By
From the * Ludwig Institute for Cancer Research, Brussels Branch, and Unité de Génétique Cellulaire,
Université Catholique de Louvain, B-1200 Brussels, Belgium; and the Institut Jules Bordet, Service
de Chirurgie, Université Libre de Bruxelles, B-1000 Brussels, Belgium
Of the antigens recognized on human tumors by autologous cytolytic T lymphocytes, all those
defined thus far have been identified on melanoma or renal cell carcinoma. We report here the
identification of an antigen recognized by autologous cytolytic T lymphocytes on a human
squamous cell carcinoma of the oral cavity. The antigen is encoded by a mutated form of the
CASP-8 gene. This gene, also named FLICE or MACH, codes for protease caspase-8, which is
required for induction of apoptosis through the Fas receptor and tumor necrosis factor receptor-1. The mutation, which was found in the tumor cells but not in the normal cells of the patient, modifies the stop codon and adds an Alu repeat to the coding region, thereby lengthening the protein by 88 amino acids. The ability of the altered protein to trigger apoptosis appears
to be reduced relative to the normal caspase-8. The antigenic peptide is a nonamer presented by HLA-B*3503. The five last amino acids are encoded by the extension of the reading frame
caused by the mutation. This, together with previous observations of CDK4 and -catenin
mutations, suggests that a significant fraction of the point mutations generating a tumor antigen
also play a role in the tumoral transformation or progression.
Several tumor antigens recognized by autologous cytolytic T lymphocytes (CTL) have been identified, both
on mouse and on human tumors. The initial work carried
out with mouse mastocytoma P815 revealed that antigens
recognized on tumors by CTL can arise either from point
mutations occuring in genes that are expressed ubiquitously or from the transcriptional activation of genes not expressed in normal tissues (1). Subsequent work provided
two interesting examples of mouse tumor antigens resulting
from point mutations (4, 5).
A number of human tumor antigens recognized by autologous CTL also belong to these two categories. Some of
them are encoded by genes active in a significant proportion of tumors of various histological types but silent in
normal tissues except in testis (6, 7). Others are encoded by
mutated genes (8). In the case of melanomas, autologous CTL can also be generated against differentiation antigens present on both melanoma cells and normal melanocytes (12, 13). All these antigens were originally identified on melanoma and renal cell carcinoma; tumors that are
considered sensitive to an immune attack.
Head and neck cancer has a worldwide incidence of
~400,000 new cases per year. The most important risk factors are tobacco smoking and alcohol consumption. Head
and neck squamous cell carcinoma (SCCHN)1 tumors are
generally infiltrated by T lymphocytes (14, 15). Cytolytic T
cell lines with a specificity for the autologous tumor were
obtained from peripheral blood lymphocytes of a patient
and from tumor-infiltrating lymphocytes in several other
patients (16).
We have made a systematic effort to obtain tumor cell
cultures from biopsy specimens of head and neck carcinomas. Permanent cells lines were established from 14 tumors, representing a 19% success rate. Using five of these
cell lines, we performed mixed lymphocyte-tumor cell cultures by using irradiated tumor cells and autologous blood
lymphocytes. With four patients, we failed to obtain T
lymphocytes that lysed the autologous tumor cells. However, from the blood lymphocytes of patient BB49 we
were able to isolate a CTL clone that lysed the autologous
tumor cells. We report here the identification of the antigen recognized by this CTL clone.
Cell Lines.
Squamous cell carcinoma cell line BB49-SCCHN
was adapted to culture from a tumor relapse resected from the
floor of the oral cavity of patient BB49, a 70-yr-old Caucasian
woman in stage IV (T4N0M0), who died as a result of tumor progression 4 mo later. The tumor cell line was transfected by the
calcium phosphate precipitation method with expression vector
pEFBOS (received from S. Nagata, Osaka Bioscience Inst., Osaka,
Japan), containing the coding sequence for human costimulatory
molecule B7-1 (CD80) and in which the gene conferring puromycin resistance was inserted by J.-C. Renauld (Ludwig Inst.,
Brussels, Belgium; 19). Transfectants were selected with 0.5 µg/
ml of puromycin and cloned by limiting dilution. Clonal subline
BB49-SCCHN.B7 was selected on the basis of a high expression
of B7-1, as determined by cytofluorimetric analysis with mAb
BB1 (Becton Dickinson, Mountain View, CA).
Stimulation of CTL.
Blood mononuclear cells (PBMC) from
patient BB49 were isolated by density-gradient centrifugation on
lymphoprep (Nycomed Pharma AS, Oslo, Norway) and cryopreserved at 80°C in Iscove's medium supplemented with 10% human serum (HS) and 10% DMSO. We have verified by DNA
fingerprinting that the BB49-SCCHN line was of the same genetic origin as the PBMC (21).
Lysis Test and TNF Assay.
The BB49-SCCHN target cells
used in the 51Cr release assay were pretreated for 72 h with 100 U/ml of IFN- and the test was performed as previously described (22). Target cells were also tested for their ability to stimulate the production of TNF by the CTL. In brief, 1,500 CTL
were added in flat-bottomed microwells containing 104 target
cells, in a total volume of 100 µl of Iscove's complete medium
containing 25 U/ml of IL-2. After 4 or 24 h, the supernatant was
collected and its TNF content was determined by testing its cytotoxic effect on cells of WEHI-164 clone 13 (23) in a MTT colorimetric assay (24, 25). Inhibition with mAbs W6/32 (anti-HLA class I), B1.23.2 (anti-HLA-B,C), BB7-2 (anti-HLA-A2), or 2B6 (anti-HLA-DR) was performed by addition of a 1/20 dilution of ascites during the experiment.
Construction and Transfection of the cDNA Library.
Poly(A)+ RNA
was extracted from BB49-SCCHN cells using the FasTrack
mRNA extraction kit (Invitrogen Corporation, San Diego, CA).
mRNA was converted to cDNA with the Superscript Choice
System (GIBCO BRL, Gaithersburg, MD) using an oligo-dT
primer containing a NotI site at its 5 end. cDNA were then ligated to BstXI adaptors and digested with NotI. After size fractionation, the cDNA were unidirectionally cloned into the BstXI
and NotI sites of plasmid pcDNAI/Amp (Invitrogen BV, Leek,
The Netherlands). Recombinant plasmids were electroporated
into Escherichia coli DH5
F
IQ and the transfectants were selected with 50 µg/ml of ampicillin. The recombinant library was
divided into pools of about 100 cDNA clones. Each pool of bacteria was amplified to saturation and plasmid DNA was extracted
using the QIAprep 8 plasmid kit (Qiagen GmbH, Hipden, Germany).
Isolation of a cDNA Coding for the Autologous HLA-B35 Molecule.
Using RT-PCR, we amplified the HLA-B*3503 coding
sequence from RNA of EBV-transformed B cells of patient
BB49. Primers 5-CGG GAT CCG CCG AGA TGC GGG
TCA C-3
and 5
-ACT GCC CGA ATT CTC TCA GTC
CCT CAC AAG GCA GCT GTC-3
, which are able to bind to
most HLA-B sequences, were used as sense and antisense primers.
The PCR was carried out for 35 cycles of 1 min at 94°C, 5 s at
59°C, and 5 min at 75°C, using the Pfu DNA polymerase (Stratagene GmbH, Heidelberg, Germany). The PCR product was
then cloned into expression vector pcDNA3 (Invitrogen BV) and
the sequence was verified.
DNA Sequence Analysis. The double-stranded plasmid template was sequenced on the sense and antisense strands by the dideoxy-chain termination method (ThermosequenaseTM cycle sequencing kit; Amersham, Buckinghamshire, UK). The computer search for sequence homology was performed using the program that is available at blast{at}ncbi.nlm.nih.gov. Sequence alignments were performed with Geneworks® software (Intelligenetics, Mountain View, CA).
Production of Progressive Deletions in cDNA 668.
To generate progressive deletions from the 3 end of cDNA 668, and thereby obtain a large number of truncated cDNA clones, we used the Erase-a-base System (Promega, Madison, WI) as described (28, 29).
Antigenic Peptides and CTL Assay.
Peptides were synthesized
on solid phase using F-moc for transient NH2-terminal protection as described (30) and were characterized using mass spectrometry. All peptides were >80% pure, as indicated by analytical
HPLC. Lyophilized peptides were dissolved at 20 mg/ml in
DMSO, diluted at 2 mg/ml in 10 mM acetic acid, and stored at
20°C. Peptides were tested in chromium release assays where 1,000 51Cr-labeled target cells were incubated for 30 min at room
temperature in 96-well microplates with various concentrations
of peptide, before adding an equal volume containing 10,000 CTL 121 and 50,000 unlabeled K562. The indicated concentrations of peptide represent the final concentrations during the incubation of the target cells with the CTL. The assay was terminated after 4 h of incubation at 37°C.
Site-directed Mutagenesis.
In vitro site-directed mutagenesis was
performed on cDNA 668 cloned into expression vector pcDNAI/
Amp with the ChameleonTM Double-stranded, Site-directed Mutagenesis Kit (Stratagene GmbH, Germany) using the selection
primer 5-CTT GTC TTC CCT TCT GAT TGA TGG TGC
TAT TTT G-3
. The coding sequence of mutant cDNA clone 668-wt was verified.
Cell Death Assays.
In each microwell, 50,000 293-EBNA cells
were transiently transfected with 1 µl of lipofectAMINE (GIBCO
BRL), 40 ng of pcDNA3--galactosidase, and 120 ng of the
pcDNAI/Amp constructs containing either cDNA clone 668 or
668-wt in a final volume of 50 µl of OPTIMEM (GIBCO BRL).
The experiment was performed in triplicate in two different microplates. After 18 h, cells were fixed in one plate and stained with X-gal (31). The data shown are the percentage of blue apoptotic cells among the 300 blue cells that were counted. In the
other plate, the extent of cell death was counted using the Cell
Death Detection PlusTM ELISA kit (Boehringer Mannheim; Indianapolis, IN). 20 µl of the supernatant of the cell culture (one
tenth of total volume) was analyzed. Nucleosomes that are
present in the supernatant of the transfected cells are purified by a
histone-specific antibody and detected photometrically with an
anti-DNA antibody coupled to peroxidase.
Cell line BB49-SCCHN (referred to below as CHN) was derived from a large squamous cell carcinoma resected from the oral cavity of patient BB49. After irradiation, these cells were used to stimulate either blood mononuclear cells or purified CD8+ T cells collected from patient BB49, but no lytic responder T cells were produced. To improve their stimulatory capacity, CHN cells were transfected with a cDNA encoding costimulatory molecule B7-1. The transfectants were cloned by limiting dilution, and clonal line CHN.B7 was selected for further work on the basis of its high expression of B7-1.
Irradiated cells were used to stimulate autologous blood
mononuclear cells. After restimulation with the CHN.B7
cells on days 7 and 15, the responder population was found
on day 21 to exert low lytic activity on the CHN cells. The
CD8+ T cells, which represented less than 5% of the responder population, were sorted and restimulated with
CHN.B7. 1 wk later, the responder population efficiently
lysed the CHN cells. It was cloned by limiting dilution,
and the stable CD8+ CTL clone 121 was obtained. The
CTL lysed the autologous tumor cells but did not lyse an
autologous EBV-transformed B cell line (BB49-EBV) or
autologous PHA-treated blood lymphocytes (Fig. 1).
Patient BB49 was typed HLA-A2, -A11, -B35, -B62,
-Cw01, -Cw04. CTL clone 121 secreted TNF upon stimulation with the autologous tumor cells, and TNF release
was inhibited by a mAb recognizing HLA-B and HLA-C
molecules. This indicates that the antigen recognized by
CTL 121 is presented by HLA-B35, -B62, -Cw01, or -Cw04
(Fig. 2).
A cDNA Coding for the Antigen Recognized by CTL 121.
To identify the gene coding for the antigen, we used a genetic approach involving the transfection of a cDNA library into simian cell line COS-7, together with the sequence coding for the HLA presenting molecule (26, 27). In this method, the cDNA library is prepared in an expression vector that contains an origin of replication of SV40, resulting in considerable episomal multiplication of the transfected plasmids in COS-7 cells and therefore in high expression of transfected genes. The transfected COS-7 cells that have integrated the sequence coding for the antigen are then identified on the basis of their ability to stimulate the production of TNF by the CTL.
Not knowing which of the B35, B62, Cw01, and Cw04
was the HLA presenting molecule, we started the screening
of the library with a cDNA encoding HLA-B35 obtained
from the RNA of patient LB1047. The cDNA library was
prepared with RNA from the CHN cells into expression
vector pcDNAI/Amp. The library was divided into pools
of 100 recombinant clones and DNA from each pool was
cotransfected into microcultures of COS-7 cells with the
HLA-B35 coding sequence. 48 h later, the transfected microcultures were screened for the expression of the antigen
by adding CTL 121 in the microwells and by measuring
TNF production after 24 h of coculture. Of the 800 cDNA
pools that were tested, four proved positive when cotransfected with HLA-B35. By subcloning the bacteria of the
first positive pool, and by repeating the transfection and
screening procedures outlined above with individual plasmids, we obtained several clones that transferred the expression of the antigen. The result obtained with representative cDNA clone 668 is shown in Fig. 3 A.
Sixteen alleles of the HLA-B35 gene have been described (32). Therefore, we set out to confirm these results by cotransfecting COS-7 cells with cDNA clone 668 and the sequence coding for the autologous HLA-B35 molecule. Using primers specific for most HLA-B sequences, a RT-PCR product was obtained from the RNA of BB49-EBV and cloned into expression vector pcDNA3. Sequencing indicated that the autologous allele was B*3503, whereas the B35 allele that we had used for the transfection of the cDNA library was B*3501. When COS-7 cells were transfected with cDNA 668 together with the autologous HLA-B*3503 cDNA, the transfectants also stimulated the production of TNF by CTL 121 (Fig. 3 B).
Bacteria of the three other positive pools were also subcloned and individual plasmid DNA were screened using the transfection procedure described above. In each of these three pools, we identified several clones that stimulated the production of TNF by CTL 121 when transfected into COS-7 cells together with the HLA-B*3501 cDNA. However, when transfected together with the autologous HLA-B*3503 cDNA, these clones were unable to stimulate CTL 121 (data not shown), indicating that the corresponding genes do not code for the antigen recognized on the autologous HLA-B*3503 tumor.
Identification of the Antigenic Peptide.cDNA 668 is 2647 bp long. To identify the region encoding the peptide presented to CTL 121, exonuclease III was used to generate progressive deletions from the 3 end of the cDNA. A large
number of truncated cDNA clones were cotransfected into
COS-7 cells together with the HLA-B*3503 cDNA to test
their ability to code for the antigen. Sequence comparison
of the longest negative cDNA clone (nucleotides 1-1,446)
with the shortest positive clone (nucleotides 1-1,600) indicated that the COOH-terminus of the antigenic peptide had to be encoded between nucleotides 1,446 and 1,600. In this region of the putative protein, we searched for peptides bearing the HLA-B35 binding motif, i.e., Pro in position
2, and Tyr or hydrophobic residues at the COOH terminus of the peptide (33, 34). Two peptides corresponding
to this motif were identified, namely nonapeptide FPSDSWCYF (amino acids 476-484) and octapeptide FPSDSWCY (amino acids 476-483). They were synthesized and
tested for recognition. Only nonapeptide FPSDSWCYF
sensitized BB49-EBV to lysis by CTL 121. Half-maximal
lysis was obtained with only 3 nM of peptide (Fig. 4).
It is worthy to note that, in addition to CTL 121, we have derived from another blood sample of patient BB49 a second CTL clone recognizing the same antigenic peptide. These two clones express the same TCRBV14S1 and the sequence of the joining region is identical (data not shown).
The Antigenic Peptide Is Encoded by a Mutated CASP-8 Gene.Recently, two groups reported the identification of
a new gene named FLICE or MACH (35, 36). This new
gene was more recently renamed CASP-8 and the encoded
protein, caspase-8 (37). Caspase-8 is required for induction
of apoptosis through the Fas and TNFR1 receptors. cDNA
clone 668 is almost identical to the coding sequence of
FLICE or the 1 splice variant of MACH. In the region
encoding the antigenic peptide, we found a cytosine (C) at
position 1508 in cDNA 668 instead of the guanine (G)
present in both FLICE and MACH
1 (Fig. 5). This led us
to consider the possibility that a tumor-specific point mutation in this gene might be responsible for the expression of
the antigen recognized by CTL 121. To compare the
CASP-8 sequences in tumor cells and in normal cells of patient BB49, a DNA fragment corresponding to nucleotides
683-1,530 in cDNA 668 was amplified by PCR from
genomic DNA of tumor cell line CHN, autologous PHA-treated blood lymphocytes, or BB49-EBV. Direct sequencing of the PCR products revealed that tumor DNA contained both a G and a C at position 1508, whereas DNA
from both types of blood cells contained only a G (Fig. 6
A), proving that a point mutation had occurred in the tumor. The mutation was also found in the RNA of a frozen
surgical sample of the tumor, excluding the possibility that
it had arisen during cell culture (Fig. 6 B).
In cDNA 668, the point mutation changes the stop codon TGA into TCA, increasing the size of the encoded protein by 88 amino acids. This protein extension is almost entirely encoded by an Alu repetitive sequence. The antigenic peptide is encoded by the region surrounding the mutation. The last five amino acids are encoded by the extension of the reading frame caused by the mutation (see Fig. 5).
Reduced Triggering of Apoptosis by the Mutated Caspase-8.Apoptosis is triggered by transient transfection of CASP-8,
in common with other genes involved in apoptosis (35,
36). This is presumably due to overexpression of the protein. To examine whether the mutation in cDNA 668 affected the ability of caspase-8 to induce apoptosis, 293-EBNA
cells were transiently transfected with the -galactosidase coding sequence, as a transfection marker, and cDNA 668. As
a positive control, we used a cDNA clone obtained by site-directed mutagenesis of cDNA clone 668, clone 668-wt
(wt for wild type), in which the mutated codon TCA is replaced by the wild-type stop codon TGA. 18 h after transfection, the cells were stained for
-galactosidase activity
and the morphological changes were observed among the
blue transfected cells. The majority of cells cotransfected
with clone 668-wt displayed a rounded and condensed
shape, typical of cells undergoing apoptosis. In three different experiments, the proportion of blue apoptotic cells ranged from 60-76%. Upon transfection with cDNA 668, this percentage ranged from 14-20%. A typical experiment
is shown in Fig. 7 A. Compared with the equivalent wild-type sequence, the transfection of cDNA 668 in all experiments was 3.3 to 5.6 times less efficient in triggering apoptosis. We also used an ELISA-based assay to estimate the
level of nucleosomal DNA fragments in cells undergoing apoptosis. The amount of nucleosomes in the supernatant
of the transfected cells paralleled the percentage of blue apoptotic cells (Fig. 7 B).
The tumor antigen described here is encoded by a mutated CASP-8 gene, which codes for protein caspase-8, a key component in the pathway of Fas and TNFR1-induced apoptosis (35, 36). Activation of Fas recruits FADD, the Fas-associated death domain protein, which in turn binds and activates caspase-8 (35, 36, 38, 39). Similarly, TNFR1 recruits TRADD, the TNFR1-associated death domain protein (40). TRADD subsequently acts as an adaptor protein to recruit FADD, which, in a manner that remains to be determined, binds and activates caspase-8. It is believed that the activated caspase-8 activates other caspases, thereby leading to apoptosis.
Caspases are proteases that bear a cysteine in their active site and cleave after an aspartic acid (37). They are synthesized as inactive proenzymes that are cleaved at specific aspartate residues to form active subunits. In the case of caspase-1, the NH2-terminal prodomain is removed and the other part of the protein is cleaved into a p20 and a p10 subunit. These subunits form heterodimers and their crystal structure has revealed that the mature, active form of caspase-1 is a tetramer composed of two heterodimers (41). Caspase-8 can be cleaved in vitro by granzyme B into an active form containing p20 and p10 subunits (35).
The tumor cells of patient BB49 express both a normal and a mutated allele of CASP-8. The mutated allele codes for a protein with 88 extra residues at the COOH-terminus. Therefore, instead of producing a p10 subunit with 105 amino acids, this altered protein ought to produce a p19 subunit of 193 amino acids. Assuming that caspase-8 adopts a conformation similar to the p20/p10 tetramer of caspase-1, the mutation may decrease the activity of the enzyme because the active tetramer cannot be assembled with the abnormal p19 subunits. Moreover, the p19 subunit may impede the folding of the tetramers containing subunits of the normal caspase-8, thereby resulting in a partially dominant effect.
We have tried to obtain evidence that the CASP-8 mutation effectively impairs the signaling leading to apoptosis after Fas ligation. When incubated with an anti-Fas antibody, two EBV-transformed B cell lines and the Jurkat cell line died, as expected. In contrast, the CHN cells did not die, as expected if the mutation impairs apoptosis (data not shown). However, this evidence is not conclusive, because the CHN cells express a lower level of Fas than the EBV-B cells and the Jurkat cells, and we observed that another cell line, expressing the same low level of Fas but not the CASP-8 mutation, did not undergo apoptosis upon treatment with an anti-Fas antibody.
More conclusive evidence for the impairment of the function of the altered caspase-8 was obtained when the mutated CASP-8 gene was transiently transfected in 293-EBNA cells: its ability to trigger apoptosis was reduced relative to the normal caspase-8 but not abolished. This reduction may be more profound in the tumor cells of patient BB49 than in the transient transfectants. Indeed, in the latter, the reduced effectiveness of the altered protein may be partially compensated by a significant overexpression.
Impaired triggering of apoptosis induced by Fas ligand (FasL) or TNF may provide tumor cells with increased resistance to killing by the immune cells. Clearly, the fact that CHN tumor cells were lysed by CTL 121 indicates that they were not completely protected against an immune attack. This is not surprising, because CTL are known to mediate cytotoxicity not only via Fas but also via a perforin/granzyme-based pathway (42). The latter mechanism may not require signaling through caspase-8, because granzyme B is capable of activating other caspases by itself (45, 46). On the other hand, cytolytic T cells are not the only cells that express FasL. Neutrophils, which express both membrane-bound and soluble FasL, have been shown to infiltrate tumors and they may kill tumor cells through Fas (47).
The possibility cannot be excluded that other unknown signals leading to apoptosis are also transduced through caspase-8 and that a partial or complete failure to transmit these signals may have offered a selective advantage to the tumor cells of patient BB49. In this regard, another death domain-containing receptor, named DR3, has recently been identified (48). DR3 is related to TNFR1 and Fas, its intracellular signal is transmitted through caspase-8, and its ligand is still unknown.
Using PCR, we screened 150 tumor samples for the presence of a mutation in the stop codon of CASP-8. None was found, suggesting at first that this mutation does not have a very important selective value for tumors. However, it is likely that the mutation in the stop codon is not the only one to be deleterious to the activity of caspase-8. Mutations in other critical parts of the protein, such as the different cleavage sites, the catalytic site, or the domain that interacts with FADD, may be observed in other tumors.
Several tumor antigens recognized on melanoma by autologous CTL also result from point mutations, such as those
found in MUM-1, cyclin-dependent kinase 4 (CDK4), and
-catenin (8, 10, 11). The CDK4 and
-catenin mutations
have been found in different patients and are clearly both
antigenic and oncogenic (10, 49). The CDK4 mutation
prevents the protein from binding to its inhibitor, p16.
This appears to alter the regulation of the cell cycle, favoring uncontrolled growth of the tumor cells. The
-catenin
mutation results in stabilization of the protein, with high
levels of free
-catenin driving formation of complexes
with transcription factors such as Lef-1. Constitutive
-catenin-Lef-1 complexes may result in persistent transactivation
of as yet unidentified target genes, thereby stimulating cell
proliferation or inhibiting apoptosis (50). Our results suggest that the CASP-8 mutation may also be oncogenic. It
seems likely that other antigens resulting from mutations
will be identified with CTL. Some of these mutations may
be oncogenic. If the coding genes are unknown, it may
well be worth studying their function.
The point mutations of MUM-1, CDK4, and -catenin
change one amino acid and this single substitution generates the antigenic peptide. CASP-8 is interesting in this
respect because the last five amino acids of the antigenic
peptide recognized by CTL clone 121 are encoded by an
extension of the reading frame. The altered caspase-8 comprises 88 extra amino acids that could contain several epitopes presented to other CTL by various HLA molecules.
After the identification of the first tumor antigens recognized by CTL on melanoma cells, concern was expressed that tumors of other histological types may be less likely to express such antigens. The results obtained with renal carcinoma (7, 9) and those reported here for a head and neck carcinoma suggest, however, that there is no fundamental difference in this respect between melanoma and other tumors.
Address correspondence to Pierre van der Bruggen, 74 avenue Hippocrate, B-1200 Bruxelles, Belgium. Phone: 32-2-764-74-31; FAX: 32-2-762-94-05; E-mail: vanderbruggen{at}licr.ucl.ac.be
Received for publication 23 May 1997.
S. Mandruzzato was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC), Italy and by a postdoctoral fellowship from the Training and Mobility of the Researchers program of the European Commission. This work was partially supported by the Belgian program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Office for Science, Technology and Culture, by CGER-Assurances (Belgium), and by BIOMED, a European Community program for Research and Technological Development.We gratefully acknowledge the excellent assistance of Mrs C. Wildmann. We are grateful to Dr. S.Y. Yang for her invaluable assistance in HLA typing of patient BB49, and to Dr. S. Nagata for the gift of plasmid pEFBOS.
1. |
De Plaen, E.,
C. Lurquin,
A. Van Pel,
B. Mariamé,
J.-P. Szikora,
T. Wölfel,
C. Sibille,
P. Chomez, and
T. Boon.
1988.
Immunogenic (tum![]() ![]() ![]() |
2. |
Lurquin, C.,
A. Van Pel,
B. Mariamé,
E. De Plaen,
J.-P. Szikora,
C. Janssens,
M. Reddehase,
J. Lejeune, and
T. Boon.
1989.
Structure of the gene coding for tum![]() |
3. | Van den Eynde, B., B. Lethé, A. Van Pel, E. De Plaen, and T. Boon. 1991. The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J. Exp. Med. 173: 1373-1384 [Abstract]. |
4. | Mandelboim, O., G. Berke, M. Fridkin, M. Feldman, M. Eisenstein, and L. Eisenbach. 1994. CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma. Nature (Lond.). 369: 67-71 [Medline]. |
5. | Monach, P.A., S.C. Meredith, C.T. Siegel, and H. Schreiber. 1995. A unique tumor antigen produced by a single amino acid substitution. Immunity. 2: 45-59 [Medline]. |
6. | Van den Eynde, B., and V.G. Brichard. 1995. New tumor antigens recognized by T cells. Curr. Opin. Biol. 7: 674-681 . |
7. | Gaugler, B., N. Brouwenstijn, V. Vantomme, J.-P. Szikora, C.W. Van der Spek, J.-J. Patard, T. Boon, P. Schrier, and B.J. Van den Eynde. 1996. A new gene coding for an antigen recognized by autologous cytolytic T lymphocytes on a human renal carcinoma. Immunogenetics. 44: 323-330 [Medline]. |
8. | Coulie, P.G., F. Lehmann, B. Lethé, J. Herman, C. Lurquin, M. Andrawiss, and T. Boon. 1995. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc. Natl. Acad. Sci. USA. 92: 7976-7980 [Abstract]. |
9. | Brändle, D., F. Brasseur, P. Weynants, T. Boon, and B. Van den Eynde. 1996. A mutated HLA-A2 molecule recognized by autologous cytotoxic T lymphocytes on a human renal cell carcinoma. J. Exp. Med. 183: 2501-2508 [Abstract]. |
10. | Wölfel, T., M. Hauer, J. Schneider, M. Serrano, C. Wölfel, E. Klehmann-Hieb, E. De Plaen, T. Hankeln, K.-H. Meyer zum Büschenfelde, and D. Beach. 1995. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science (Wash. DC). 269: 1281-1284 [Medline]. |
11. |
Robbins, P.F.,
M. El-Gamil,
Y.F. Li,
Y. Kawakami,
D. Loftus,
E. Appella, and
S.A. Rosenberg.
1996.
A mutated ![]() |
12. | Brichard, V., A. Van Pel, T. Wölfel, C. Wölfel, E. De Plaen, B. Lethé, P. Coulie, and T. Boon. 1993. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 178: 489-495 [Abstract]. |
13. | Robbins, P.F., and Y. Kawakami. 1996. Human tumor antigens recognized by T cells. Curr. Opin. Immunol. 8: 628-636 [Medline]. |
14. | Caignard, A., P.Y. Dietrich, V. Morand, A. Lim, C. Pannetier, A.M. Leridant, T. Hercend, J. Even, P. Kourilsky, and F. Triebel. 1994. Evidence for T-cell clonal expansion in a patient with squamous cell carcinoma of the head and neck. Cancer Res. 54: 1292-1297 [Abstract]. |
15. | Hald, J., N. Rasmussen, and M.H. Claesson. 1994. In vivo infiltration of mononuclear cells in squamous cell carcinoma of the head and neck correlates with ability to expand tumour-infiltrating T cells in vitro and with the expression of MHC class I antigens on tumour cells. Cancer Immunol. Immunother. 39: 383-390 [Medline]. |
16. |
Yasumura, S.,
E. Weidmann,
H. Hirabayashi,
J.T. Johnson,
R.B. Herberman, and
T.L. Whiteside.
1994.
HLA restriction
and T-cell-receptor V![]() |
17. | Chikamatsu, K., M. Eura, K. Nakano, K. Masuyama, and T. Ishikawa. 1995. Functional and T cell receptor gene usage analysis of cytotoxic T lymphocytes in fresh tumor-infiltrating lymphocytes from human head and neck cancer. Jpn. J. Cancer Res. 86: 477-483 [Medline]. |
18. | Hald, J., N. Rasmussen, and M.H. Claesson. 1995. Tumour-infiltrating lymphocytes mediate lysis of autologous squamous cell carcinomas of the head and neck. Cancer Immunol. Immunther. 41: 243-250 [Medline]. |
19. | Mizushima, S., and S. Nagata. 1990. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18: 5322 [Medline]. |
20. | Gazdar, A.F., and H.K. Oie. 1986. Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium. Cancer Res. 46: 6011-6012 [Medline]. |
21. | Vassart, G., M. Georges, R. Monsieur, H. Brocas, A.S. Lequarre, and D. Christophe. 1987. A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science (Wash. DC). 235: 683-684 [Medline]. |
22. | Boon, T., J. Van Snick, A. Van Pel, C. Uyttenhove, and M. Marchand. 1980. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. T lymphocyte- mediated cytolysis. J. Exp. Med. 152: 1184-1193 [Abstract]. |
23. | Espevik, T., and J. Nissen-Meyer. 1986. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J. Immunol. Meth. 95: 99-105 [Medline]. |
24. | Hansen, M.B., S.E. Nielsen, and K. Berg. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Meth. 119: 203-210 [Medline]. |
25. | Traversari, C., P. van der Bruggen, B. Van den Eynde, P. Hainaut, C. Lemoine, N. Ohta, L. Old, and T. Boon. 1992b. Transfection and expression of a gene coding for a human melanoma antigen recognized by autologous cytolytic T lymphocytes. Immunogenetics. 35: 145-152 [Medline]. |
26. | Seed, B., and A. Aruffo. 1987. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc. Natl. Acad. Sci. USA. 84: 3365-3369 [Abstract]. |
27. | Coulie, P.G., V. Brichard, A. Van Pel, T. Wölfel, J. Schneider, C. Traversari, S. Mattei, E. De Plaen, C. Lurquin, J.-P. Szikora, J.-C. Renauld, and T. Boon. 1994. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 180: 35-42 [Abstract]. |
28. | van der Bruggen, P., J.-P. Szikora, P. Boël, C. Wildmann, M. Somville, M. Sensi, and T. Boon. 1994. Autologous cytolytic T lymphocytes recognize a MAGE-1 nonapeptide on melanomas expressing HLA-Cw*1601. Eur. J. Immunol. 24: 2134-2140 [Medline]. |
29. | Boël, P., C. Wildmann, M.-L. Sensi, R. Brasseur, J.-C. Renauld, P. Coulie, T. Boon, and P. van der Bruggen. 1995. BAGE, a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity. 2: 167-175 [Medline]. |
30. |
Atherton, E.,
C.J. Logan, and
R.C. Sheppard.
1981.
Peptide
synthesis. Part 2. Procedures for solid phase synthesis using
N![]() |
31. | Sanes, J.R., J.L.R. Rubenstein, and J.-F. Nicolas. 1986. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO (Eur. Mol. Biol. Organ.) J. 5: 3133-3142 [Abstract]. |
32. | Vargas-Alarcon, G., M. Alvarez, J. Martinez-Laso, J. Granados, N. Diaz-Campos, E. Gomez-Casado, J. Alcocer-Varela, and A. Arnaiz-Villena. 1996. A new HLA-B35 (B*3516) allele found in a Mexican of Nahua (Aztec) descent. Immunogenetics. 43: 244-245 [Medline]. |
33. | Hill, A.V.S., J. Elvin, A.C. Willis, M. Aidoo, C.E.M. Allsopp, F.M. Gotch, X.M. Gao, M. Takiguchi, B.M. Greenwood, A.R.M. Townsend, and A.J. McMichael. 1992. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature (Lond.). 360: 434-439 [Medline]. |
34. | Falk, K., O. Rötzschke, B. Grahovac, D. Schendel, S. Stevanovic, G. Jung, and H.-G. Rammensee. 1993. Peptide motifs of HLA-B35 and -B37 molecules. Immunogenetics. 38: 161-162 [Medline]. |
35. | Muzio, M., A.M. Chinnaiyan, F.C. Kischkel, K. O'Rourke, A. Shevchenko, J. Ni, C. Scaffidi, J.D. Bretz, M. Zhang, R. Gentz, M. Mann, P.H. Krammer, M.E. Peter, and V.M. Dixit. 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell. 85: 817-827 [Medline]. |
36. | Boldin, M.P., T.M. Goncharov, Y.V. Goltsev, and D. Wallach. 1996. Involvement of MACH, a novel MORT1/ FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell. 85: 803-815 [Medline]. |
37. | Alnemri, E.S., D.J. Linvingston, D.W. Nicholson, G. Salvesen, N.A. Thornberry, W.W. Wong, and J. Yuan. 1996. Human ICE/CED-3 protease nomenclature. Cell. 87: 171 [Medline]. |
38. | Chinnaiyan, A.M., K. O'Rourke, M. Tewari, and V.M. Dixit. 1995. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 81: 505-512 [Medline]. |
39. |
Chinnaiyan, A.M.,
C.G. Tepper,
M.F. Seldin,
K. O'Rourke,
F.C. Kischkel,
S. Hellbardt,
P.H. Krammer, and
M.E. Peter.
1996.
FADD/MORT1 is a common mediator of CD95
(Fas/APO-1) and tumor necrosis factor receptor-induced
apoptosis.
J. Biol. Chem.
271:
4961-4965
|
40. |
Hsu, H.,
J. Xiong, and
D.V. Goeddel.
1995.
The TNF receptor 1-associated protein TRADD signals cell death and
NF-![]() |
41. |
Walker, N.P.C.,
R.V. Talanian,
K.D. Brady,
L.C. Dang,
N.J. Bump,
C.R. Ferenz,
S. Franklin,
T. Ghayur,
M.C. Hackett,
L.D. Hammill, et al
.
1994.
Crystal structure of the
cysteine protease interleukin-1![]() |
42. | Kojima, H., N. Shinohara, S. Hanaoka, Y. Someya-Shirota, Y. Takagaki, H. Ohno, T. Saito, T. Katayama, H. Yagita, K. Okumura, et al . 1994. Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity. 1: 357-364 [Medline]. |
43. | Heusel, J.W., R.L. Wesselschmidt, S. Shresta, J.H. Russell, and T.J. Ley. 1994. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell. 76: 977-987 [Medline]. |
44. | Kägi, D., B. Ledermann, K. Bürki, R.M. Zinkernagel, and H. Hengartner. 1996. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 14: 207-232 [Medline]. |
45. | Darmon, A.J., D.W. Nicholson, and R.C. Bleackley. 1995. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature (Lond.). 377: 446-448 [Medline]. |
46. |
Fernandes-Alnemri, T.,
R.C. Armstrong,
J. Krebs,
S.M. Srinivasula,
L. Wang,
F. Bullrich,
L.C. Fritz,
J.A. Trapani,
K.J. Tomaselli,
G. Litwack, and
E.S. Alnemri.
1996.
In vitro
activation of CPP32 and Mch3 by Mch4, a novel human
apoptotic cysteine protease containing two FADD-like domains.
Proc. Natl. Acad. Sci. USA.
93:
7464-7469
|
47. | Liles, W.C., P.A. Kiener, J.A. Ledbetter, A. Aruffo, and S.J. Klebanoff. 1996. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes : implications for the regulation of apoptosis in neutrophils. J. Exp. Med. 184: 429-440 [Abstract]. |
48. |
Chinnaiyan, A.M.,
K. O'Rourke,
G.-L. Yu,
R.H. Lyons,
M. Garg,
D.R. Duan,
L. Xing,
R. Gentz,
J. Ni, and
V.M. Dixit.
1996.
Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95.
Science (Wash.
DC).
274:
990-992
|
49. |
Rubinfeld, B.,
P. Robbins,
M. El-Gamil,
I. Albert,
E. Porfiri, and
P. Polakis.
1997.
Stabilization of ![]() |
50. |
Peifer, M..
1997.
![]() |