By
From the * Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; The Biomedical
Research Institute, Rockville, Maryland 20852; and § The Rockefeller University, 1230 York Avenue,
New York, New York 10021
![]() |
Abstract |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
The effector functions of CD4+ T lymphocytes are generally thought to be controlled by distinct populations of regulatory T cells and their soluble products. The role of B cells in the regulation of CD4-dependent host responses is less well understood. Hepatic egg granuloma formation and fibrosis in murine schistosomiasis are dependent on CD4+ lymphocytes, and
previous studies have implicated CD8+ T cells or cross-regulatory cytokines produced by T
helper (Th) lymphocytes as controlling elements of this pathologic process. In this report, we
demonstrate that B cell-deficient (µMT) mice exposed to Schistosoma mansoni develop augmented tissue pathology and, more importantly, fail to undergo the spontaneous downmodulation in disease normally observed during late stages of infection. Unexpectedly, B cell deficiency did not significantly alter T cell proliferative response or cause a shift in the Th1/Th2
balance. Since schistosome-infected Fc receptor-deficient (FcR chain knockout) mice display the same exacerbated egg pathology as that observed in infected µMT mice, the B cell-
dependent regulatory mechanism revealed by these experiments appears to require receptor-mediated cell triggering. Together, the data demonstrate that humoral immune response/FcR
interactions can play a major role in negatively controlling inflammatory disease induced by
CD4+ T cells.
![]() |
Introduction |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Pathology induced by infection with the trematode Schistosoma mansoni is a product of the immune response to parasite eggs in host tissues. The resulting granulomatous lesions lead to fibrosis, which in turn can produce severe circulatory impairment of the affected organs. The process of egg granuloma formation is dependent on sensitized CD4+ T lymphocytes, with both Th1 and Th2 subsets participating at different times during the development of the lesions.
The granulomas forming around newly deposited eggs are maximal in size during the early, acute phase of infection and become smaller during the later chronic period of the disease. This regression in pathology has been attributed to immunoregulatory events affecting the T cell response to egg Ag, which also declines during the same period. A variety of different mechanisms have been implicated in the regulation of schistosome egg pathology. These include "suppressor" CD8+ T cells (1), cross-regulation by cytokines produced by Th1 or Th2 cells (5), and the development of antiidiotypic Ab or T cells (9, 10). All of the above regulatory pathways involve the participation of T lymphocytes, acting either directly or indirectly through their helper function for Ab synthesis, on the host effector response to eggs.
Although it is commonly assumed that the regulation of egg pathology is T cell mediated, the possible function of B lymphocytes in this process has until recently been difficult to directly assess. Early studies using mice depleted of B cells as a result of anti-µ chain Ab treatment suggested B lymphocyte involvement but were inconclusive because of the potential side effects of the injection of large quantities of xenogenic Ab (11). A more direct approach for assessing the regulatory role of B cells in schistosome pathology is now possible with the advent of mice genetically B lymphocyte-deficient as a consequence of disruption of the µ-chain locus (12). These animals have no detectable B cells or circulating Ab, yet display normal development of the T lymphocyte compartment. Moreover, in initial studies, we and others have shown that B cell-deficient mice (µMT strain)1 have normal antigen presenting function for priming of CD4+ T cells to most soluble protein Ag as well as unimpaired CD8+ T lymphocyte responses (13). Indeed, these knockout (KO) animals develop pulmonary granulomas indistinguishable from those in wild-type (WT) mice after intravenous injection of schistosome eggs and display comparable lymphokine responses to egg Ag (13).
In this report, we have studied the pathogenesis of schistosomiasis in µMT mice during natural infection. The goal of this work was to formally assess the role of B lymphocytes in both hepatic egg pathology and more importantly in the downmodulation of disease and T cell responsiveness occurring in late infection. Unexpectedly, these animals showed markedly exacerbated hepatic granuloma formation and fibrosis during acute infection and failed to downmodulate pathology during the chronic stage of the disease. Importantly, S. mansoni-infected FcR-deficient mice (18) displayed alterations in immunopathology identical to the µMT animals. In both cases the observed differences in liver pathology occurred independently of significant changes in T lymphocyte reactivity and cytokine production patterns. Taken together these findings reveal a previously unrecognized function for Ig/FcR signaling in the regulation of CD4+ T cell-mediated inflammatory responses.
![]() |
Materials and Methods |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Experimental Animals, Infection Procedure, and Ag Preparation.
B cell- deficient µMT mice originally derived on a 129 × C57BL/6 background (12), were backcrossed to C57BL/6 for seven generations and then intercrossed to generate homozygous B cell KO animals. The mice were both bred and maintained at the American Association for Accreditation Laboratory animal care facility of National Institute of Allergy and Infectious Diseases. To rule out possible effects of 129 background genes, most experiments were repeated using µMT mice backcrossed to the C57BL/10 background for 12 generations. The latter B cell-deficient and C57BL/10 control mice were shipped from a specific pathogen- free animal facility at Taconic Farms (Germantown, NY). The µMT mice on the C57BL/6 and C57BL/10 backgrounds gave indistinguishable results in all the assays performed. The experiments shown are those performed with C57BL/6 µMT animals. Mice genetically deleted for the FcRParasitological Measurements.
Adult worms were enumerated by hepatic perfusion of mice at 6 or 8 wk after infection (20). Tissue egg counts were performed on liver and intestines digested in 4% potassium hydroxide. Excreted eggs were counted in stool samples collected from individual mice for 24 h immediately before perfusion.Assessment of Egg Pathology.
Granuloma diameters were measured in histological sections stained with Litt's modification of the Dominici procedure using an ocular micrometer and the volume of each lesion was calculated assuming a spherical shape. Mean granuloma sizes were then computed for each mouse from measurements performed on ~30 granulomas per animal. The percentage of eosinophils in the same granulomas was estimated by microscopic examination. Liver collagen levels were determined by chemical measurement of hydroxyproline as previously described (21). The statistical significance of differences in granuloma volumes and eosinophil levels between animal groups was evaluated using Student's two-tailed t test and differences in fibrosis by analysis of covariance.Cell Proliferation and Cytokine Assays.
Single-cell suspensions of spleens from individual mice were prepared and RBC lysed by osmotic treatment. Mesenteric lymph node cell suspensions were pooled from four to six animals per group. All in vitro assays involved culturing of cells in RPMI 1640 medium supplemented with 10% FCS, 2 mM glutamine, 100 U/ml penicillin, 100 µg/ ml streptomycin, 25 mM Hepes, 1 mM sodium pyruvate, nonessential amino acids, and 50 µM 2-ME at 37°C in 5% CO2. Proliferative responses to SEA were assayed at 8 and 16 wk after infection by exposing splenocytes (3 × 106/ml) from individual B cell KO and WT animals to graded concentrations of the Ag preparation in 200 µl in 96-well flat-bottomed microtiter plates. After 48 h of incubation, [3H]TdR (0.5 µCi/well, New England Nuclear Corp., Boston, MA; sp act: 2 Ci/mmol) was added and incorporation of the isotope was measured 18 h later. The stimulation index was calculated as the ratio between the [3H]TdR incorporated in the presence and absence of SEA. To measure cytokine secretion, mesenteric lymph node cells (2 × 106/ml) were cultured in 24-well plates in 1 ml volumes and exposed to medium alone, 2.5 µg of plate-bound anti-CD3 mAb (145-2C11; PharMingen, San Diego, CA), or SEA (20 µg/ml) for 72 h. IFN-Reverse Transcriptase PCR Detection of Cytokine mRNAs.
Equivalent specimens of liver tissue from uninfected and infected animals were homogenized in 1 ml RNA STAT-60 using a tissue polytron (Omni International, Waterbury, CT) and total RNA was isolated as recommended by the manufacturer. The RNA was resuspended in diethylpyrocarbonate-treated water and quantitated spectrophotometrically. A reverse transcriptase PCR procedure was performed as previously described (26) to determine relative quantities of mRNA for IL-4, IL-5, IL-10, and IL-13. The amplified DNA was analyzed by electrophoresis, Southern blotting, and hybridization with cytokine-specific probes. The primers and probes have been previously published (26, 27). The chemiluminescent signals were quantified using a 600 ZC scanner (Microtek International, Torrance, CA). The amount of PCR product was determined by comparison of signal density to that of standard curves generated from simultaneously amplified dilutions of cDNA obtained from samples with a high amount of specific cytokine mRNA. Fold increases for individual samples were calculated as the reciprocal of the equivalent dilution of control cDNA from uninfected mouse liver. Amplification of hypoxanthine-guanine phosphoribosyl transferase served as an internal control for the amount of RNA and cDNA from each sample. ![]() |
Results |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
In initial experiments, µMT and C57BL/6 WT control animals were percutaneously exposed to different infecting doses of cercariae, and the recovery of adult parasites as well as tissue egg burdens were measured 6-8 wk later. As shown in Fig. 1, A and B, the KO and WT mice were quantitatively indistinguishable in terms of both worm and tissue egg recovery, indicating that neither B cells nor Ab influence the development of S. mansoni during primary infection. Nevertheless, when compared to WT animals, the infected µMT mice showed significantly decreased fecal egg excretion (Fig. 1 C), a parameter that measures the transit of parasite ova into the gut. The latter observation is consistent with previous studies, suggesting a role for Ab in facilitating the transport of eggs through intestinal tissue to the gut lumen (28).
|
Despite their unaltered parasite burdens, the µMT mice showed decreased survival during the chronic stage of infection with approximately half the animals dying before week 16 (Fig. 2). Upon autopsy, the µMT mice that succumbed showed extensive hemorrhaging into the gut lumen, a sequela which is only rarely observed in WT animals.
|
When hepatic granuloma volumes were compared in B cell KO versus WT mice at 8 wk after infection, a significant difference in the tissue response to schistosome eggs was noted (Fig. 3, top left panel). The B cell KO animals developed lesions that were on average 42% larger than those in the infected control group. Although clearly bigger in size, the granulomas in the µMT mice showed no obvious differences in their cellular composition when compared to those occurring in the WT animals. In particular, the granulomas in both types of animals displayed comparable levels of eosinophils (Fig. 3, bottom left panel). The latter parameter is usually dependent on the synthesis of IL-5 (29), a major product of the Th2 response.
|
As infection proceeds to the chronic stage, newly formed granulomas become smaller in size (30). As shown in Fig. 3 (top panels) and Fig. 4, this process of downmodulation of immunopathology was found to be defective in B cell KO animals when examined at 16 wk after infection. Granuloma volumes in µMT mice at this stage remained at the same increased size as was detected at 8 wk of infection but were now twice the magnitude of the granulomas in chronically infected WT mice. In agreement with previous observations, the percentage of eosinophils in granulomas from WT animals was significantly diminished at 16 versus 8 wk after infection. A similarly significant, although smaller decrease in eosinophil content was observed as infected KO mice proceeded from the acute to the chronic phase (Fig. 3, bottom panels).
|
Tissue fibrosis is the major pathologic sequela of schistosome egg granuloma formation. At 8 wk after infection, the livers from B cell KO mice showed a small but significant increase in hydroxyproline levels, a chemical measure of collagen deposition (Fig. 5, left panel). This difference in tissue fibrosis was further accentuated at the chronic stage, when the livers from the infected µMT mice displayed almost twice the hydroxyproline levels as those observed in the same tissues from WT animals (Fig. 5, right panel). Thus, in the absence of B cells, both granuloma formation and fibrosis are markedly increased at both the acute and chronic phases of schistosome infection.
|
S. mansoni egg granuloma formation is known to be dependent on CD4+ T cells and the lymphokines they produce. Therefore, we examined whether the exacerbated pathology observed in infected µMT mice is reflected in enhanced T cell reactivity. When examined during the acute phase (8 wk after infection), spleen cells from µMT mice mounted proliferative responses to SEA that were slightly but insignificantly lower than those measured in WT animals over a wide dose range (Fig. 6, left panel). As expected, proliferative responses in WT mice declined when the infection reached the chronic phase (Fig. 6, right panel). Nevertheless, a similar and even greater suppression of lymphocyte blastogenesis occurred in the chronically infected µMT mice despite their augmented granuloma volumes and fibrosis.
|
The CD4+ T cell response to schistosome eggs is associated with a cytokine production profile dominated by Th2
lymphokines. This response peaks at 8 wk after infection
and diminishes thereafter. To investigate whether the exacerbated pathology in µMT mice is associated with aberrant
cytokine production, mesenteric LN cells from infected
KO and WT animals were stimulated in vitro with SEA or
anti-CD3 mAb and IL-4, IL-5, IL-10, or IFN- levels
measured in 72-h culture supernatants. At 8 wk after infection, LN from µMT mice produced high levels of all four
cytokines when triggered with anti-CD3, and in comparison with WT animals showed no obvious defects in responsiveness (Fig. 7). When stimulated with SEA, the same
cells produced a Th2-dominated cytokine profile with only
trace levels of IFN-
. These Ag-specific responses were
comparable in the infected µMT and WT mice except in
the case of IL-4 and IL-10, where lower cytokine production was observed in the KO animals. In the case of IL-4
secretion, the difference between the KO and WT animals
was statistically significant. By the chronic stage of infection, anti-CD3-induced IL-4, IL-5, and IL-10 responses were decreased in both WT and µMT mice, whereas IFN-
production was unaltered. Similarly, upon SEA stimulation
of the same cells, diminished production of IL-4, IL-5, and
IL-10 was observed with IFN-
remaining at trace levels.
Although greatly reduced in both groups of animals in
comparison with 8-wk infected mice, SEA-induced IL-4
secretion was again significantly lower in the B cell KO versus WT animals (Fig. 7).
|
Because the results of the LN cell cytokine secretion assays suggested that egg-induced IL-4 and IL-10 responses are partially impaired in µMT mice, we carried out additional experiments to test whether the same differences in the expression of these cytokines are evident in the liver, the major site of granuloma formation. The latter analysis was performed by reverse transcriptase PCR measurement of the cytokine mRNAs in liver tissue in uninfected and acutely and chronically infected KO and WT mice. As shown in Fig. 8, at the acute stage of infection mRNA levels for the Th2 cytokines IL-4, IL-5, IL-10, and IL-13 were comparable in the two groups of animals. Moreover, as expected, the expression of these cytokine mRNAs was decreased at the chronic stage with the exception of IL-10, which increased in the KO but not in the WT animals. The above data argue that the exacerbated egg pathology in µMT mice is unlikely to be the result of an aberrant Th2 cytokine production, and taken together with the in vitro culture findings suggest that the failure of these animals to downmodulate granuloma formation is not due to impaired downregulation of T cell responses.
|
The above observations on S. mansoni infection in µMT mice pointed to an important role for humoral immune response in the regulation of egg pathology.
To both confirm the involvement of Ab and determine
whether Fc receptor interactions are required for Ab regulatory activity, we analyzed schistosome immunopathology in FcR chain KO mice. These animals possess a normal B
cell compartment, but due to the deletion of the gene encoding the common FcR
chain fail to express Fc
RI,
Fc
RIII, and Fc
RI, the major cell surface receptors involved in positive Fc-mediated triggering (18). As shown
in Figs. 9 and 4, infected FcR
KO mice, in common with
B cell KO animals, displayed enhanced hepatic granuloma
formation during the acute phase of infection, and importantly failed to downmodulate this response during the
chronic stage of disease. Moreover, tissue fibrosis was also
augmented in chronically infected FcR
KO animals (Fig.
9, lower right panel). As observed in B cell KO mice, FcR
KO and WT mice developed comparable levels of tissue
eosinophilia at 8 and 16 wk after infection (Fig. 9, lower left
panel, and data not shown). Moreover, no significant differences were observed between the two mouse strains when
IL-4, IL-5, and IL-10 responses of spleen or mesenteric LN
cells to SEA and anti-CD3 were measured in vitro (data
not shown). Together these findings indicate that in terms
of tissue pathology induced by schistosome infection, B
cell- and FcR
-deficient mice share a common phenotype. Nevertheless, in contrast to the findings with µMT
mice, FcR
KO animals showed no significant decrease in
fecal egg excretion (eggs/worm pair/day) at 8 wk after infection (112 ± 16 for WT [n = 15] versus 91 ± 12 for
FcR
KO [n = 13]), nor did they display enhanced mortality throughout the period of the experiments (data not
shown). The latter observations suggest that the decreased
egg excretion and increased mortality observed in µMT
mice are due directly to the absence of B cells or their products but operate via mechanisms that are independent
of FcR signaling events.
|
![]() |
Discussion |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
In this study we demonstrate that B cell-deficient mice
as well as animals lacking the common FcR chain develop
exacerbated egg pathology during both acute and chronic
infection with S. mansoni and fail to display the downregulation in granuloma formation typically observed in WT
animals. Surprisingly, this augmented pathology occurs in
the absence of any appreciable change in T cell proliferative response or shift in Th1/Th2 balance even though egg-induced inflammation is known to be a CD4+ T cell-
dependent host reaction. Thus, it appears that Ig/FcR interactions play a major regulatory role in the pathogenesis of experimental schistosomiasis mansoni independent of
the level and quality of T cell responsiveness.
When quantitatively infected with S. mansoni, µMT mice
gave the same adult worm and tissue egg recoveries as WT
animals (Fig. 1). These findings confirm previously published results involving anti-µ treated mice, indicating that
worm development and egg deposition during primary infection are not significantly influenced by the host Ab response (11, 32). Nevertheless, our data do not agree with
two prior and themselves conflicting reports indicating that
in the absence of IgE worm recoveries are either decreased (33) or increased (34) versus control animals. At present the
explanation for the observed discrepancy amongst these
and our results is unclear, although in the case of our experiments we can definitively exclude the possibility of a
residual Ab response of IgE or any isotype in the B cell-
deficient animals. Interestingly, however, infected µMT,
but not FcR KO, mice differed from control animals in
displaying a marked reduction in the number of eggs excreted into the feces. The latter finding is consistent with previous reports indicating that Ab facilitate the transport
of eggs across the intestinal wall into the lumen (28) and
suggest that FcR interactions involving Fc
RI, Fc
RIII,
and Fc
RI are not required for this process. Together the
data support the hypothesis that the Ab response, rather
than limiting worm development, plays an important physiological role in the maintenance of the parasite life cycle.
Another aspect in which infected µMT differed from
both WT and FcR KO animals was in the increased mortality of the former strain. This pathologic consequence of
B cell deficiency, which is associated with hemorrhaging
into the gut, is at present poorly understood. It is unlikely
to be the cause of the observed exacerbation of hepatic pathology, since that phenomenon was demonstrated in survivors that did not display obvious intestinal pathology as well as in the infected FcR
KO mice that failed to exhibit
significant mortality. One possibility is that in WT (as well
as FcR
KO) animals, Ab produced against endotoxins
protect the host against toxic inflammatory responses triggered by gut bacteria that, in the setting of the intestinal alterations induced by schistosomiasis, lead to increased mortality in individual mice (35).
The most striking effects of B cell and FcR deficiencies
in S. mansoni infection occurred at the level of the downmodulation of hepatic pathology. A large volume of previous work has indicated that the intensity of the host response to schistosome eggs diminishes with the length of
the infection. In mice this immunomodulation is evidenced
by the decreased size of newly formed granulomas in
chronic disease, a phenomenon that has been closely linked to a concomitant decline in T cell responsiveness to egg
Ag. A variety of different mechanisms have been proposed
to explain the downmodulation of granulomatous hypersensitivity in schistosomiasis, all of which involve active
suppression of T cell function. The most extensively investigated mechanisms have been those involving downregulation by CD8+ suppressor cells (3, 4, 9) or inhibitory cytokines produced by cross-regulatory CD4+ Th cells (4, 6).
However, recent experiments studying the modulation of
schistosome pathology in gene KO mice argue against a requirement for either of these pathways. Thus, mice lacking functional CD8 activity (36) or the major cross-regulatory
cytokines IFN-
(36) or IL-10 (36a) display normal downmodulation of both pathology and T cell responsiveness.
The latter findings support the involvement of a previously
unappreciated mechanism in the immunoregulation of the
granulomatous response.
The present study reveals that B cells may provide a crucial activity necessary for the downmodulation of schistosome egg pathology. The observed failure of these mice to downregulate granuloma formation is in fact consistent with several previous observations. First, it is clear that in both mice and humans Ab titers to parasite Ag increase substantially as the infection moves from the acute to the chronic stage (37, 38) and that in the murine model this change is reflected in an expansion in the number of B cells present in the granulomatous lesions themselves (39). Secondly, we have previously observed that mice rendered B cell deficient by treatment with anti-µ sera also develop larger granulomas which are not downmodulated (11). However, these experiments were uninterpretable because of the known peripheral effects of anti-µ treatment on T cell responses (40).
Surprisingly, although downmodulation of egg pathology was absent in µMT mice, normal downregulation of T
cell proliferative and lymphokine responses was observed in
the same animals. This finding provides striking evidence
for a dissociation of the two phenomena and argues against
a direct causal relationship. Interestingly, the absence of B
cells also resulted in elevated granuloma formation during
the acute stage of infection as well as enhanced fibrosis (collagen deposition) at both of the time periods analyzed.
Again, the in vitro responses of mesenteric LN cells measured during the acute phase in B cell-deficient mice
closely resembled those observed in WT animals with the
exception of a decrease in the levels of IL-4 and IL-10 produced. This finding is reminiscent of previously reported
results on S. mansoni infection in B cell-deficient (JHD)
mice (41), in which decreased IL-4 and IL-10 production in vitro was also described at 7.5-8 wk after infection (42). No analysis of the chronic stage of disease or tissue fibrosis was performed in that study. Nevertheless, the results reported do diverge from those presented here in that no difference in granuloma size was detected between KO and
WT animals in acute infection, a discrepancy that could relate to different genetic backgrounds or types of B cell-
deficient mouse strains used (13, 43). Furthermore, in the
case of our experiments, the observed differences in cytokine production between acutely infected WT and µMT
did not reflect a wholesale switch to a Th1 cytokine pattern, since the amounts of both IFN- and IL-5 protein secreted in vitro were indistinguishable in the two strains, as
were the levels of IL-4, IL-5, IL-10, and IL-13 mRNAs
expressed in liver tissue. IL-12, which has been previously
demonstrated to suppress hepatic pathology when administered exogenously (44), was not measured in these experiments because it is only minimally expressed endogenously in schistosome infected mice (44, 42).
Because our findings clearly indicated a role for B cells in the downmodulation in liver pathology occurring in chronic infection, we went on to address possible mechanisms. The major immunoregulatory products of B cells are likely to be either immunoglobulins or cytokines. In the case of cytokines, B lymphocyte-produced IL-10 has been proposed as a mediator of granuloma downmodulation by Vellupillai and Harn (45), who demonstrated the induction of such a response by schistosome carbohydrates in vitro. This mechanism is unlikely to explain the effects of the lack of B cells on egg pathology, since IL-10 mRNA expression in liver was found to be increased rather than diminished in chronically infected µMT mice. Moreover, recent studies (36a) indicate that IL-10 KO mice undergo normal downmodulation of granuloma formation in late S. mansoni infection. Thus, although it is impossible at present to exclude the role of other cytokines produced by B cells, it is highly likely that Ab themselves are the B cell products responsible for immunoregulation. This conclusion is supported by the results of preliminary experiments in which sera from chronically infected WT mice transferred a reduction in granuloma size to acutely infected µMT animals (data not shown).
There are two obvious mechanisms by which Ab could
control the granulomatous response to schistosome eggs: by
neutralizing egg derived inflammatory molecules, or by
triggering the production of antiinflammatory mediators
from FcR+ cells. The involvement of the latter pathway is
strongly suggested by our observation that FcR-deficient
mice display a nearly identical phenotype to B cell-deficient animals in terms of augmented tissue pathology and
the failure to downmodulate granuloma formation during
chronic infection. Additionally, infected FcR
-deficient mice showed no evidence of aberrant T cell function (data
not shown). FcR
-deficient mice do not express the major
cell surface receptors involved in Ig binding and cell signaling (Fc
RI, which preferentially binds IgG2a; Fc
RIII,
which binds the immune complexes formed with the Ab of
most IgG isotypes; and Fc
RI, the high-affinity receptor
for IgE). At present, it is unclear which of these three FcRs
participate in the immunoregulatory pathway responsible
for the downregulation of granulomatous pathology. Because IgG2a Abs are only marginally induced in mice
chronically infected with S. mansoni, the involvement of
Fc
RI is unlikely. Instead, as the dominant isotypes observed in such animals are IgG1 and IgE, Fc
RIII and
Fc
RI are more likely to play a role. Interestingly, we have
recently demonstrated that during the acute stage of S. mansoni infection, Fc
RI-deficient mice (46) also show increased egg pathology (47), suggesting that Fc
RI is one of
the receptors involved. Because chronic granuloma formation was not evaluated in that study, it is unclear whether
Fc
RI is also important for downmodulation. Experiments
are in progress in which we are systematically comparing
egg pathology in S. mansoni-infected Fc
RI-, Fc
RII- (48)
and Fc
RIII-deficient mice (49) in order to evaluate the
contribution of each receptor.
Regardless of the particular FcR that mediates the regulatory response, it is clear from data reported here that the
humoral Ab production can influence granulomatous pathology independent of detectable effects on CD4+ T cell
responsiveness. Possible mediators of this antiinflammatory effect include prostaglandins, phospholipase A, and TGF-.
Interestingly, histamine, which is normally associated with
the induction of inflammation, has been shown in previous
studies to play a downregulatory role in acute schistosome
granuloma formation (50) and is therefore an important
candidate for an FcR induced pharmacological mediator of
this process. Inherent in these earlier findings as well as in
those reported here is the seemingly contradictory concept that FcR-dependent responses that in most settings mediate
inflammation (51) can in other contexts be antiinflammatory. In the case of the schistosome infection model studied
here, the context is that of a CD4+ T cell-dependent granulomatous tissue reaction. It remains to be seen whether
other cell-mediated tissue responses may be negatively regulated through the same humoral mechanism. Interestingly,
B cell-deficient mice have been reported to display exacerbated inflammatory responses to myelin basic protein (52),
suggesting that this pathway could also contribute to the
regulation of autoimmune tissue pathology.
![]() |
Footnotes |
---|
Received for publication Received for publication 16 October 1997 and in revised form 3 December 1997..
We thank Drs. S.L. James and T. Nutman for reading the manuscript, and R. Dryfuss and S. Everett for help with the photomicrographs. ![]() |
References |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
1. | Colley, D.G.. 1976. Adoptive suppression of granuloma formation. J. Exp. Med. 143: 696-700 [Abstract]. |
2. | Colley, D.G., F.A. Lewis, and C.W. Todd. 1979. Adoptive suppression of granuloma formation by T lymphocytes and by cells sensitive to cyclophosphamide. Cell. Immunol. 46: 192-200 [Medline]. |
3. |
Chensue, S.W.,
S.R. Wellhausen, and
D.L. Boros.
1981.
Modulation of granulomatous hypersensitivity. II. Participation of Lyt1+ and Lyt2+ T lymphocytes in the suppression of
granuloma formation and lymphokine production in Schistosoma mansoni-infected mice.
J. Immunol.
127:
363-367
|
4. |
Chensue, S.W.,
K.S. Warmington,
S.D. Hershey,
P.D. Terebuh,
M. Othman, and
S.L. Kunkel.
1993.
Evolving T cell responses in murine schistosomiasis. Th2 cells mediate secondary granulomatous hypersensitivity and are regulated by CD8+ T cells in vivo.
J. Immunol.
151:
1391-1400
|
5. | Pearce, E.J., P. Caspar, J.M. Grzych, F.A. Lewis, and A. Sher. 1991. Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J. Exp. Med. 173: 159-166 [Abstract]. |
6. |
Flores Villanueva, P.O., H. Reiser, M.J. Stadecker.
1994.
Regulation of T helper cell responses in experimental murine
schistosomiasis by IL-10: effect on expression of B7 and B7-2
costimulatory molecules by macrophages.
J. Immunol.
153:
5190-5199
|
7. | Chensue, S.W., K.S. Warmington, J. Ruth, P.M. Lincoln, and S.L. Kunkel. 1994. Cross-regulatory role of interferon-gamma (IFN-gamma), IL-4 and IL-10 in schistosome egg granuloma formation: in vivo regulation of Th activity and inflammation. Clin. Exp. Immunol. 98: 395-400 [Medline]. |
8. | Flores Villanueva, P.O., X.X. Zheng, T.B. Storm, M.J. Stadecker. 1996. Recombinant IL-10 and IL-10/Fc treatment down-regulate egg antigen-specific delayed hypersensitivity reactions and egg granuloma formation in schistosomiasis. J. Immunol. 156: 3315-3120 [Abstract]. |
9. |
Abe, T., and
D.G. Colley.
1984.
Modulation of Schistosoma
mansoni egg-induced granuloma formation. III. Evidence for
an anti-idiotypic, I-J-positive, I-J-restricted, soluble T suppressor factor.
J. Immunol.
132:
2084-2088
|
10. | Montesano, M.A., G.L. Freeman, W.E. Secor, and D.C. Colley. 1997. Immunoregulatory idiotypes stimulate T helper 1 cytokine responses in experimental Schistosoma mansoni infections. J. Immunol. 158: 3800-3804 [Abstract]. |
11. | Cheever, A.W., J.E. Byram, S. Hieny, F. von Lichtenberg, M.N. Lunde, and A. Sher. 1985. Immunopathology of Schistosoma japonicum and S. mansoni infection in B cell depleted mice. Parasite Immunol. 7: 399-413 [Medline]. |
12. | Kitamura, D., J. Roes, R. Kühn, and K. Rajewsky. 1991. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin µ chain gene. Nature. 350: 423-426 [Medline]. |
13. | Epstein, M.M., F. Di Rosa, D. Jankovic, A. Sher, and P. Matzinger. 1995. Successful T cell priming in B cell-deficient mice. J. Exp. Med. 182: 915-922 [Abstract]. |
14. | Constant, S., N. Schweitzer, J. West, P. Ranney, and K. Bottomly. 1995. B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J. Immunol. 155: 3734-3741 [Abstract]. |
15. | Baird, A., and D.C. Parker. 1996. Analysis of low zone tolerance induction in normal and B cell-deficient mice. J. Immunol. 157: 1833-1839 [Abstract]. |
16. | Philips, J.A., C.G. Romball, M.V. Hobbs, D.N. Ernst, L. Schultz, and W.O. Weigle. 1996. CD4+ T cell activation and tolerance induction in B cell knockout mice. J. Exp. Med. 183: 1339-1344 [Abstract]. |
17. | Oxenius, A., K.A. Campbell, C.R. Maliszewski, T. Kishimoto, H. Kikutani, H. Hengartner, R. Zinkernagel, and M.F. Bachmann. 1996. CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J. Exp. Med. 183: 2209-2218 [Abstract]. |
18. |
Takai, T.,
M. Li,
D. Sylvestre,
R. Clynes, and
J.V. Ravetch.
1994.
FcR ![]() |
19. | Boros, D.L., and K.S. Warren. 1970. Delayed hypersensitivity-type granuloma formation and dermal reaction induced and elicited by soluble factor isolated from Schistosoma mansoni eggs. J. Exp. Med. 132: 488-507 [Medline]. |
20. | Smithers, S.R., and R.J. Terry. 1965. The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of adult worms. Parasitology. 55: 659-700 . |
21. | Bergman, I., and R. Loxley. 1963. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal. Biochem. 35: 1961-1965 . |
22. | Scott, P., P. Natovitz, R.L. Coffman, E. Pearce, and A. Sher. 1988. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J. Exp. Med. 168: 1675-1684 [Abstract]. |
23. |
Mosmann, T.R.,
J.H. Schumacher,
D.F. Fiorentino,
H. Leverah,
K.W. Moore, and
M.W. Bond.
1990.
Isolation of
monoclonal antibodies specific for IL-4, IL-5, IL-6, and a new Th2-specific cytokine (IL-10), cytokine synthesis inhibitory factor, by using a solid phase radioimmunosorbent assay.
J. Immunol.
145:
2938-2945
|
24. |
Hu-Li, J.,
J. Ohara,
C. Watson,
W. Tsang, and
W.E. Paul.
1989.
Derivation of a T cell line that is highly responsive to
IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant of that line (CT.4S).
J. Immunol.
142:
800-807
|
25. | Kullberg, M.C., J.A. Berzofsky, D.Lj. Jankovic, S. Barbieri, M.E. Williams, P. Perlmann, A. Sher, and M. Troye-Blomberg. 1996. T-cell-derived IL-3 induces the production of IL-4 by non-B, non-T cells to amplify the Th2-cytokine response to a non-parasite antigen in Schistosoma mansoni- infected mice. J. Immunol. 156: 1482-1489 [Abstract]. |
26. | Wynn, T.A., I. Eltoum, I.P. Oswald, A.W. Cheever, and A. Sher. 1994. Endogenous interleukin 12 (IL-12) regulates granuloma formation induced by eggs of Schistosoma mansoni and exogenous IL-12 both inhibits and prophylactically immunizes against egg pathology. J. Exp. Med. 179: 1551-1561 [Abstract]. |
27. |
Svetic, A.,
F.D. Finkelman,
Y.C. Jian,
C.W. Dieffenbach,
D.E. Scott,
K.F. McCarthy,
A.D. Steinberg, and
W.C. Gause.
1991.
Cytokine gene expression after in vivo primary
immunization with goat antibody to mouse IgD antibody.
J. Immunol.
147:
2391-2397
|
28. | Doenhoff, M.J., R. Musallam, J. Bain, and A. McGregor. 1979. Studies on the host-parasite relationship in Schistosoma mansoni-infected mice: the immunological dependence of parasite egg excretion. Immunology. 35: 771-778 . |
29. | Sher, A., R.L. Coffman, S. Hieny, P. Scott, and A.W. Cheever. 1990. Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc. Natl. Acad. Sci. USA. 87: 61-65 [Abstract]. |
30. | Boros, D.L., R.P. Pelley, and K.S. Warren. 1975. Spontaneous down-modulation of granulomatous hypersensitivity in Schistosoma mansoni. J.Immunol. 114: 1437-1441 [Abstract]. |
31. |
Vella, A.T., and
E.J. Pearce.
1992.
CD4+ Th2 response induced by Schistosoma mansoni egg develops rapidly, through
an early, transient, Th0-like stage.
J. Immunol.
148:
2283-2290
|
32. |
Sher, A.,
S. Hieny,
S.L. James, and
R. Asofsky.
1982.
Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. II. Analysis of immunity in hosts deficient in T lymphocytes, B
lymphocytes, or complement.
J. Immunol.
128:
1880-1884
|
33. |
Amiri, P.,
M. Haak-Frendscho,
K. Robbins,
J.H. McKerrow,
T. Stewart, and
P. Jardieu.
1994.
Anti-immunoglobulin E
treatment decreases worm burden and egg production in
Schistosoma mansoni-infected normal and interferon ![]() |
34. | King, C.L., J. Xianli, I. Malhotra, S. Liu, A.A.F. Mahmoud, and H.C. Oettgen. 1997. Mice with targeted deletion of the IgE gene have increased worm burdens and reduced granulomatous inflammation following primary infection with Schistosoma mansoni. J. Immunol. 158: 294-300 [Abstract]. |
35. |
Brunet, L.R.,
F.D. Finkelman,
A.W. Cheever,
M.A. Kopf, and
E.J. Pearce.
1997.
IL-4 protects against TNF-![]() |
36. | Yap, G., A.W. Cheever, P. Caspar, D. Jankovic, and A. Sher. 1997. Unimpaired down-modulations in CD8 T cell- and gamma interferon-deficient mice chronically infected with Schistosoma mansoni. Infect. Immun. 65: 2583-2586 [Abstract]. |
36a. | Wynn, T.A., A.W. Cheever, M.E. Williams, S. Hieny, P. Caspar, R. Kühn, W. Müller, and A. Sher. Interleukin-10 regulates liver pathology in acute murine schistosomiasis mansoni but is not required for immune down-modulation of chronic disease. J. Immunol. In press. |
37. | Sher, A., S. McIntyre, and F. von Lichtenberg. 1977. Schistosoma mansoni: kinetics and class specificity of hypergammaglobulinemia induced during murine infection. Exp. Parasitol. 41: 415-422 [Medline]. |
38. |
Rocklin, R.E.,
A.P. Brown,
K.S. Warren,
R.P. Pelley,
V. Houba,
T.K.A. Siongok,
J. Ouma,
R.F. Sturrock, and
A.E. Butterworth.
1980.
Factors that modify the cellular-immune
response in patients infected by Schistosoma mansoni.
J. Immunol.
125:
1916-1923
|
39. |
Boros, D.L.,
A.F. Amsden, and
A.T. Hood.
1982.
Modulation of granulomatous hypersensitivity. IV. Immunoglobulin
and Ab production by vigorous and immunomodulated liver
granulomas of Schistosoma mansoni-infected mice.
J. Immunol.
128:
1050-1053
|
40. |
Scott, P.,
P. Natovitz, and
A. Sher.
1986.
B lymphocytes are
required for the generation of T cells that mediate healing of
cutaneous leishmaniasis.
J. Immunol.
137:
1017-1021
|
41. | Chen, J., M. Trounstein, F.W. Alt, C. Kurahara, J.F. Loring, and D. Huszar. 1993. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 6: 647-656 [Abstract]. |
42. | Hernandez, H.J., Y. Wong, and M.J. Stadecker. 1997. In infection with Schistosoma mansoni, B cells are required for T helper 2 cell responses but not for granuloma formation. J. Immunol. 158: 4832-4837 [Abstract]. |
43. | Liu, Y.L., Y. Wu, L. Ramarathinam, Y. Guo, D. Huszar, M. Trounstein, and M. Zhao. 1995. Gene-targeted B-deficient mice reveal a critical role for B cells in the CD4 T cell response. Int. Immunol. 8: 1353-1362 . |
44. | Wynn, T.A., A.W. Cheever, D. Jankovic, R.W. Poindexter, P. Caspar, F.A. Lewis, and A. Sher. 1995. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature. 376: 594-596 [Medline]. |
45. | Vellupillai, P., and D.A. Harn. 1994. Oligosaccharide-specific induction of IL-10 production by B220+ cells from schistosome infected mice: a mechanism for regulation of CD4+ T-cell subsets. Proc. Natl. Acad. Sci. USA. 91: 18-23 [Abstract]. |
46. |
Dombrowicz, D.,
V. Flamand,
K.K. Brigman,
B.H. Koller, and
J.-P. Kinet.
1993.
Abolition of anaphylaxis by targeted
disruption of the high affinity immunoglobulin E receptor ![]() |
47. |
Jankovic, D.,
M.C. Kullberg,
D. Dombrowicz,
S. Barbieri,
P. Caspar,
T.A. Wynn,
W.E. Paul,
A.W. Cheever,
J.-P. Kinet, and
A. Sher.
1997.
Fc![]() |
48. |
Takai, T.,
M. Ono,
M. Hikida,
H. Ohmori, and
J.V. Ravetch.
1996.
Augmented humoral and anaphylactic responses in Fc![]() |
49. |
Hazenbos, W.L.W.,
J.E. Gressner,
F.M.A. Hofhuis,
H. Kuipers,
D. Meyer,
I.A.F.M. Heijnen,
R.E. Schmidt,
M. Sandor,
P.J.A. Capel,
M. Daeron, et al
.
1996.
Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc![]() |
50. |
Weinstock, J.V.,
S.W. Chensue, and
D.L. Boros.
1983.
Modulation of granulomatous hypersensitivity. V. Participation of
histamine receptor positive and negative lymphocytes in the
granulomatous response of Schistosoma mansoni-infected mice.
J. Immunol.
130:
423-427
|
51. | Sylvester, D.L., and J.V. Ravetch. 1994. Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science. 265: 1095-1098 [Medline]. |
52. |
Wolf, S.D.,
B.N. Dittel,
F. Hardardottir, and
C.A. Janeway Jr..
1996.
Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice.
J. Exp. Med.
184:
2271-2278
|