messenger molecule produced through PI3'K activation induced by growth factor stimulation. PIP3 activates the serine-threonine kinase PKB/Akt which is involved in anti-apoptosis, proliferation, and oncogenesis. PTEN negatively regulates cell survival by dephosphorylating PIP3.
Materials and Methods
Top
Abstract
Introduction
Materials and Methods
Results
Discussion
References
Generation of bPtenflox/flox Mice.
Ptenflox/flox mice (C57BL6/J background) were mated to CD19Cre transgenic mice (C57BL6/J background; reference 22) in which expression of Cre is controlled by the endogenous promoter of the B cellspecific gene CD19. Offspring carrying CD19Cre and two copies of the floxed Pten allele (CD19CrePtenflox/flox), CD19Cre plus one copy of the floxed Pten allele (CD19CrePtenflox/+), and CD19Cre plus two copies of the WT Pten allele (CD19CrePten+/+) were used in the analyses as homozygous mutant (bPtenflox/flox), heterozygous mutant (bPtenflox/+), and wild type (bPten+/+) mice, respectively.
Genomic DNA from mouse tails was isolated and amplified by PCR following a published protocol (6). Sense primer (5'-GTCACCAGGATGCTTCTGAC-3') and antisense primer (5'-GAAACGGCCTTAACGACGTAG-3') were used to detect the floxed Pten allele; sense primer (5'-GTCACCAGGATGCTTCTGAC-3') and antisense primer (5'-GTGACATCAACATGCAACACTG-3') were used to detect the WT Pten allele; and sense primer (5'-CTCCTCACCTGTCTCTTCTG-3') and antisense primer (5'-TTCCATGAGTGAACGAACCTGGTCG-3') were used to detect the CD19Cre transgene. Amplified fragments of 512, 413, and about 500 bp, respectively, were obtained.
Genomic Southern blots were performed using a previously described probe and protocol (6). For Western blots, B cells (2 x 106) were either left untreated or stimulated with 10 µg/ml anti-IgM (ICN Biomedicals/Cappel). Total cell lysates were prepared and 10 µg lysate aliquots analyzed by Western blotting as described (7). Antibody directed against the NH2 terminus of Pten and anti-actin antibody were from Santa Cruz Biotechnology, Inc.; anti-phospho-PKB/Akt (Ser473) and anti-total Akt/PKB antibodies were from New England Biolabs, Inc. For PI3'K inhibition studies, an optimal amount of wortmannin (200 nM; Sigma-Aldrich) or LY294002 (50 µM; Sigma-Aldrich) as determined in pilot studies was added 15 min before stimulation.
Single cell suspensions were first incubated with anti-CD16/32 to minimize nonspecific staining. Cells were then stained with cocktails of various mAbs conjugated to FITC, PE, or biotin for 20 min at 4°C. Biotinylated mAbs were developed with streptavidin-Cy-Chrome (BD Biosciences). All mAbs, except PE-labeled anti-IgD (Southern Biotechnology Associates, Inc.), were purchased from BD Biosciences. Flow cytometric analysis was performed using a FACSCaliburTM (Becton Dickinson) with CELLQuestTM software (Becton Dickinson). Total splenic B cells were purified using B220 magnetic beads (Macs; Miltenyi Biotec). Splenic CD23highCD21low B cells and CD23lowCD21high B cells were purified using B220 magnetic beads followed by cell sorting with a FACSVantageTM (Becton Dickinson) after staining with anti-CD21/35-FITC and anti-CD23-PE antibodies (BD Biosciences).
For immunohistochemical staining, freshly dissected spleens were covered with Tissue-Tek OCT compound (Miles, Inc.) and quickly frozen in liquid nitrogen. Frozen sections (7-µm thick) were fixed in ice cold acetone and incubated in 3% H2O2 in 50% methanol for 30 min to inactivate internal peroxidase. Immunofluorescent staining was performed using MOMA-1 (Serotec) and antirat Alexa488 (Molecular Probes) antibodies followed by anti-B220-PE (BD Biosciences) staining. Immunohistochemical staining was performed using biotin-conjugated peanut agglutinin (PNA; Seikagaku Kogyo) followed by a Vectastain ABC Elite kit (Vector Laboratories).
Serum Ig isotype concentrations were analyzed by ELISA as described (23). Abs and standard Igs were purchased from Southern Biotechnology Associates, Inc. For T celldependent immune responses, mice were immunized with 100 µg of alum-precipitated chicken -globulin (CG) coupled to 4-hydroxy-3-nitro-phenylacetyl (NP). For T cellindependent immune responses, mice were immunized with 100 µg of alum-precipitated Ficoll coupled to NP. In both cases, mice were bled at 7 and 14 d after challenge. Serum titers of NP-specific IgM, IgG1, and IgG3 were determined by ELISA as described (23). The measurement of serum anti-ssDNA IgG and IgM antibodies was performed using ELISA as described (24). Statistical analyses were performed using the unpaired Student's t test.
Splenic B cells were purified using B220 microbeads and a Magnetic Cell Sorter (MACS; Miltenyi Biotec). B cells (2 x 105/well) were stimulated for 4 d with 50 µg/ml LPS alone or 50 µg/ml LPS plus 800 U/ml IL-4 in RPMI 1640 medium supplemented with 20% FCS, 2-mercaptoethanol (ME), penicillin, and streptomycin. Cells and culture supernatants were analyzed by flow cytometry and ELISA, respectively.
Cells (5 x 105/ml) were stimulated in vitro for 2 d with 50 µg/ml LPS alone or LPS plus 800 U/ml of IL-4. Total RNA was extracted using TRIzol (GIBCO BRL) according to the manufacturer's instructions. For PCR of germline transcripts, the following standard primers were used to obtain the indicated sizes of products: (µ) ImF and CmR, 245 bp; (3) Ig3F and Cg3R, 323 bp; (
1) Ig1 and Cg1R, 429 bp. Post-switch transcripts were amplified using the following primer pairs: (
3) ImF and Cg3R, 323 bp; (
1) ImF and Cg1R, 353 bp. Germline and post-switch transcripts were amplified using 30 cycles of PCR. The primer sequences were as follows: ImF; 5'-CTCTGGCCCTGCTTATTGTTG-3', CmR: 5'-GAAGACATTTGGGAAGGACTGACT-3', Ig3F: 5'-TGGGCAAGTGGATCTGAACA-3', Cg3R: 5'-CTCAGGGAAGTAGCCTTTGACA-3', Ig1: 5'-GGCCCTTCCAGATCTTTGAG-3', Cg1R: 5'-GGATCCAGAGTTCCAGGTCACT-3'.
Digestion-circularization (DC)-PCR analysis was performed as described (25). Briefly, genomic DNA was isolated from B cells cultured in vitro for 4 d with LPS (50 µg/ml) and IL-4 (800 U/ml). After EcoRI digestion, genomic DNA was purified and self-ligated. Ligated DNA was purified and used as a template for PCR using primers as reported previously for µ-1 (25).
Splenic B cells were purified using B220 magnetic beads and CD23lowCD21high cells or CD23highCD21low cells were isolated by cell sorting. Purified cells (105) were placed into round-bottomed 96-well plates in RPMI 1640 medium containing 10% FCS. Anti-IgM (50 µg/ml; ICN Biomedicals/Cappel), IL-4 (100 ng/ml; PeproTech), anti-CD40 (5 µg/ml; BD Biosciences), LPS (2.5 µg/ml; Sigma-Aldrich) or PDBu (20 ng/ml; Sigma-Aldrich) plus ionomycin (2 µg/ml; Sigma-Aldrich) were added to cultures. Cells were harvested on day 2 after a 12 h pulse with 1µCi [3H]thymidine (Amersham) per well.
Anti-Ig antibody was immobilized by incubating PBS containing 100 µg/ml F(ab')2 fragments of affinity-purified goat antimouse IgM antibody (ICN Biomedicals) in wells of plastic dishes at 37°C overnight, followed by washing with PBS. "Small dense" B cells were prepared by depleting T cells from mouse splenocytes using anti-Thy1.2 F7D5 (Serotec), anti-CD4 RL172.5 (a kind gift of Dr. Kina, Kyoto University, Kyoto, Japan), anti-CD8 3.155 (American Type Culture Collection no.TIB211) and Low-Tox-M rabbit complement (Cedarlane), followed by fractionation using density gradient centrifugation through Percoll (BD Biosciences). Small dense B cells were then cultured in dishes containing immobilized anti-Ig antibody in RPMI 1640 medium supplemented with 10% FCS, 50 µM 2-ME, and 2 mM L-glutamine for up to 24 h. The percentage of viable cells was determined by trypan blue exclusion. Viability results were calculated as a comparison of the percentage of viable cells remaining after treatment relative to the viability of untreated cells cultured for the same length of time.
Splenic B cells (106) purified using B220 magnetic beads were assayed for transmigration using a 6.5 µm diameter, 3 µm pore size transwell culture dish insert (Costar). Migration was allowed to proceed for 3 h from the top chamber containing RPMI supplemented with 0.25% human serum albumin to the bottom chamber containing 0300 ng/ml of human stromal cellderived factor (SDF)-1 (R&D Systems). Cells before and after migration were stained for CD23 and CD21/35 as described above and counted with a FACScanTM. The percent change in the populations of each chamber after migration was calculated as (the percent of CD21highCD23low or CD21lowCD23high cells in the chamber after migration)/(the percent of these cells in the chamber before migration) x 100%.
Results
Top
Abstract
Introduction
Materials and Methods
Results
Discussion
References
Generation of B Cell-specific Pten-deficient Mice.
B cellspecific Pten-deficient mice (bPtenflox/flox mice) were generated by crossing CD19Cre transgenic mice (22) to mice homozygous for the floxed Pten allele (Ptenflox/flox mice; reference 11). bPtenflox/flox mice were born alive and appeared healthy. Genomic Southern blotting showed that, in the vast majority of mutant B cells, Cre-mediated recombination of loxP sites deleted much of the 6.0 kb Ptenflox allele, leaving the 2.3 kb Pten allele (Fig. 1
A). The deletion of Pten was confirmed at the protein level by Western blotting using antibody recognizing the NH2 terminus of Pten (Fig. 1 B). The frequencies of gene deletion observed in B220dull CD5+ peritoneal cavity (PEC) cells and B220+ spleen cells were comparable (unpublished data). The health of 30 bPtenflox/flox mice and 30 control CD19 CrePten+/+ (bPten+/+) mice was monitored for over 12 mo. All mutant mice survived the observation period and no tumor formation was observed.
|
The increased B cell number in the PEC was due to a 24-fold increase in CD5dullB220dull cells (Fig. 2 A, top panel; Fig. 2 B, left). These cells expressed Mac-1low, CD21-, CD23-, and HSA+, compatible with the surface phenotype of B1a cells (unpublished data; references 26 and 27). CD5dullB220dull cells were also increased 11-fold in the spleens of bPtenflox/flox mice compared with bPten+/+ spleens (Fig. 2 A, bottom panel; Fig. 2 B).
|
Impaired Humoral Immunity.
To determine whether the altered B cell populations in the mutant mice affected humoral immunity, we assessed serum Ig levels in bPtenflox/flox mice at 8 weeks of age. As shown in Fig. 3
A, marked decreases in most IgG subclasses and IgA were observed in bPtenflox/flox mice compared with bPten+/+ mice. In contrast, serum IgM levels in bPtenflox/flox mice were elevated fourfold over normal.
|
Reduction of CSR.
Because of the altered serum Ig profile observed in bPtenflox/flox mice, we examined isotype switching in vitro in bPtenflox/flox B cells. bPten+/+ and bPtenflox/flox B cells were cultured for 4 d in the presence of the nonspecific B cell stimulator LPS with or without IL-4. Trypan blue exclusion analysis confirmed that the viability of stimulated cells of both genotypes was not significantly different (unpublished data). Stimulated cells were surface-stained with anti-IgG1 or anti-IgG3 antibody and subjected to flow cytometric analysis. LPS plus IL-4, but not LPS alone, induced switching to IgG1 in WT cells (Fig. 4
A). Prolonged stimulation of WT cells with LPS alone induced switching to IgG3 which was down-regulated by the addition of IL-4. These aspects of isotype switching were reduced in bPtenflox/flox B cells, a result confirmed by ELISA analysis of culture supernatants (Fig. 4 B).
|
CSR depends in part on the activity of AID, a member of the RNA-editing cytidine deaminase family. AID was recently reported to regulate CSR (21) and is activated by LPS in vitro as well as by antigens in vivo. In bPtenflox/flox mice, AID expression was markedly reduced (Fig. 4 C). In contrast, the expression of MSH2, a mismatch repair gene also important for CSR (30, 31), was not significantly different in bPten+/+ and bPtenflox/flox B cells.
To directly examine DNA rearrangement in the Ig locus, we performed digestion-circularization (DC) PCR of DNA obtained from splenic B cells stimulated with LPS plus IL-4. As shown in Fig. 4 D, µ-1 DC-PCR products were amplified in DNA from stimulated splenic bPten+/+ B cells but diminished in DNA from stimulated bPtenflox/flox B cells. This result demonstrates that Pten deficiency leads to a failure in CSR. To rule out the possibility that the observed defect in CSR was due to differences in the relative numbers of particular cell populations, we examined Ig production and CSR in purified CD21highCD23low (MZB) cells and CD21lowCD23high (FOB) cells by ELISA and RT-PCR. Production of IgG1 and IgG3 in response to stimulation with LPS plus IL-4 was impaired in both CD21highCD23low and CD21lowCD23high cells of bPtenflox/flox mice (Fig. 4 E). Similarly, the synthesis of post-switch transcripts and AID expression were reduced equally in bPtenflox/flox CD21highCD23low and CD21lowCD23high cells compared with the WT (Fig. 4 F). These data demonstrate that Pten is indispensable for CSR, presumably because Pten regulates the induction of AID expression.
Autoantibody Secretion.
Pten deficiency has been previously associated with autoimmunity (10, 11), and B cellspecific Pten-deficient mice have increased numbers of autoantibody-producing B1 cells (15). We therefore examined serum autoantibody titers of bPtenflox/flox mice at 68 wk and 68 mo of age. Both age groups of mutant mice produced significantly greater amounts of anti-ssDNA IgM Ab compared with bPten+/+ mice in both absolute and relative (% ssDNA/total IgM) terms (Fig. 5)
. While the absolute amount of anti-ssDNA IgG Ab was not increased significantly in bPtenflox/flox mice, the relative amount of IgG autoantibody (% ssDNA/total IgG) was elevated. The observed impairment of CSR may partially mitigate the elevation of IgG autoantibodies in bPtenflox/flox mice.
|
|
Dammers et al. have reported that MZB cells are derived from a subset of FOB cells by migration (32), although the origin of MZB cells remains controversial. If an absence of Pten enhanced the migration of FOB cells such that more of them became MZB cells, one would expect to see decreased numbers of FOB cells and correspondingly increased numbers of MZB cells, just as we observe in bPtenflox/flox mice. To test FOB migration, we used transwell migration assays to measure the induction of directed cellular migration of purified splenic B cells in a gradient of the chemokine SDF-1 (stromal cellderived factor-1
). As shown in the left panel of Fig. 6 C, the migration of Pten-deficient B cells was consistently greater than that of controls, even in the absence of SDF-1
.
To clarify which cell population, MZB or FOB, was responsible for the enhanced splenic B cell migration, the percent change in these cell populations before and after migration was calculated (Fig. 6 C). In bPten+/+mice, CD21highCD23low cells were more mobile than CD21low CD23high cells, consistent with a previous report (33). In contrast, CD21lowCD23high cells from bPtenflox/flox mice were much more mobile than either CD21lowCD23high cells or CD21highCD23low cells from bPten+/+ mice. These data suggest that the reduction in the FOB population in bPtenflox/flox mice can be attributed to the enhanced migration properties of these cells.
Activation of PKB/Akt.
Regulation of PKB/Akt activation by Pten is critical for normal apoptosis in MEF and for proliferation/apoptosis in T cells (7, 11). We therefore analyzed the phosphorylation of PKB/Akt in bPtenflox/flox splenic B cells. After stimulation with anti-IgM, densitometric analysis showed that phosphorylated PKB/Akt was significantly elevated in bPtenflox/flox B cells compared with bPten+/+ B cells (Fig. 7
A). Furthermore, phosphorylation was completely abolished in both bPten+/+ and bPtenflox/flox B cells by the addition of an optimal amount of either of the PI3'K inhibitors wortmannin or LY294002. As shown in Fig. 7 B, the abnormal activation of PKB/Akt was observed in both B cell subsets in bPtenflox/flox spleens. Thus, in both MZB and FOB cells, as in T cells and MEF, PKB/Akt is activated via a PI3'K-mediated pathway that is subject to negative regulation by Pten.
|
![]() |
Discussion |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
In this study, bPtenflox/flox mice showed an increase in MZB cells and a decrease in FOB cells, suggesting that Pten is important for the maintenance of normal B cell subsets in the spleen. It has been proposed that MZB cells may be derived from a subset of FOB cells that migrates into an unknown cytokine milieu present outside the follicular zone (32). Knockout studies have shown that Pyk2 (33), Lsc (34), and DOCK2 (35), all molecules involved in cell motility, are indispensable for MZB formation. The reduction in FOB cells observed in the absence of Pten may thus be due to enhanced migration of FOB cells to this region, where they might become MZB cells or otherwise enter into the red pulp. CD21highCD23low B cells also accumulated in bPtenflox/flox lymph nodes, confirming that Pten-deficient CD21highCD23low B cells have an unusual recirculation pattern similar to that of WT FOB cells. In addition, PKB/Akt activation was increased in both MZB and FOB cells in the absence of Pten. Recently, MZB cells were reported to be decreased in mutant mice lacking p110, a subunit of PI3'K (36, 37). Thus, PI3'K
may be a key molecule responsible for the generation of abundant MZB cells in bPtenflox/flox mice. We are in the process of crossing bPtenflox/flox mice to strains lacking various PI3'K structural and regulatory subunits (3640) to clarify the contribution of the PI3'K/PIP3 pathway to the generation of MZB cells.
Our data do not formally exclude the possibility that MZB cells are derived from B cells at the transitional, fetal or perinatal stages (4143). The challenge has been to isolate sufficient numbers of cells from each of these purified subpopulations to test in the transplantation assay. Investigations to this end are ongoing.
Like CD40- and CD40L-deficient mice (44, 45), bPtenflox/flox mice show reduced germinal center formation associated with impaired B cell activation signaling. Interestingly, these deficits were apparent even in the presence of strong activation signals delivered via IgM and CD40, and even though the activation of intracellular signaling pathways mediated by PKB/Akt and Btk was intact (unpublished data). FOB cells are required to form germinal centers, and the reduction in this cell population in bPtenflox/flox mice may account for the observed defect.
Several lines of evidence in this study indicate that CSR is impaired in bPtenflox/flox mice. First, MZB and B1 cells are important for TI responses (33, 46), but even though these populations were elevated in bPtenflox/flox mice, the production of antigen-specific IgG in response to TI-II antigen was profoundly decreased. Second, bPtenflox/flox MZB and FOB cells showed defective class switching at the cellular level. Third, Ig germline transcripts were intact in bPtenflox/flox B cells but the expression of AID, an essential factor for CSR, was diminished. Little is presently known about the regulation of AID gene expression and the link between Pten and AID. It may be germane that mice deficient for SHIP, a phosphatase whose substrate is also PIP3, have intact CSR (47). This result implies that the defect in bPtenflox/flox mice could be PIP3-independent. We are undertaking studies of the transcriptional regulation of the AID gene to address how Pten might directly or indirectly influence its expression.
MZB cells are presumed to have a critical role in host defense against bacterial pathogens (16, 17). However, in preliminary experiments, no differences were observed between bPten+/+ and bPtenflox/flox mice subjected to lethal Staphylococcus aureus infections. It is possible that, even though they have greater numbers of the anti-bacterial MZB cells, the CSR defect in bPtenflox/flox B cells leads to inadequate host defense.
bPtenflox/flox mice display marked elevations in B1 cell numbers and serum levels of autoantibodies, particularly those of the IgM isotype. These B1 cells were CD21- and CD23- (unpublished data), suggesting that the increase in the CD21-CD23- population in the mutant mice was due to an increase in B1 cells. Peritoneal B1 cells are involved in the production of autoreactive antibodies (15) and may constitute up to 40% of the total IgA-secreting plasma cell population (48). bPtenflox/flox mice showed reduced serum IgA and normal titers of IgG autoantibodies in spite of their increased B1 cells. This phenotype is consistent with the impaired CSR in Pten-deficient B1 cells. The increase in the B1 population may be due to the abnormal activation of the PI3'K/PIP3/Akt pathway in bPtenflox/flox mice. Mice deficient for either the p85 or p110
subunit of PI3'K show a marked reduction in B1 cells (3639). Our planned analyses of p85
-/-; bPtenflox/flox and p110
-/-; bPtenflox/flox mice should further define the role of the PI3'K/PIP3/Akt pathway and its regulation by Pten in B1 cell generation and autoantibody secretion. Curiously, despite elevated levels of autoantibodies, our bPtenflox/flox mice have survived for over a year without showing definite histological abnormalities characteristic of autoimmune disease. This result stands in contrast to the development of autoimmune disorders in mice heterozygous for the null Pten mutation (10) and in T cellspecific Pten-deficient mice (11). Impaired CSR may derail the onset of autoimmune disease in bPtenflox/flox mice.
In conclusion, we have demonstrated that Pten deficiency alters B1, MZB, and FOB B cell subsets in mice. Moreover, Pten deficiency causes an impairment of immunoglobulin isotype switching. Pten is thus an important regulator of B cell development and homeostasis in the immune system.
![]() |
Acknowledgments |
---|
This work was supported by grants from the Ministry of Education, Science, Sports and Culture (Japan), the Osaka Cancer Research Society, the Novartis Foundation (Japan) for the Promotion of Science, the Naito Foundation, the ONO Medical Research Foundation, and the Sumitomo Foundation.
Submitted: July 1, 2002
Revised: January 7, 2003
Accepted: January 22, 2003
![]() |
Footnotes |
---|
A. Suzuki's present address is Department of Biochemistry, Akita University School of Medicine, Akita 010-8543, Japan.
* Abbreviations used in this paper: BM, bone marrow; CSR, class switch recombination; DC, digestion-circulation; FOB, follicular B; MEF, mouse embryonic fibroblast; MLN, mesenteric lymph node; MZB, marginal zone B; PEC, peritoneal cavity; PIP3, phosphatidyl inositol-3,4,5-triphosphate; SDF, stromal cellderived factor; TD, thymus-dependent; TI, thymus-independent antigen.
![]() |
References |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|