By
From the * Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta,
Georgia 30912; and the Laboratory of Molecular Immunology, National Institute for Medical
Research, London NW7 1AA, United Kingdom
![]() |
Abstract |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
The ability of influenza virus to evade immune surveillance by neutralizing antibodies (Abs) directed against its variable surface antigens provides a challenge to the development of effective vaccines. CD8+ cytotoxic T lymphocytes (CTLs) restricted by class I major histocompatibility complex molecules are important in establishing immunity to influenza virus because they recognize internal viral proteins which are conserved between multiple viral strains. In contrast, protective Abs are strain-specific. However, the precise role of effector CD8+ CTLs in protection from influenza virus infection, critical for understanding disease pathogenesis, has not been well defined. In transgenic mice with a very high frequency of antiinfluenza CTL precursors, but without protective Abs, CD8+ CTLs conferred protection against low dose viral challenge, but exacerbated viral pathology and caused mortality at high viral dose. The data suggest a dual role for CD8+ CTLs against influenza, which may present a challenge to the development of effective CTL vaccines. Effector mechanisms used by CD8+ CTLs in orchestrating clearance of virus and recovery from experimental influenza infection, or potentiation of lethal pathology, are discussed.
Key words: CD8+ cytotoxic T lymphocytes; influenza A virus; T cell receptor-transgenic mice; interferon ![]() |
Introduction |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Influenza A virus possesses the ability to modify its surface antigens, hemagglutinin and neuraminidase (1), thereby permitting sequential reinfections of the same host. Such antigenic variation leads to worldwide epidemics and has prevented control of disease by vaccines designed to induce neutralizing Abs. The majority of CD8+ CTLs are directed against conserved internal viral proteins such as nucleoprotein (NP)1 of influenza A virus. These CD8+ CTLs are broadly cross-reactive, and recognize all major virus subtypes (for a review, see references 5). Thus, much effort has been directed towards development of a vaccine capable of inducing CD8+ CTL memory that recognizes peptide epitopes of conserved viral proteins. Since replication of mammalian influenza viruses is restricted to epithelial cells of the respiratory tract, and systemic exposure of the immune system to influenza consequently is limited (9, 10), the contribution of CD8+ CTLs in primary antiviral responses is not inherently obvious. The recurrent nature of influenza viral infections in humans (11) suggests that immunity mediated by CD8+ CTLs directed at conserved internal viral proteins is transient or only partially effective. Thus, CTL memory cells, which occur in relatively high frequency after influenza infection (6, 12), have marginal impact on morbidity and mortality caused by reinfection with heterosubtypic virus strains in humans (15). Observations on the role of CD8+ CTLs in heterosubtypic immunity in animals give varying conclusions. Thus, virus-specific CD8+ CTLs protect against challenge with influenza A infection in mice devoid of mature B cells and Abs (18- 20). Similarly, cloned CTLs specific for NP of influenza A virus can passively transfer protection (21). On the other hand, active immunization with recombinant NP or with NP expressing vectors is only weakly protective (22).
In our studies, we have taken a new approach towards evaluation of the physiological features of CD8+ CTLs in influenza infection. Tracking in situ CTL effector functions has
been technically challenging, due mainly to the very low frequency and high TCR diversity of antigen-specific CTLs in
normal animals. To overcome this problem, we used transgenic (Tg) mice expressing a uniform type of TCR
heterodimer (
4/
11; termed F5-Tg) derived from an
NP-specific T cell clone obtained from C57BL/10 mice (28, 29). The F5-Tg TCR recognizes the NP peptide (amino
acids 366-374) of influenza A virus A/NT/60/68 (H3N2)
presented by MHC-Db class I molecules, and is expressed
in ~90% of peripheral T cells. Therefore, the mice possess
a high frequency of antiviral CTL precursor cells. By staining cells with Abs specific for V
11, CD8, and markers for
T cell activation, responsive Tg-CTLs can be identified and
characterized directly in situ. We demonstrate here that CD8+
CTLs directed against the conserved NP of influenza A virus
in the absence of protective Abs can potently block viral replication in situ and either promote survival or exacerbate a lethal
influenza pneumonia. These results provide a clear demonstration that protection and pathology induced by antiviral CD8+
CTLs represent different balance situations between a pathogen and the host's immune system. This consideration is especially important in the lung, where disruption of lung structure
and pulmonary function can have devastating consequences.
![]() |
Materials and Methods |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Mice.
Mice transgenic or deficient for recombination activating gene 1 (RAG-1Viruses.
Stock virus of influenza A/NT/60/68 (H3N2) virus or the X31 (H3N2) reassortant influenza virus was grown in the allantoic cavity of 10-d-old embryonated hen eggs, and were free of bacterial, mycoplasma, and endotoxin contamination. X31 is a reassortant virus with external virion proteins of A/Aichi/2/68 (H3N2) and the internal NP of A/PR/8/34 (H1N1). This reassortant cannot be recognized by the Tg-CTLs due to alterations (372DVirus Titers in Lung Tissue.
Viral lung titers were determined by 10-fold serial dilution of tissue extracts, and tested for infectivity of MDCK cells in 96-well plates as detected by hemagglutinating activity in the supernatants after a 48-h incubation at 37°C and 5% CO2. Virus titers were estimated according the method of Reed and Muench (35); the threshold of virus detection in the MDCK assay is 102 TCID50 (50% tissue culture infectious dose)/g lung tissue. Lung extracts that were negative in the MDCK assay were further tested by inoculation of 50 µl of undiluted extract in the allantoic cavity of 10-d-old embryonated hen eggs; the threshold of detection in this system wasDetection of Antiviral Abs in Sera of Infected Mice.
The titer of virus-specific Abs in serum was assayed by ELISA as described previously (36). Sera of infected mice were tested on plates coated with 1 µg of purified A/NT/60/68 or X31 influenza virus (37).Flow Cytometry.
Cells isolated by bronchoalveolar lavage (BAL) were stained directly with FITC- or PE-coupled reagents or indirectly with biotinylated Abs followed by streptavidin-Tricolor (Caltag Laboratories, Inc., South San Francisco, CA), and analyzed with a FACScan® (Becton Dickinson, San Jose, CA). mAbs were against mouse CD8 (clone 53-6.7), CD4 (clone GK1.5), TCRVCytotoxicity Assay.
Ex vivo cytolytic activities in BAL were tested directly in a standard cytotoxicity assay as described (31, 38). BAL cells obtained from two mice were pooled before being assayed directly on EL-4 (H-2b) target cells infected with virus or loaded with a synthetic peptide (amino acids 366-374 NP of A/ NT/60/68), in a 5-h cytotoxicity test. Tg-CTLs from the same sample were detected directly by flow cytometric analysis, and percentages of specific lysis were calculated at the highest Tg-CTL to target cell ratio.Treatment with Anti-IFN- mAb.
Histology.
Lung tissues fixed in 10% buffered formalin were paraffin embedded and sectioned. Each lung specimen was stained with hematoxylin and eosin, and subjected to gross and microscopic pathologic analysis. ![]() |
Results |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Protection against Influenza Virus Is Associated with Activities of Antiviral Abs, Whereas CTL Responses Play a Peripheral Role in Local Immunity
Intranasal administration of 106 PFU of A/NT/60/68
of influenza A virus to F5-Tg mice resulted in a pulmonary
infection and associated pathology that was regularly resolved within 2 wk (Fig. 1, A, E, and I). Viral replication
peaked between days 2 and 4, followed by a rapid decline
in virus lung titers by day 8. This correlated with increased
levels of serum IgM and IgG antiviral Abs. Note that F5-Tg
mice contain considerable numbers of mature CD4+ Th cells
selected in the thymus via endogenous TCR
chains (due to less stringent allelic exclusion) and that production of IgG requires interaction of B cells with virus-specific CD4+ T
cells (31, 42, 43). Inoculation of a high dose (107 PFU) of
A/NT/60/68 caused rapid spread of virus in the lung; ~40% of the animals died (Fig. 1 A). Tg-CTLs isolated by
BAL and from tissues of the pulmonary-associated lymphatic system were capable of recognizing and lysing virally
infected target cells, or cells pulsed with the Tg-CTL peptide epitope in standard cytotoxicity assays (data not shown).
Maximal cytolytic activities correlated with reduction of virus in lungs by days 6-8. No evidence of Tg-CTL activation
was observed in cells obtained from spleen or non-pulmonary-associated lymphatic system tissues tested directly in
CTL assay or by staining with activation markers (data not
shown). A similar course of infection was observed in control C57BL/10 (H-2b) inbred mice (Fig. 1, B, F, and J). To
directly assess the contribution of antiviral CTLs in protection against influenza, F5-Tg mice were infected with the
X31 reassortant virus, which cannot be recognized by the
Tg-CTLs. When X31-infected F5-Tg mice were compared with control C57BL/10 mice (Fig. 1, C, G, and K, versus
D, H, and L), no significant differences in survival rate, viral replication in lungs, or virus-specific Ab titers were observed. The overall kinetics of virus decline differed slightly,
in that virus was detectable in F5-Tg mice until day 12. These observations indicate that in the presence of antiviral
Abs, host CTLs specific for NP of influenza virus play only
a peripheral role in local immunity.
|
Do CTLs Protect a Host against Influenza Virus in the Absence of Protective Abs?
We next evaluated the role of CTLs in influenza viral infection more stringently by assessing their immunoreactivity in the absence of antiviral Abs using RAG-1-deficient
F5 mice (F5-RAG-1/
). The repertoire of peripheral
lymphocytes of these mice consists only of Tg-CTLs (31).
F5-RAG-1
/
and RAG-1
/
(the latter lacking both B
and T cells) control mice were inoculated intranasally with
varying doses of A/NT/60/68 or X31 influenza virus, and
CTL functions were examined in the following ways.
The
ability of CTLs to limit the severity of acute lung infection
was evaluated by measuring survival of F5-RAG-1/
mice after infection with A/NT/60/68 (Fig. 2, left). At the
highest dose given (107 PFU), all mice died between days 2 and 6 (Fig. 2 A, left). A progressive delay in the time of
death and increased survival rate were observed when viral
inoculum was decreased (Fig. 2, B-E), with complete protection observed at
104 PFU. All control RAG-1
/
mice infected with A/NT/60/68 succumbed to viral disease (0% survival; Fig. 2, left). Similarly, all F5-RAG-1
/
and RAG-1
/
mice infected with X31 died during the
first 20 d, with comparable kinetics (Fig. 2, right). The fact
that F5-RAG-1
/
mice infected with 107 PFU of A/NT/
60/68 died significantly faster (days 2-6; P <0.0001 by
Wilcoxon test) than RAG-1
/
mice (days 6-24) but survived a relatively low dose of infection (
104 PFU) suggests that, depending on the magnitude of pulmonary viral load, CTLs can either confer protection or contribute to
pathology in influenza virus infection.
|
Susceptibility to influenza virus, often lethal
for mice, is closely associated with progressive pulmonary
viral infection. Therefore, comparative studies with F5-
RAG-1/
and RAG-1
/
infected mice were performed,
correlating survival rate (Fig. 2) with virus titers in lungs
(Fig. 3). Kinetic profiles of viral replication in the lungs
were determined by measuring maximal viral titers and virus clearance rates (Fig. 3, A-D). Protection (increased survival; see Fig. 2) against influenza virus correlated with
lower maximal levels and rapid decline in viral titers. Thus, F5-RAG-1
/
mice infected with A/NT/60/68 were protected only if they controlled viral replication (Fig. 3, C and
D, left). In contrast, high viral lung titer was seen in mice that
succumbed to infection (compare Figs. 2 A and 3 A). 104
PFU intranasal (i.n.) of A/NT/60/68 was a critical dose;
about one fourth of the infected mice failed to clear the virus and died, whereas the rest of the mice eliminated the
virus and were protected (compare Figs. 2 C and 3 B). The
experiments in this section suggest that CTLs confer protection against influenza by blocking in situ viral replication. Their failure to control viral infection is closely associated with fatal disease.
|
The phenotype and functional status of the inflammatory cells recovered by BAL from F5-RAG-1/
or RAG-1
/
mice were
examined (Fig. 4). Under all conditions tested, primary inflammatory reactions were similar, consisting mainly of
macrophages/monocytes (positive for F4/80 and Mac-1a
antigen; data not shown). The total number of cells recovered by BAL (Fig. 4, open symbols) increased rapidly (days
2-5) and peaked between days 4 and 8 with maximal values that correlated with the dose of infection. However,
transgenic CTLs (V
11+CD8+; Fig. 4, filled symbols) were
found only in F5-RAG-1
/
mice infected with A/NT/
60/68 (Fig. 4, A-C). The kinetics of appearance of transgenic CTLs in the lungs revealed that transgenic CTLs
were detected earlier in mice infected with 107 PFU (day 2)
than with 104 or 102 PFU (days 3-5). This difference was
confirmed in two further experiments (our unpublished
observations). Transgenic CTLs isolated on days 2-16 from
lungs of mice infected with different doses of A/NT/60/68
and analyzed by flow cytometry were blast-sized and displayed activation status profiles (upregulation of IL-2R and
CD44 antigen and downregulation of L-selectin) compared
with naive transgenic CTLs (data not shown). As expected,
CTLs were efficient in lysing target cells loaded with relevant viral peptide (A/NT/60/68 NP-366-374). Thus, cells
obtained by BAL from two mice were pooled and assayed
directly on EL-4 (H-2b) target cells loaded with peptide in
a cytotoxicity assay, and percentages of specific lysis were
calculated at highest transgenic CTL to target cell ratio.
The lytic activity in F5-RAG-1
/
mice infected with 107
PFU of A/NT/60/68 was 15% (day 4, ratio 2:1), 30% (day
5, ratio 12:1), and 50% (day 8, ratio 25:1) compared with
animals infected with 102 PFU, which exhibited 10% (day
5, ratio 4:1), 25% (day 8, ratio 12:1), and 60% (day 12, ratio
25:1). The same effector cells tested on unloaded target
cells displayed cytotoxicity <2% at the highest E/T ratio.
In addition, lytic activity in BAL from control F5-RAG-1
/
mice infected with X31, or from RAG-1
/
mice infected with A/NT/60/68, was undetectable (<2%). Thus, transgenic CTLs in lungs of mice that succumbed to lethal
influenza were functionally active. Control F5-RAG-1
/
mice infected with X31, or RAG-1
/
mice infected with
A/NT/60/68 or X31, developed a progressive pulmonary
inflammation, but transgenic CTLs were undetectable (Fig.
4 D, and data not shown). Finally, because of the short time span between appearance of transgenic CTLs in lungs
and lethal outcome of viral disease (2-4 d), it is unlikely
that transgenic CTL escape variants in infected mice are responsible for these results (44, 45). Likewise, our findings
are not compatible with anergy (46) or clonal deletion
of transgenic CTLs (50, 51) as possible mechanisms for the
inability of F5-RAG-1
/
mice to control infection with a
relatively high dose of A/NT/60/68.
|
It is likely that the characteristics of cells obtained by BAL
do not fully reflect the overall pulmonary inflammatory
process. Therefore, lung tissue from control (uninfected) or
virus-infected mice were analyzed histologically (Table 1).
Hematoxylin and eosin-stained paraffin sections of lungs
showed that the general course of lung pathology of F5-
RAG-1/
mice infected with A/NT/60/68 was partially
influenced by the rate of pulmonary viral spread, but to a
greater extent was determined by antiviral CTLs (Fig. 5).
Indeed, Tg-CTLs in lungs of mice with a restricted viral
infection (i.e., 102 PFU i.n.) tempered the severity of the
disease (Fig. 5 A). Lung pathology was confined to a few
foci of perivascular and peribronchial inflammation of
mononuclear cells (macrophages/monocytes), containing numerous leukocytes/lymphoblasts. Although inflammation persisted beyond 2 wk, with gradual decline in magnitude, there was less evidence of epithelial necrosis and
desquamation of affected tracheobronchiolar mucosa. In
contrast, the activity of Tg-CTLs in lungs of mice with
progressive viral infection (i.e., 107 PFU i.n.) had deleterious consequences for the host (Fig. 5 B). The entire architecture of lung tissue became profoundly altered within a
few days as a result of extensive inflammation and edema, with thickening of intraalveolar septa and loss of alveoli,
but with less evidence of hemorrhages. The pathologic
process in control RAG-1
/
mice (107 PFU of A/NT/
60/68) developed more slowly; there was less evidence of
pathologic alterations in lung tissues during the first week of infection, and primary inflammatory reactions were confined to a few foci of infiltrating cells. However, in the
course of infection the animals developed the characteristic
features of fatal viral pneumonia (edematous lung tissues,
congestion, and collapse of alveoli; data not shown). Lung
tissues of F5-RAG-1
/
mice infected with X31 (107
PFU; Fig. 5 C) show the characteristic features of a progressive fatal pneumonia as described for F5-RAG-1
/
mice infected with 107 PFU of A/NT/60/68. Lung tissues
of uninfected F5-RAG-1
/
mice were well aerated,
without evidence of infiltrates or pathologic alterations
(Fig. 5 D). Together, these results confirmed our initial observations suggesting a contribution of antiviral CTLs to
pulmonary pathology as a result of overwhelming influenza
viral infection.
|
|
Effects of In Vivo Administration of Anti-IFN- mAb on
the Mediation of Lethal and Sublethal Influenza by Antiviral
CD8+ CTLs
To further define the mechanism(s) of virus-specific
CD8+ T cell-mediated clearance or enhancement of inflammation, the effects of parenterally administrated anti-
IFN- were examined. Although all F5-RAG mice infected with a high dose of A/NT/60/68 (107 PFU) died
between days 2 and 6, a delay in the time of death and increased survival rate (~50%) were observed when infected animals were treated with anti-IFN-
mAb throughout the
experiment (Fig. 6 A). Surprisingly, treated animals completely cleared virus from lung parenchyma by day 8 (Fig. 6
C). In contrast, control untreated infected mice were unable to eliminate the virus; however, significantly reduced
viral lung titers were measured by day 6 and were maintained until the mice succumbed to infection (Fig. 6 C), indicating that antiviral CD8+ T cells were only partially efficient in controlling the infection. Treatment of mice with
anti-IFN-
mAb had no effect on the kinetics or magnitude of the effector Tg-CTL response in the lung parenchyma (Fig. 6 E). Identical total numbers of inflammatory
cells were found in the BAL of anti-IFN-
-treated mice
and control mice (Fig. 6 G). However, histological analysis
of the lung tissues revealed a restricted pattern of inflammation and significantly reduced pathologic features of pneumonia in the early stages of infection, with gradual decline
in magnitude after anti-IFN-
mAb treatment in comparison with control virus infected mice (data not shown). In
mice given a sublethal dose of 102 PFU of influenza virus,
blockade of IFN-
had little effect on lethality, elimination
of pulmonary virus, or kinetics and magnitude of Tg-CTL
response in the lung parenchyma (Fig. 6, B, D, F, and H).
|
![]() |
Discussion |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Many studies have demonstrated a major role for CD8+
CTLs in control of viral infection. However, it has been
difficult to follow development of the specific CTL responses in situ in infected tissues. Here we report an innovative approach, using transgenic TCR mice specific for
influenza virus (F5) and mice deficient in CD4+ and B cells
(F5-RAG-1/
), which allows the monitoring of specific
CD8+ CTL responses directly in situ. This powerful tool
provides a unique opportunity to study the in vivo fate, effector functions, and interactions of virus-specific CTLs in
the lung tissue.
The results reported here elucidate some basic principles by which host CTLs amplify defenses against influenza virus. First, effector CTLs localized to sites of virus infection can have either beneficial or harmful effects on the infected host. In the absence of protective Abs, CTLs can potently block viral replication conferring protection against influenza virus, or they can contribute significantly to the genesis and progression of fatal disease. CTL-mediated effects are related to the magnitude of ongoing pulmonary viral infection, whereby the timing of CTL appearance in lung tissues seems to be the most critical factor. This dramatic example of CTL-mediated opposing effects (protection versus lethal pathology) during influenza virus infection adds to reports that CTLs may aggravate disease in viral infections (52). Second, the primary driving force underlining influenza pathology is the virus. Thus, unrestricted viral dissemination in lungs results in fatal pulmonary disease. The results of this study do not support the theory that pulmonary pathology is due to the intrinsic cytopathic effects of the virus. However, neither do the data suggest an "innocent bystander" role for the virus. In contrast, viral replication in the lungs is accompanied by an inflammatory process that is probably initiated by chemokines released from infected cells. These chemokines then attract inflammatory cells to the site of infection. Third, our studies are indicative of the dynamic process underlying the development of influenza viral CTL responses (57). Several lines of evidence suggest that the disease process is terminated rapidly if effector CTLs appear in the lungs before or very early after the onset of infection (8, 58). Our results suggest that this situation will be difficult to achieve by vaccination strategies aimed at increasing the frequency of antiviral CTL precursors. In support of this view, it has been found that both virgin and primed CTLs need a span of 4-5 d to become potent CTL effectors (7, 58, 63). Thus, the protective ability of CTLs is restricted to a delicate equilibrium between their effector activities and viral load in the lungs. Protective Abs recognizing minor changes in surface proteins within an influenza subtype may shift this balance by slowing down virus replication (and thus reducing viral load) in the onset of infection, thereby allowing CTLs to rapidly terminate viral replication in lungs. This may offer a simple explanation for why CTLs are not capable of preventing influenza epidemics, but on the other hand seem to provide limited protection from clinical disease (8, 64).
Multiple mechanisms may contribute to the protective and pathogenic effects shown by antiinfluenza CTLs. It is important to distinguish the role of soluble factors and cytokines, as well as possible qualitative differences in the CTLs themselves. Such information will be essential for developing a better understanding of viral pathogenesis and a more rational approach to therapeutic intervention in influenza and other respiratory viral infections. CD8+ T cells have been shown to mediate an in vivo antiviral effect either via direct lysis of infected host cells, or by release of cytokines that induce an antiviral effect (65, 66). The ultimate impact of these CD8+ T cell-mediated effector mechanisms on elimination of and recovery from influenza A virus infection, and on the outcome of pulmonary disease, is not well defined.
Regarding effector mechanisms used by CD8+ T cells in
clearance of influenza virus, a recent study by Topham et al.
using radiation chimeras suggested that target cell destruction mediated via Fas or perforin pathways is probably the
primary mechanism used by CD8+ CTLs in clearance of
the virus (67). On the other hand, studies with immunocompetent mice deficient in production of IFN- either by
targeted gene disruption or parenteral administration of a neutralizing anti-IFN-
Ab into mice lacking
2-microglobulin (the latter lack CD8+ T cells) indicated a less important role for IFN-
in the clearance of influenza virus
infection (39, 68). However, the data do not exclude the
possibility that there may be some biologic redundancy in
the immune response to influenza, and that other effector
mechanisms (e.g., Abs) may influence the degree to which
IFN-
is required for prompt resolution of infection. The use
of F5-RAG-1
/
mice provides an opportunity to address
this issue more directly. The results reported here are in agreement with and extend the above findings. Although IFN-
appears be nonessential for CD8+ T cell-mediated recovery
from a sublethal influenza virus infection, this study shows
clearly that it exerts a marked effect on the outcome of lethal
infection. Thus, treatment of F5-RAG-1
/
mice with anti-
IFN-
mAb during a sublethal or lethal influenza infection
had no effect on the kinetics or magnitude of effector CTL
responses in the lung. However, it seems that IFN-
secreted in high levels by activated Tg-CTLs does contribute to mortality after infection of F5-RAG-1
/
mice with a lethal dose
of the virus. The most likely explanation for this effect is that
Tg-CTLs release IFN-
upon contact with infected MHC
class I-positive cells. This results in increased vascular permeability (69), and promotes the development of massive lung
edema and leukocyte migration and/or retention into lung
parenchyma. Support for this hypothesis is provided by
earlier observations showing that IFN-
may also act as a
typical inflammatory cytokine, which influences the overall
increase in the number of cells found in the lung parenchyma but has no effect on either the preferential accumulation of CD8+ T cells or their cytolytic effector function
(70). Our findings of reduced viral pathology in anti-IFN-
-treated mice, despite the fact that the numbers of inflammatory cells in BAL were not different in comparison with
control untreated mice, strengthen this concept. Thus,
neutralization of IFN-
during onset of viral infection may
ameliorate the course of disease, allowing Tg-CTLs to clear
the virus from the lung. It is also conceivable that IFN-
acting as an immunomodulator increases MHC class I expression on virally infected cells and therefore promotes pathology based on cytodestructive Tg-CTL effects. Experiments with mice deficient in the CTL cytolytic pathways
(perforin or Fas antigen) could directly address this issue.
In conclusion, our data suggest that suppression of virus replication in the early phase of infection is the most important feature in prevention of influenza virus disease. The challenge in creating a CTL-based vaccine (71) directed against heterosubtypic influenza virus strains is to raise the abundance of CTL precursor cells early in the infection in order to increase the protective response without exacerbating a pathology that is also CTL dependent. Finally, evaluation of the dynamic equilibrium established between the CTL immune response and viral infection is obviously a prerequisite for a better understanding of influenza pathogenesis, since inappropriate CTL activation intensifies the pathologic process (55, 78, 79).
![]() |
Footnotes |
---|
Address correspondence to Demetrius Moskophidis, Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th St. CB-2803, Augusta, GA 30912-3175. Phone: 706-721-8738; Fax: 706-721-8732; E-mail: moskophidis{at}immag.mcg.edu
Received for publication 4 December 1996 and in revised form 17 March 1998.
The authors wish to thank Drs. Nahid Mivechi, Graeme Price, and Peter Openshaw for helpful discussions and suggestions. We also thank Rose Gonsalves and Wendy Hatton for advice and technical help, and Trisha Nordon and Farlyn Hudson for expert animal husbandry.
This work was supported by a grant from the European Union and Medical Research Council, UK.
Abbreviations used in this paper
BAL, bronchoalveolar lavage;
i.n., intranasal;
MDCK, Madin-Darby canine kidney;
NP, nucleoprotein;
RAG-1/
, recombination activating gene 1-deficient;
TCID50, 50% tissue culture infectious dose;
Tg, transgenic.
![]() |
References |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
1. | Palese, P., and J.F. Young. 1982. Variation of influenza A, B, and C viruses. Science. 215: 1468-1474 [Medline]. |
2. | Webster, R.G., W.G. Laver, and G.M. Air. 1983. Antigenic variation among type A influenza viruses. In Genetics of Influenza Viruses. P. Palese and D.W. Kingsbury, editors. Springer-Verlag, Vienna/New York. 127-168. |
3. | Gorman, O.T., W.J. Bean, and R.G. Webster. 1992. Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Curr. Top. Microbiol. Immunol. 176: 75-97 [Medline]. |
4. | Yewdell, J.W., R.G. Webster, and W. Gerhard. 1979. Antigen variation in three distinct determinants of an influenza A haemagglutinin molecule. Nature. 279: 246-248 [Medline]. |
5. | Townsend, A.R.M., and H. Bodmer. 1989. Antigen recognition by class I-restricted T lymphocytes. Annu. Rev. Immunol. 7: 601-624 [Medline]. |
6. | Ada, G.L., and P.D. Jones. 1986. The immune response to influenza infection. Curr. Top. Microbiol. Immunol. 128: 1-54 [Medline]. |
7. |
Doherty, P.C.,
W. Allan,
M. Eichelberger, and
S.R. Carding.
1992.
Roles of ![]() ![]() ![]() ![]() |
8. | McMichael, A.. 1994. Cytotoxic T lymphocytes specific for influenza virus. Curr. Top. Microbiol. Immunol. 189: 75-91 [Medline]. |
9. | Eichelberger, M.C., M.L. Wang, W. Allan, R.G. Webster, and P.C. Doherty. 1991. Influenza virus RNA in the lung and lymphoid tissue of immunologically intact and CD4-depleted mice. J. Gen. Virol. 72: 1695-1698 [Abstract]. |
10. | Roth, M.G., J.P. Fitzpatrick, and R.W. Compans. 1979. Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: lack of a requirement for glycosylation of viral glycoproteins. Proc. Natl. Acad. Sci. USA. 76: 6430-6434 [Abstract]. |
11. | Kilbourne, E.D. 1987. Influenza. Plenum Medical Book Co., New York. 359 pp. |
12. | Owen, J.A., K.I. Dudzik, L. Klein, and D.R. Dorer. 1988. The kinetics and generation of influenza-specific cytotoxic T-lymphocyte precursor cells. Cell. Immunol. 111: 247-252 [Medline]. |
13. |
Allan, W.,
Z. Tabi,
A. Cleary, and
P.C. Doherty.
1990.
Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells.
J. Immunol.
144:
3980-3986
|
14. | Muellbacher, A.. 1994. The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J. Exp. Med. 179: 317-321 [Abstract]. |
15. | Murphy, B.R., and R.G. Webster. 1996. Orthomyxoviruses. In Fields Virology. 3rd ed., Vol. I. B.N. Fields, D.M. Knipe, and P.M. Howley, editors. 2 vols. Lippincott-Raven Publishers, Philadelphia. 1397-1445. |
16. | Steinhoff, M.C., L.F. Fries, R.A. Karron, M.L. Clements, and B.R. Murphy. 1993. Effect of heterosubtypic immunity on infection with attenuated influenza A virus vaccines in young children. J. Clin. Microbiol. 31: 836-838 [Abstract]. |
17. | Frank, A.L., L.H. Taber, W.P. Glezen, A. Paredes, and R.B. Couch. 1979. Reinfection with influenza A (H3N2) virus in young children and their families. J. Infect. Dis. 140: 829-836 [Medline]. |
18. |
Epstein, S.L.,
C.-Y. Lo, and
J.R. Bennink.
1998.
Mechanism
of protective immunity against influenza virus infection in
mice without antibodies.
J. Immunol.
160:
322-327
|
19. |
Graham, M.B., and
T.J. Braciale.
1997.
Resistance to and recovery from lethal influenza virus infection in B lymphocyte-
deficient mice.
J. Exp. Med.
186:
2063-2068
|
20. |
Topham, D.J., and
P.C. Doherty.
1998.
Clearance of an influenza A virus by CD4+ T cells is inefficient in the absence
of B cells.
J. Virol.
72:
882-885
|
21. | Taylor, P.M.A., and B.A. Askonas. 1986. Influenza nucleoprotein-specific cytotoxic T-cell clones are protective in vivo. Immunology. 58: 417-420 [Medline]. |
22. | Wraith, D.C., A.E. Vessey, and B.A. Askonas. 1987. Purified influenza virus nucleoprotein protects mice from lethal infection. J. Gen. Virol. 68: 433-440 [Abstract]. |
23. | Andrew, M.E., and B.E.H. Coupar. 1988. Efficacy of influenza hemagglutinin and nucleoprotein as protective antigens against influenza virus infection in mice. Scand. J. Immunol. 25: 81-85 . |
24. | Tite, J.P., C. Hughes-Jenkins, D. O'Callagham, G. Dougan, S.M. Russell, X.-M. Gao, and F.Y. Liew. 1990. Anti-viral immunity induced by recombinant nucleoprotein of influenza A virus. II. Protection from influenza infection and mechanism of protection. Immunology. 71: 202-207 [Medline]. |
25. | Webster, R.G., Y. Kawaoka, J. Taylor, R. Weinberg, and E. Paoletti. 1991. Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens. Vaccine. 9: 303-308 [Medline]. |
26. |
Epstein, S.L.,
J.A. Misplon,
C.M. Lawson,
E.K. Subbarao,
M. Connors, and
B.R. Murphy.
1993.
![]() |
27. | Lawson, C.M., J.R. Bennink, N.P. Restifo, J.W. Yewdell, and B.R. Murphy. 1994. Primary pulmonary cytotoxic T lymphocytes induced by immunization with a vaccinia virus recombinant expressing influenza A virus nucleoprotein peptide do not protect mice against challenge. J. Virol. 68: 3505-3511 [Abstract]. |
28. | Mamalaki, C., T. Norton, Y. Tanaka, A.R. Townsend, P. Chandler, E. Simpson, and D. Kioussis. 1992. Thymic depletion and peripheral activation of class I major histocompatibility complex-restricted T cells by soluble peptide in T-cell receptor transgenic mice. Proc. Natl. Acad. Sci. USA. 89: 11342-11346 [Abstract]. |
29. | Mamalaki, C., J. Elliott, T. Norton, N. Yannoutsos, A.R. Townsend, P. Chandler, E. Simson, and D. Kioussis. 1993. Positive and negative selection in transgenic mice expressing a T-cell receptor specific for influenza nucleoprotein and endogenous superantigen. Dev. Immunol. 3: 159-174 [Medline]. |
30. | Spanopoulou, E., C.A.J. Roman, L.M. Corcoran, M.S. Schlissel, D.P. Silver, D. Nemazee, M.C. Nussenzweig, S.A. Shinton, R.R. Hardy, and D. Baltimore. 1994. Functional immunoglobulin transgenes guide ordered B-cell differentiation in RAG-1-deficient mice. Genes Dev. 8: 1030-1042 [Abstract]. |
31. | Corbela, P., D. Moskophidis, E. Spanopoulou, C. Mamalaki, M. Tolaini, A. Itano, D. Lans, D. Baltimore, E. Robey, and D. Kioussis. 1994. Functional commitment to helper T cell lineage precedes positive selection and is independent of T cell receptor MHC specificity. Immunity. 1: 269-276 [Medline]. |
32. | Townsend, A.R., F.M. Gotch, and J. Davey. 1985. Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell. 42: 457-467 [Medline]. |
33. | Barrett, T., and S.C. Inglis. 1991. Growth, purification and titration of influenza viruses. In Virology, A Practical Approach. B.W. Mahy, editor. IRL Press, Washington, DC. 119-150. |
34. | Simpson, R.W., and G.K. Hirst. 1961. Genetic recombination among influenza viruses. I. Cross reactivation of plaque-forming capacity as a method for selecting recombinants from the progeny of crosses between influenza A strains. Virology. 15: 436-451 [Medline]. |
35. | Reed, L.J., and H. Muench. 1936. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 27: 493-497 . |
36. |
Moskophidis, D., and
F. Lehmann-Grube.
1984.
The immune response of the mouse to lymphocytic choriomeningitis virus. IV. Enumeration of antibody-producing cells in
spleens during acute and persistent infection.
J. Immunol.
133:
3366-3370
|
37. | Skehel, J.J., and G.C. Schild. 1971. The polypeptide composition of influenza A viruses. Virology. 44: 396-408 [Medline]. |
38. | Brunner, K.T., J. Mauel, J.-C. Cerotini, and B. Chapuis. 1968. Quantitative assay of the lytic action of immune lymphoid cells on 51Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology. 14: 181-196 [Medline]. |
39. |
Sarawar, S.R.,
M. Sangster,
R.L. Coffman, and
P.C. Doherty.
1994.
Administration of anti-IFN-![]() ![]() |
40. |
Finkelman, F.D.,
I.M. Katona,
T.R. Mosmann, and
R.L. Coffman.
1988.
IFN-![]() |
41. | Scott, P.. 1991. Host and parasite factors regulating the development of CD4+ T-cell subsets in experimental cutaneous leishmaniasis. Res. Immunol. 142: 32-36 [Medline]. |
42. | Burns, W.H., L.C. Billups, and A.L. Notkins. 1975. Thymus dependence of viral antigens. Nature. 256: 654-662 [Medline]. |
43. | Virelizier, J.L., A.C. Allison, and G.C. Schild. 1979. Immune response to influenza virus in the mouse and their role in control of infection. Brit. Med. Bull. 35: 65-68 [Medline]. |
44. | Pircher, H.-P., D. Moskophidis, U. Rohrer, K. Burki, H. Hengartner, and R.M. Zinkernagel. 1990. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature. 346: 629-633 [Medline]. |
45. | Moskophidis, D., and R.M. Zinkernagel. 1996. Immunobiology of cytotoxic T-cell resistant variants: studies on lymphocytic choriomeningitis virus (LCMV). Semin. Virol. 7: 3-11 . |
46. | Schwarz, R.H.. 1990. A cell culture model for T lymphocyte clonal anergy. Science. 248: 1349-1356 [Medline]. |
47. | Herman, A., J.W. Kappler, P. Marrack, and A.M. Pullen. 1991. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu. Rev. Immunol. 9: 745-772 [Medline]. |
48. | Rocha, B., and H. von Boemer. 1991. Peripheral selection of the T cell repertoire. Science. 251: 1225-1228 [Medline]. |
49. | Schonrich, G., U. Kalinke, F. Momburg, M. Malisen, A.M. Schmitt-Verhulst, B. Malissen, G.J. Hammerling, and B. Arnold. 1991. Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell. 65: 293-304 [Medline]. |
50. | Moskophidis, D., F. Lechner, H.-P. Pircher, and R.M. Zinkernagel. 1993. Virus persistence in acutely infected mice by exhaustion of antiviral cytotoxic T cells. Nature. 362: 758-761 [Medline]. |
51. | Webb, S., C. Morris, and J. Sprent. 1990. Extrathymic tolerance of mature T lymphocytes: clonal elimination as consequence of immunity. Cell. 63: 1249-1256 [Medline]. |
52. | Oehen, S., H. Hengartner, and R.M. Zinkernagel. 1991. Vaccination for disease. Science. 251: 195-198 [Medline]. |
53. | Cannon, M.J., P.J. Openshaw, and B.A. Askonas. 1988. Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J. Exp. Med. 168: 1163-1168 [Abstract]. |
54. | Battegay, M., S. Oehen, M. Schulz, H. Hengartner, and R.M. Zinkernagel. 1992. Vaccination with a synthetic peptide modulates lymphocytic choriomeningitis virus-mediated immunopathology. J. Virol. 66: 1199-1201 [Abstract]. |
55. | Kim, H.W., J.G. Canchola, C.D. Brandt, G. Pyles, R.M. Channock, K. Jensen, and R.H. Parrott. 1969. Respiratory syncytial virus disease in infants despite prior administration of antigen inactivated vaccine. Am. J. Epidemiol. 89: 422-434 [Medline]. |
56. | Chisari, F.V., and C. Ferrari. 1995. Hepatitis B virus immunopathogenesis. Annu. Rev. Immunol. 13: 29-60 [Medline]. |
57. | Doherty, P.C. 1996. Immune response to viruses. In Clinical Immunology, Principles and Practice. Vol. I. R.R. Rich, T.A. Fleisher, B.D. Schwarz, W.T. Shearer, and W. Strober, editors. 2 vols. Mosby-Year Book, Inc., St. Louis. 535-549. |
58. | Doherty, P.C., W. Allan, D.B. Boyle, B.E.H. Coupar, and M.E. Andrew. 1989. Recombinant vaccinia viruses and the development of immunization strategies using influenza virus. J. Infect. Dis. 115: 1119-1122 . |
59. | Yap, K.L., G.L. Ada, and I.F. McKenzie. 1978. Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature. 273: 238-239 [Medline]. |
60. | Lin, Y.L., and B.A. Askonas. 1981. Biological properties of an influenza A virus-specific killer T cell clone. Inhibition of virus replication in vivo and induction of delayed-type hypersensitivity reactions. J. Exp. Med. 154: 225-234 [Abstract]. |
61. | Lukacher, A.E., V.L. Braciale, and T.J. Braciale. 1984. In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J. Exp. Med. 160: 814-826 [Abstract]. |
62. |
Wells, M.A.,
F.A. Ennis, and
P. Albrecht.
1981.
Recovery
from a viral respiratory infection. II. Passive transfer of immune spleen cells to mice with influenza pneumonia.
J. Immunol.
126:
1042-1046
|
63. | Bennink, J., R.B. Effros, and P.C. Doherty. 1978. Influenza pneumonia: early appearance of cross-reactive T cells in lungs of mice primed with heterologous type A viruses. Immunology. 35: 503-509 [Medline]. |
64. | McMichael, A.J., F.M. Gotch, G.R. Noble, and P.A.S. Beare. 1983a. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 301: 13-17 [Medline]. |
65. | Kagi, D., and H. Hengartner. 1996. Different roles of cytotoxic T cells in the control of infections with cytopathic versus noncytopathic viruses. Curr. Opin. Immunol. 8: 472-477 [Medline]. |
66. | Guidotti, L.G., T. Ishikawa, M.V. Hobbs, B. Watzke, R. Schreiber, and F.V. Chisari. 1996. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 4: 25-36 [Medline]. |
67. | Topham, D.J., R.A. Tripp, and P.C. Doherty. 1997. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J. Immunol. 159: 5197-5200 [Abstract]. |
68. |
Graham, M.B.,
D.K. Dalton,
D. Giltinan,
V.L. Braciale,
T.A. Stewart, and
T.J. Braciale.
1993.
Response to influenza infection in mice with a targeted disruption in the interferon ![]() |
69. |
Martin, S.K.,
V. Maruta,
S. Burkart,
S. Gillis, and
H. Kolb.
1988.
IL-1 and IFN![]() |
70. | Baumgarth, N., and A. Kelso. 1996. In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue. J. Virol. 70: 4411-4418 [Abstract]. |
71. | McMichael, A.J., F.M. Gotch, P. Cullen, B.A. Askonas, and R.G. Webster. 1981. The human cytotoxic T cell response to influenza A vaccination. Clin. Exp. Immunol. 43: 276-285 [Medline]. |
72. | Webster, R.G., and B.A. Askonas. 1980. Cross-protection and cross-reactive cytotoxic T cells induced by influenza virus vaccines in mice. Eur. J. Immunol. 10: 396-401 [Medline]. |
73. | Bennink, J.R., J.W. Yewdell, G.L. Smith, C. Moller, and B. Moss. 1984. Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature. 311: 578-579 [Medline]. |
74. |
Gao, X.M.,
B. Zheng,
F.Y. Liew,
S. Brett, and
J.P. Tite.
1991.
Priming of influenza virus-specific cytotoxic T lymphocytes in vivo by synthetic peptides.
J. Immunol.
147:
3268-3273
|
75. | Oukka, M., J.C. Manuguerra, N. Livaditis, S. Tourdot, N. Riche, I. Vergnon, P. Cordopatis, and K. Kosmatopulos. 1996. Protection against lethal infection by vaccination with nonimmunodominant peptides. J. Immunol. 157: 3039-3045 [Abstract]. |
76. | Ulmer, J.B., J.J. Donnelly, S.E. Parker, G.H. Rhodes, P.L. Felger, V.J. Dwarki, S.H. Gromkowski, R.R. Deck, C.M. DeWitt, A. Friedman, et al . 1993. Heterolous protection against influenza by injection of DNA encoding a viral protein. Science. 259: 1745-1749 [Medline]. |
77. | Pertmer, T.M., T.R. Roberts, and J.R. Haynes. 1996. Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J. Virol. 70: 6119-6125 [Abstract]. |
78. | Fulginiti, V.A., J.J. Eller, A.W. Downie, and C.H. Kempe. 1967. Atypical measles in children previously immunized with inactivated measles virus vaccine. JAMA (J. Am. Med. Assoc.). 202: 1075-1080 [Medline]. |
79. |
Wells, M.A.,
P. Albrecht, and
F.A. Ennis.
1980.
Recovery
from a viral respiratory infection. I. Influenza pneumonia in
normal and T-deficient mice.
J. Immunol.
126:
1036-1041
|