Address correspondence to Daved H. Fremont, Dept. of Pathology and Immunology and Dept. of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110. Phone: (314) 747-6547; Fax: (314) 362-8888; email: fremont{at}pathbox.wustl.edu
![]() |
Abstract |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Key Words: major histocompatibility complex crystallography antigen presentation herpes simplex virus 1 T cells
![]() |
Introduction |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
TCR recognition of pMHC has also been studied extensively (5). The recent crystal structures of TCRpMHC complexes have demonstrated that the TCR binds in a roughly diagonal orientation over the groove-flanking -helices, positioning its CDR loops over the peptide (68). Numerous studies examining the role of solvent-exposed, TCR-contacting peptide side chains in TCR recognition have shown that even minor chemical differences in them can be discerned (912). In contrast, the peptide anchor side chains are buried and are thought unable to directly contact the TCR. These, and other similar observations, suggest that modulation of peptide-binding affinity is the dominant way anchor side chains affect TCR recognition. However, our group and others have recently reexamined this issue and have shown that peptide anchor side chains, especially secondary anchors, can have a more direct effect, independent of peptide-binding affinity, on TCR recognition (1315).
One of the best-studied models in which discrete variation affects one of the minor anchor pockets of an MHC class I molecule is provided by allelic variant molecules H-2Kb (Kb) and its spontaneous mutant, H-2Kbm8 (Kbm8). Kbm8 arose from Kb by a gene conversion event (16) that changed four amino acids [Tyr22 to Phe22; Met23 to Ile23; Glu24 to Ser24; and Asp30 to Asn30] all located on the platform floor of the peptide-binding groove. Of these four residues, two (MHC 23 and 30) are thought to be largely irrelevant to antigen processing and presentation, as their side chains point away from the peptide-binding groove, are not solvent accessible, and are not analogous to residues shown previously to contact TCRs (17). The two remaining residues, MHC 22 and 24, point into the groove and serve to create the B pocket, where they contact the side chain of the second amino acid of the bound peptide (P2). Indeed, site-directed mutagenesis has shown that most, if not all, of the effects of the Kbm8 mutation upon presentation of the antigenic peptide OVA-8 can be recapitulated by isolated mutations at MHC 22 and 24 (18). Notably, Kb and Kbm8 have identical sequences at their membrane distal TCR-contacting residues. Therefore, the bulk of biological differences between them are likely a consequence of indirect effects of the changes in the B pocket, which could be manifest as differences in peptide-binding preferences or alternate conformations of identically presented peptides.
The hallmark of peptides naturally presented by Kb is the presence of two primary anchors: a phenylalanine or tyrosine as the fifth (or sixth) residue and a leucine as the last of eight (or nine) residues (4, 19). These two primary anchors find themselves deeply buried in the C and F pockets of the Kb peptide-binding groove, respectively, and their substitution to other amino acids typically results in a dramatic reduction in affinity and pMHC stability at the cell surface (20). We have previously characterized an important secondary anchor located at the peptide P2 position that lies sequestered in the B pocket of the Kb groove that, in this allele, is directly adjacent to the C pocket (21). Interestingly, the preferred residue at P2 depends on which primary anchor occupies the C pocket; Ala and Gly are preferred if the C pocket anchor is Tyr, whereas medium-sized residues predominate for primary Phe anchors (15, 21). Peptide elution experiments demonstrated that many peptides ignore the Kbm8 mutation and are able to bind to both molecules with high stability, although a subset does bind differentially (20, 22). Despite the discrete nature of the change in Kbm8, the two molecules exhibit differences in several interrelated biological properties, including peptide-dependent antibody recognition (23), cross-reactivity (24, 25), peptide binding and presentation (11, 14, 25, 26), and intrathymic repertoire selection (27, 28). Most importantly, the coisogeneic mouse strains C57BL/6 (B6, H-2b) and B6.C-H-2bm8 (bm8, H-2bm8), which differ from each other solely by expression of Kb or Kbm8, also differ in susceptibility to HSV-1, due to the fact that the dominant epitope of this virus, the glycoprotein B epitope 498-505 (called here HSV8), elicits a markedly more efficient CTL response in bm8 mice (29).
Previously, we reported that B6 mice immunized with HSV8 produce CTLs, which readily recognize KbHSV8, but are unable to recognize Kbm8HSV8 (14). This difference was not due to differential affinity or stability of peptide binding, nor was it due to gross conformational changes, as assayed by a panel of conformation-sensitive antibodies. As the alteration in Kbm8 potentially changes the hydrogen bond network between the peptide P2 side chain and the MHC B pocket, we hypothesized that this change might somehow be manifest at the pMHC surface, where it could be directly detected by TCR. To test this hypothesis, we performed second-site reversion of the Kbm8 mutation by introducing compensatory P2 peptide mutations that could restore the lost hydrogen bond network. Indeed, changing the peptide SerP2 to a GluP2 (H2E peptide) compensated for the reciprocal Glu24 to Ser24 mutation present in Kbm8, so that the same KbHSV8-reactive TCR that could not recognize Kbm8HSV8 was able to recognize Kbm8H2E. However, when this H2E peptide was bound to Kb, there was no detectable TCR recognition. Although our paper highlighted an important role for secondary anchor residues in TCR recognition, it remained unclear how exactly these B pocket interactions were being discerned.
To resolve this issue at the atomic level, we have now undertaken the study of these pMHCs by protein crystallography, solving the crystal structures of four distinct complexes: KbHSV8, Kbm8HSV8, KbH2E, and Kbm8H2E. Examining the surface properties of each pMHC revealed, to our surprise, only nonconcerted differences that do not appear to correlate with T cell activation profiles. However, our structures did reveal localized features of the pMHC B pockets that do correspond with our TCR recognition data. When compared with KbHSV8, Kbm8HSV8 and KbH2E contained alternate hydrogen bonding and chemical environments in their B pockets, resulting in loss of B6-derived TCR recognition. Alternatively, Kbm8 in complex with the H2E peptide containing the secondary anchor substitution resulted in a B pocket environment closely approximating the one present in KbHSV8. Thus, our results indicate that pMHC binding pocket modifications can profoundly affect TCR activation without significantly altering the resting state (TCR unliganded) conformation of the pMHC surface, demonstrating that they can be significant determinants in an immune response.
![]() |
Materials and Methods |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Circular Dichroism (CD) and Thermal Denaturation.
Experiments were performed in a manner similar to what has been published previously for other MHC class I peptide complexes (31, 32). All four bacterially expressed, oxidatively refolded pMHCs were buffer exchanged to 0.2 mg/ml (5 µm) in 10 mM KH2PO4/K2HPO4 pH 7.5, 150 mM NaCl, and 0.01% sodium azide using Centricon filtration devices (Amicon, Inc.). Three independent thermal denaturation experiments per pMHC were undertaken at the CD shared equipment facility at the University of Medicine and Dentistry of New Jersey. The midpoint of thermal denaturation (Tm) for each protein was calculated by taking the first derivative of the ellipticity data at 218 nm and identifying the inflexion point.
Crystallization and Structure Determinations.
Purified Kbm8 and Kb peptide complexes were concentrated to 56 mg/ml in 20 mM ammonium acetate, pH 6.9, and 0.01% sodium azide. Crystals of insect cellexpressed Kb peptide complexes were produced in hanging drops by vapor diffusion at 20°C against wells filled with 35% MPD, 2.0 M Na/K2PO4, pH 6.5, and molar excess HSV8 or H2E peptide. Bacterially expressed, oxidatively refolded Kbm8 peptide complex crystals were grown similarly in 1215% PEG 8000, 100 mM sodium cacodylate, pH 6.6, and 100150 mM calcium acetate. Diffraction quality crystals appeared within 48 h and were cryoprotected just before flash cooling through the 1:1 addition of well solution plus 20% ethylene glycol (Kbm8) or 25% glycerol (Kb). Diffraction data for Kbm8H2E crystals were collected using a Rigaku X-ray source and an R-axis IV image plate detector, while data for the other three pMHCs were obtained at the Advanced Photon Source (APS), beamline ID-19 (SBC-CAT). Data were indexed and processed using DENZO and SCALEPACK (see Table I and reference 33). Kb peptide complexes crystallized in the P21212 space group with one pMHC in the asymmetric unit (ASU), whereas Kbm8 peptide complexes crystallized in the P21 space group and had two pMHCs in the ASU. A nearly isomorphous Kb structure, PDB ID code 1KJ3, without its peptide and with its mutant residues truncated to alanine, was rigid body refined into Kbm8HSV8 data. The HSV8 peptide was traced and the model was built to high confidence after several iterative rounds of model building in O (34) coupled to atomic refinement and map generation with the CNS program (35). This high confidence Kbm8HSV8 model was used as a starting point for the Kbm8H2E model. A similar procedure was performed for the Kb peptide complex structures, with PDB ID code 2VAA used as the starting point. Each Kbpeptide complex model contained mß2m (residues 199), Kb (residues 1274), and the respective full-length peptide. The KbHSV8 complex model contains one N-linked carbohydrate at Asn86, whereas the KbH2E complex model contains two N-linked carbohydrates at Asn86 and Asn176. The mß2m present in the Kbm8peptide complexes contained an additional NH2-terminal Met residue numbered residue zero. Kbm8 models contained residues 1278; poor electron density for Ser279 and Thr280 prevented them from being modeled.
Computational Analysis.
Graphical structure representations were created using Ribbons (36). The molecular surfaces of the B pockets were generated using sph-ms, a component program of Ribbons, using a 1.4 Å probe. Specifically, the P2 peptide C and side chain atoms were removed from the structure, and sph-ms was used to generate the dot surface of the B pocket with the rest of the peptide bound. The geometric surface complementarity of the peptideMHC interfaces was calculated with the program SC (37). Electrostatic potential maps were generated with Delphi, and Grasp was used to read in these maps and graphically display each pMHC's electrostatic molecular surface potential (38). The 2C TCR from the Kb2C complex (PDB idcode 2CKB) was docked via the MHC
1/
2 regions onto our pMHCs. PDBDIST was used to determine TCRpMHC contacts within 4.2 Å and these delineated the TCR contact box present in Fig. 2 (39). HBplus was used to determine the hydrogen bonding in each pMHC's B pocket (40). RMSD calculations between structures were calculated with the CNS program using pMHCs superimposed via their
1/
2 domains (35). RMSDs of mutant residues were calculated using positionally equivalent atoms (i.e., side chain O
of SerP2 considered equivalent to GluP2 side chain C
). The reference structure for these calculations was one of the Kbm8H2E structures (chains D and Q) in the ASU. Simulated annealing electron density omit maps of B pocket residues for each complex were generated using the CNS program and displayed in Ribbons (35, 36).
![]() |
Results |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
In this paper, we set out to solve the crystal structures of all four pMHCs to ascertain whether any differences exist that could explain our differential TCR recognition. KbHSV8 and KbH2E were expressed in D. melanogaster cells and recovered from cell supernatants, whereas Kbm8HSV8 and Kbm8H2E were oxidatively refolded from Escherichia coli inclusion bodies. The Kbpeptide complexes crystallized in the primitive orthorhombic space group P21212 with one pMHC in the ASU. The Kbm8peptide complexes, which lack N-linked carbohydrate additions at residues Asn86 and Asn176, crystallized in the primitive monoclinic space group P21 and have two pMHCs per ASU. Each structure was solved by molecular replacement and after several rounds of model building and refinement, quality atomic models were obtained (Fig. 1). KbHSV8 was solved to 2.6 Å resolution, whereas the KbH2E complex was solved to 2.1 Å resolution. The estimated coordinate error (Luzzati) for each complex is 0.30 and 0.25 Å, respectively. Similarly, Kbm8HSV8 was solved to 1.9 Å resolution and Kbm8H2E was solved to 2.6 Å resolution with estimated coordinate errors of 0.27 and 0.37 Å, respectively. A summary of the data collection and refinement results are presented in Table I.
|
|
Comparison of pMHC Surface Properties.
It has been shown previously that small but significant differences in pMHC surface properties can occur between peptides presented by Kb and its natural occurring variants (17). SEV9 and VSV8 peptides in complex with Kbm1 have a notably different electrostatic surface compared with analogous Kb complexes, whereas the Kbm8 complexes were very similar to those of Kb. We initiated a structural analysis of our pMHCs to determine if any significant differences could be identified. The electrostatic surface properties of each pMHC were calculated using Delphi and visualized using GRASP. This analysis reveals the potential TCR interacting surface of each pMHC to be virtually indistinguishable from one another, with the exception of the surface surrounding the ArgP7 peptide residue (Fig. 2). The significance of this difference is likely minimal as it is due to alternate crystal contacts that, in Kb, are positioned over the COOH terminus of the peptide. This results in a different conformation of the ArgP7 side chain as well as a small local rearrangement that is centered around Ser73. It is unlikely that this rearrangement plays a significant role in TCR recognition, as the conformation of ArgP7 is nearly isostructural between respective recognized and unrecognized pMHC structures (i.e., Kbm8H2E vs. Kbm8HSV8).
|
Comparison of the four peptides from these pMHCs demonstrates that small, but significant, positional differences occur at the amino terminal ends of the peptides. When the peptides are superimposed, via the respective MHC 1/
2 domains, these differences become clear (Fig. 3). Remarkably, the largest of these structural differences occurs between the two complexes, KbHSV8 and Kbm8H2E (Fig. 3, green), which are recognized equivalently. Seen from a top-down perspective, the most noticeable deviations occur at the P1 and P2 positions, highlighting a lateral displacement of these residues (Fig. 3 A). In contrast, the two unrecognized complexes, KbH2E and Kbm8HSV8 (Fig. 3, red), are fairly similar in conformation to the Kbm8H2E peptide structure. A side view perspective reveals an additional downward shift of the SerP2 in KbHSV8 from the GluP2 of Kbm8H2E (Fig. 3 B). This displacement is propagated through the peptide main chain, causing a diminishing shift through P3 and a prominent movement of P1. The P3P8 residues, common to all peptides, are nearly isostructural between Kb and Kbm8 structures, with the exception of the P7 side chain conformer difference, which is due to differential crystal packing between Kb and Kbm8.
|
Comparison of Kb and Kbm8 B Pocket Environments.
Kb and Kbm8 differ in two residues, MHC 22 and MHC 24, which serve to create B pockets that are unique to each molecule. A comparison of the B pockets from each of our pMHCs demonstrates that the bm8 mutations increase the size and alter the chemical environment, allowing for different peptide-binding modes (Fig. 4). The B pockets in the Kbpeptide complexes are elongated, but shallow, due mainly to residue Glu24 that sits directly underneath the P2 anchor (Fig. 5). The Kb B pocket accommodates HSV8 very well, with the SerP2 directly interacting with Glu24. In contrast, the GluP2 mutation in the H2E peptide is forced into an unfavorable chemical environment. This GluP2 side chain is too large to occupy the space where Wat2 is located in the KbHSV8 structure; its accommodation would require rearrangement of several Kb B pocket side chains. Additionally, that conformation would put the negatively charged GluP2 in very close proximity to the negatively charged Glu24 side chain, creating an unfavorable electrostatic interaction given that peptide loading occurs at near neutral pH. Instead, the GluP2 side chain turns away from Glu24 and tucks itself underneath the main chain of the peptide. Surprisingly, the H2E peptide provides a similar "fit" for the Kb binding groove as the HSV8 peptide, as assessed by comparable shape complementarity (SC) coefficients (Table I and reference 37).
|
|
Comparison of pMHC Thermostability.
The rearrangements we have observed for the peptide P2 and MHC B pocket residues could potentially alter the stability of the respective pMHC and, thus, may explain our differential TCR recognition. Indeed, the sevenfold difference in thermostability observed for SEV9 and VSV8 peptides presented by Kb and Kbm1 has been implicated in their differential TCR recognition profiles (17). To address this issue, we measured the thermostability of each pMHC using CD. All pMHCs had Tm values >37°C, further supporting the observation that they are all stable under physiological conditions (Fig. 6). Reproducibly higher Tm values were observed for HSV8 complexes (49°C) when compared with those of the H2E complexes (
44°C). Thus, the thermal stability of Kb and Kbm8 is dependent on which peptide is loaded, and the measured stability is in no way correlated with T cell recognition. Consistent with our CD experiments are previously reported data concerning the cell surface stability of our pMHCs on living cells as measured by conformation-sensitive antibodies (11, 14) and T cellbased assays (29).
|
TCR recognition of Kbm8 presenting the dominant HSV-1 epitope is regained with the introduction of a compensating peptide mutation at the P2 secondary anchor position, SerP2 to GluP2. The resulting H2E peptide, in complex with Kbm8, is able to faithfully mimic the hydrogen-bonding network observed in the KbHSV8 complex (Fig. 5). The GluP2 side chain extends to displace Wat2 and place its carboxylate group in a position similar to the carboxylate of Glu24 in Kb. This similar positioning allows for both restoration of the pocket's negative charge and establishment of a hydrogen-bonding pattern analogous to Glu24 in Kb. However, TCR recognition is again lost when the H2E peptide is in complex with Kb. GluP2 assumes an alternate conformation, likely due to charge repulsion from Glu24, causing disruption of hydrogen bonding between Glu24 and Asn70; this allows Wat2 back into the pocket, and introduces a new hydrogen bond between its carboxylate and the P3 main chain nitrogen. This hydrogen bond complements part of its negative charge, likely helping to stabilize the KbH2E complex.
Thus, the results of our structural analysis would indicate that the designed peptide variant H2E is able to successfully form a similar packing geometry and chemistry of the B pocket when bound to Kbm8 as is otherwise formed only when HSV8 is complexed with Kb. In contrast, significant alterations to the B pocket hydrogen-bonding network are readily apparent in the other two pMHCs that fail to be recognized by KbHSV8-reactive T cells.
![]() |
Discussion |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Next, we turned to crystallography to elucidate structural details that may provide further insight into our functional observations. The crystal structures of all four pMHCs were determined and, as expected, the P2 residues of both HSV8 and H2E are sequestered from solvent in the B pocket, proximal to the allelic variant residues Tyr22/Phe22 and Glu24/Ser24. To our surprise, comparison of the TCR-unliganded structures did not reveal any concerted structural differences localized to the membrane-distal surfaces of the pMHCs otherwise considered important in TCR engagement. Furthermore, the small conformational differences of solvent-accessible residues observed in our work did not appear to correlate with the available TCR recognition data. However, comparison of the manner in which the P2 secondary anchor residue is engaged in the B pocket of the pMHCs revealed that the two recognized complexes have similar packing structures, whereas the B pocket interactions of the ignored complexes are distinct. We will now turn to considerations of how these results might be important for the TCR recognition process.
Peptide Anchor Residues and Their Role in the Immune Response.
There have been many studies directed at examining TCRpMHC recognition, many of which have revolved around the role of solvent-exposed/TCR-contacting peptide residues. Using many different MHC class I and II systems, it has been shown that TCRs can be extremely sensitive to even conservative mutations at these solvent-exposed residues (911). These results have been supported by the growing number of TCRpMHC complex structures available (68). It is clear from these structures that a limited number of solvent-exposed peptide residues interact extensively with CDR loops of the TCR, and that peptide anchor residues and their surrounding MHC environments are not major recognition determinants. Although anchor residues can unquestionably impact TCR recognition indirectly by modulating MHC binding affinity and selection, other mechanisms of action have been proposed (15, 4244).
Our current results are similar to a paper we published several years ago in a class II model (13). We have shown that for I-Ek/Hb, a minor change in the peptide P6 secondary anchor residue results in both a distinct, nonoverlapping bulk T cell population as well as a 1,000-fold difference in specific T cell activation. Structure determination of these pMHCs revealed minor structural differences in solvent-exposed atoms and an altered hydrogen-bonding network in the P6 pocket. Similarly, our Kb/Kbm8 data demonstrate that perturbations of buried residues can have a significant impact on T cell repertoire generation, selection, and specificity. Indeed, although functional stability of KbKbm8HSV8 complexes was indistinguishable as measured by both Ab-based (14) and T cellbased assays (29), T cell repertoire selection in the thymus, T cell diversity mobilized in response to HSV-1 infection, and T cellmediated resistance to lethal HSV-1 infection were all heavily impacted by the alterations in the B pocket of the aforementioned complexes (28, 29, 41). The majority of previous TCR recognition studies have focused on the dominant role solvent-accessible pMHC residues can play in T cell activation processes. Our results extend these studies and demonstrate that buried peptide and MHC pocket residues can also be significant determinants in an immune response. Thus, our data further highlight the exquisite structural sensitivity that governs pMHC recognition by TCRs.
Potential Impact of B Pocket Environment on TCR Recognition.
Analysis of our structural data reveals that the bm8 substitutions of B pocket residues and their interactions do not translate into significant positional changes in solvent-exposed residues. Furthermore, the small changes that we did observe failed to correlate with T cell activation data. Nevertheless, our differential T cell recognition data demonstrate that, even though on the surface they appear chemically similar, the various pMHCs are readily discriminated. Thus, it is apparent that the B pocket environment is modulating one or more properties on which TCR recognition and subsequent T cell activation is dependent.
One possible discriminatory mechanism could be that our B pocket mutations affect the way in which the pMHC is engaged by the TCR. The available structural data for TCRpMHC complexes indicate that there is a significant amount of structural flexibility in the TCR, notably in the CDR3 loops, with less structural variation observed in pMHC residues upon complex formation (7, 8). Nevertheless, a recent set of structures has demonstrated that near-identical pMHCs, Kb/dEV8 and Kbm3/dEV8, result in two very distinct structures when in complex with a common TCR, 2C (45). The difference between the two pMHCs is a buried Asp77 to Ser77 mutation that is associated with a differential hydrogen-bonding pattern with the peptide. Specifically, the bm3 mutation is associated with altered presentation of the dEV8 peptide as well as an increase in overall TCRpMHC contact and SC. Thus, an extremely minor change in hydrogen bonding and chemical environment can have substantial effects on the way a TCR engages nearly isostructural resting state pMHCs. In accordance with this data, we postulate that both our allelic and secondary anchor mutations need not be in direct contact with TCR to elicit profound changes in recognition. For example, one could speculate that the ability of Kb-restricted, HSV-1reactive T cells to engage only KbHSV8 and Kbm8H2E is a manifestation of each pMHC's unique ability to adopt a conformation consistent with stable complex formation, or alternatively the transition state energy barrier to achieve a stable complex is too high for the unrecognized pMHCs (46). However, irrespective of the discriminatory mechanism, our data clearly support the notion that MHC anchor pocket environments can be just as significant an antigenic determinant as solvent-exposed peptide side chains. Given that some of the most pronounced effects of the Kb/Kbm8 polymorphism exert themselves at the level of intrathymic positive selection of TCR repertoire (27, 28), it is likely that this environment can play a broad role, affecting all the biological consequences of the TCRpMHC contact. Moreover, this also implies that the self-peptides that mediate differential positive selection of TCR when presented by either Kb or Kbm8 must themselves participate in analogous, variable B pocket interactions as does the dominant HSV-1 epitope, providing another level of similarity between antigenic and positively selecting peptides.
![]() |
Acknowledgments |
---|
This paper was supported by the United States Public Health Service grant nos. CA86803 (to J. Nikolich-ugich and D.H. Fremont) and RR0163 (Oregon National Primate Research Center). Further support came from the Burroughs-Wellcome Fund and the Kilo Foundation. Atomic coordinates have been deposited in the Research Collaboratory for Structural Bioinformatics.
The authors have no conflicting financial interests.
Submitted: 3 February 2004
Accepted: 25 October 2004
![]() |
References |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|