Department of Pharmacology and Vascular Cell Signaling Program, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
(e-mail: william.sessa{at}yale.edu)
![]() |
Introduction |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
|
![]() |
Various extracellular signals can promote NO release from endothelial cells |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
![]() |
Intrinsic control of eNOS function |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
![]() |
Regulated protein-protein interactions |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
![]() |
Effectors of NO |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
![]() |
References |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Boo, Y. C. and Jo, H. (2003). Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am. J. Physiol. Cell Physiol. 285, C499-C508.
Chen, Z. P., Mitchelhill, K. I., Michell, B. J., Stapleton, D., Rodriguez-Crespo, I., Witters, L. A., Power, D. A., Ortiz de Montellano, P. R. and Kemp, B. E. (1999). AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 443, 285-289.[CrossRef][Medline]
Dimmeler, S., Fissthaler, B., Fleming, I., Assmus, B., Hermann, C. and Zeiher, A. (1998). Shear stress stimulates the protein kinase Akt-involvement in the regulation of endothelial nitric oxide synthase. Circulation 98, I-312.
Feil, R., Lohmann, S. M., de Jonge, H., Walter, U. and Hofmann, F. (2003). Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ. Res. 93, 907-916.
Fleming, I., Fisslthaler, B., Dimmeler, S., Kemp, B. E. and Busse, R. (2001). Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ. Res. 88, E68-E75.[Medline]
Fulton, D., Gratton, J. P., McCabe, T. J., Fontana, J., Fujio, Y., Walsh, K., Franke, T. F., Papapetropoulos, A. and Sessa, W. C. (1999). Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601.[CrossRef][Medline]
Fulton, D., Gratton, J. P. and Sessa, W. C. (2001). Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough? J. Pharmacol. Exp. Ther. 299, 818-24.
García-Cardeña, G., Oh, P., Liu, J., Schnitzer, J. E. and Sessa, W. C. (1996). Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: Implications for nitric oxide signaling. Proc. Natl. Acad. Sci. USA 93, 6448-6453.
Griffith, O. W. and Stuehr, D. J. (1995). Nitric oxide synthases: properties and catalytic mechanism. Annu. Rev. Physiol. 57, 707-736.[CrossRef][Medline]
Harris, M. B., Ju, H., Venema, V. J., Liang, H., Zou, R., Michell, B. J., Chen, Z. P., Kemp, B. E. and Venema, R. C. (2001). Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J. Biol. Chem. 276, 16587-16591.
Haynes, M. P., Sinha, D., Russell, K. S., Collinge, M., Fulton, D., Morales-Ruiz, M., Sessa, W. C. and Bender, J. R. (2000). Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ. Res. 87, 677-682.
Igarashi, J. and Michel, T. (2001). Sphingosine 1-phosphate and isoform-specific activation of phosphoinositide 3-kinase beta. Evidence for divergence and convergence of receptor-regulated endothelial nitric-oxide synthase signaling pathways. J. Biol. Chem. 276, 36281-36288.
Jiang, J., Cyr, D., Babbitt, R. W., Sessa, W. C. and Patterson, C. (2003). Chaperone-dependent regulation of endothelial nitric-oxide synthase intracellular trafficking by the co-chaperone/ubiquitin ligase CHIP. J. Biol. Chem. 278, 49332-49341.
Lane, P. and Gross, S. S. (2002). Disabling a C-terminal autoinhibitory control element in endothelial nitric-oxide synthase by phosphorylation provides a molecular explanation for activation of vascular NO synthesis by diverse physiological stimuli. J. Biol. Chem. 277, 19087-19094.
Lin, M. I., Fulton, D., Babbitt, R., Fleming, I., Busse, R., Pritchard, K. A., Jr and Sessa, W. C. (2003). Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of L-arginine metabolism to efficient nitric oxide production. J. Biol. Chem. 278, 44719-44726.
Liu, J. and Sessa, W. C. (1994). Identification of covalently bound amino-terminal myristic acid in endothelial nitric oxide synthase. J. Biol. Chem. 269, 11691-11694.
Liu, J., García-Cardeña, G. and Sessa, W. C. (1995). Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines-15 and/or -26, argues against depalmitoylation-induced translocation of the enzyme. Biochemistry 34, 12333-12340.[Medline]
Liu, J., Hughes, T. E. and Sessa, W. C. (1997). The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the golgi region of cells: a green fluorescent protein study. J. Cell Biol. 137, 1525-1535.
McCabe, T. J., Fulton, D., Roman, L. J. and Sessa, W. C. (2000). Enhanced electron flux and reduced calmodulin dissociation may explain "calcium-independent" eNOS activation by phosphorylation. J. Biol. Chem. 275, 6123-6128.
Michell, B. J., Harris, M. B., Chen, Z. P., Ju, H., Venema, V. J., Blackstone, M. A., Huang, W., Venema, R. C. and Kemp, B. E. (2002). Identification of regulatory sites of phosphorylation of the bovine endothelial nitricoxide synthase at serine 617 and serine 635. J. Biol. Chem. 277, 42344-42351.
Miranda, K. M., Nims, R. W., Thomas, D. D., Espey, M. G., Citrin, D., Bartberger, M. D., Paolocci, N., Fukuto, J. M., Feelisch, M. and Wink, D. A. (2003). Comparison of the reactivity of nitric oxide and nitroxyl with heme proteins. A chemical discussion of the differential biological effects of these redox related products of NOS. J. Inorg. Biochem. 93, 52-60.[CrossRef][Medline]
Morales-Ruiz, M., Lee, M. J., Zollner, S., Gratton, J. P., Scotland, R., Shiojima, I., Walsh, K., Hla, T. and Sessa, W. C. (2001). Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J. Biol. Chem. 276, 19672-19677.
Nedvetsky, P. I., Sessa, W. C. and Schmidt, H. H. (2002). There's NO binding like NOS binding: protein-protein interactions in NO/cGMP signaling. Proc. Natl. Acad. Sci. USA 99, 16510-16512.
Salerno, J. C., Harris, D. E., Irizarry, K., Patel, B., Morales, A. J., Smith, S. M., Martasek, P., Roman, L. J., Masters, B. S., Jones, C. L. et al. (1997). An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J. Biol. Chem. 272, 29769-29777.
Simoncini, T., Hafezi-Moghadam, A., Brazil, D. P., Ley, K., Chin, W. W. and Liao, J. K. (2000). Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538-541.[CrossRef][Medline]
Stamler, J. S., Lamas, S. and Fang, F. C. (2001). Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106, 675-683.[Medline]
Zabel, U., Kleinschnitz, C., Oh, P., Nedvetsky, P., Smolenski, A., Muller, H., Kronich, P., Kugler, P., Walter, U., Schnitzer, J. E. et al. (2002). Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nat. Cell Biol. 4, 307-311.[CrossRef][Medline]
Related articles in JCS: