|
Article |
Correspondence to Sally Kornbluth: Kornb001{at}mc.duke.edu
![]() |
Abstract |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Abbreviations used in this paper: ß-TrCP, ß transducin repeat containing protein; ELB, egg lysis buffer; GVBD, germinal vesicle breakdown; Hsl7, histone synthetic lethal 7; JBP1, Janus kinase binding protein 1; Plk1, Polo-like kinase; Plx1, Xenopus Polo-like kinase; SCF, Skp1cullinF box.
![]() |
Introduction |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
In the yeast Saccharomyces cerevisiae, the stability of the Wee1 homologue, Swe1 is under the control of a checkpoint pathway monitoring budding and the status of the actin cytoskeleton (the morphogenesis checkpoint; Sia et al., 1996). This checkpoint is thought to prevent mitotic entry, at least in part, through stabilization of Swe1 (Sia et al., 1998). Looking to this system for candidate Wee1 regulators, we were struck by the requirement for an evolutionarily conserved methyltransferase, Hsl7 (histone synthetic lethal 7), in promoting Wee1 degradation. The morphogenesis checkpoint regulates interaction of Hsl7 with an associated kinase, Hsl1, to prevent Swe1 degradation. Consistent with these observations, overexpression of Hsl7 can override the morphogenesis checkpoint, allowing mitotic entry even when budding is inhibited (McMillan et al., 1999). These data place S. cerevisiae Hsl7 as a central regulator of Swe1 protein stability. In contrast, the Hsl7 homologue (Skb1) in the fission yeast, Schizosaccharomyces pombe, appears to have a cell cycle role diametrically opposed to that of S. cerevisiae Hsl7. Specifically, Skb1 has been reported to inhibit, rather than promote, mitotic entry through direct binding to the mitotic Cdc2cyclin complex (Gilbreth et al., 1998). In addition to its activity in cell cycle regulation, Skb1 has been reported to regulate morphogenesis (in association with a PAK family kinase) and to be involved in the hyperosmotic stress response, which stimulates Skb1 methyltransferase activity (Yang et al., 1999; Bao et al., 2001).
Although Hsl7 homologues have been reported in vertebrates, including humans, analyses of their potential role (stimulatory or inhibitory) in controlling mitotic entry has been hampered by a potentially distinct requirement for vertebrate Hsl7 as a component of the methylosome regulating mRNA splicing (Friesen et al., 2001). Therefore, to analyze Hsl7 cell cycle function we turned to the Xenopus egg extract, which can undergo multiple cell cycles in vitro without any de novo mRNA transcription, allowing an analysis of cell cycle regulation in a system free of confounding effects on mRNA processing (Friesen et al., 2001). We report here that Xenopus Hsl7 controls entry into M phase by controlling the intranuclear stability of Wee1. Moreover, just as overproduction of Hsl7 can override the morphogenesis checkpoint in budding yeast, overproduction of Xenopus Hsl7 can short-circuit the DNA replication checkpoint, allowing mitotic entry in the presence of incompletely replicated DNA. These data strongly suggest that the Hsl7Wee1 cell cycle control module can be used for controlling entry into mitosis in vertebrates, as well as in S. cerevisiae, but that this module has been co-opted by vertebrates to respond to a different checkpoint signal than in yeast.
![]() |
Results |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
|
|
Depletion or inhibition of Hsl7 delays the entry into mitosis
Using a commercially available antibody directed against the human Hsl7 homologue, JBP1, we were readily able to detect endogenous xHsl7 (Fig. 3 A). Moreover, this antibody could detect xHsl7 co-immunoprecipitated with endogenous Wee1 (Fig. 3 B). This interaction was further confirmed by retrieval of Wee1 from egg extracts by recombinant GSTxHsl7 linked to glutatione sepharose (Fig. 3 C). These data suggested that xHsl7 could positively regulate mitotic entry, perhaps through an interaction with Wee1. Given these data, we wished to assess the consequences of xHsl7 removal or inactivation on entry into mitosis. Therefore, we used Hsl7 antibodies to immunodeplete xHsl7 from cycling extracts. As shown in Fig. 4 A, extracts depleted with control IgG underwent two rounds of mitosis, as measured by peaks of histone H1-directed kinase activity, whereas extracts depleted of xHsl7 were entirely blocked in their ability to enter mitosis. To examine the role of xHsl7 using another approach, we added anti-Hsl7 antibodies directly to cycling extracts with the goal of interfering with xHsl7 function. Consistent with a role for xHsl7 in promoting mitotic entry, we found that addition of purified anti-Hsl7 antibodies, but not control IgG, to cycling egg extracts was able to significantly delay entry into mitosis as measured by histone H1-directed kinase activity assays and microsocopic observation of chromsome condensation/nuclear envelope breakdown (Fig. 4, B and C). Moreover, readdition of recombinant xHsl7 restored the normal timing of mitotic entry, demonstrating that the effects of the anti-Hsl7 antibody were specific (Fig. 4, B and C). These data suggest that xHsl7 is required for efficient entry into M phase in Xenopus.
|
|
|
Hsl7 promotes nuclear Wee1 degradation
It has been reported that the DNA replication checkpoint stabilizes Wee1 within nuclei, where it would otherwise be degraded at the time of mitotic entry (Michael and Newport, 1998). In examining xHsl7-mediated Wee1 degradation in oocytes injected with both excess xHsl7 mRNA and radiolabeled in vitro translated Wee1, we noted that xHsl7 overproduction promoted specific loss of the nuclear Wee1, as detected by SDS-PAGE and autoradiography of manually dissected oocyte nuclei (Fig. 6 A; nuclear envelope breakdown was prevented by addition of the Cdc2 inhibitor roscovitine). Although Wee1 was also lost from the cytoplasm during these experiments, this loss was not stimulated by xHsl7 overproduction. Moreover, since Wee1 is rapidly transported into oocyte nuclei, we suspect that much of the loss of cytoplasmic Wee1 reflects nuclear import (unpublished data). As in S. cerevisiae, xHsl7-stimulated loss of Wee1 was not abrogated by disruption of the well-conserved residues responsible for methyltransferase activity (Fig. 6 B), nor was it inhibited by leptomycin B treatment to stop Crm1-mediated nuclear export (Fig. 6 C; note the increase in nuclear Wee1 in control injections due to inhibition of nuclear export. Xenopus Hsl7 injection counteracts even the added burden of imported Wee1 that cannot be exported). These data are consistent with data reported previously suggesting intranuclear Wee1 degradation, particularly as nuclear export of Swe1 depends on the Crm1 homologue, Expo1 (Lew, D.J., personal communication).
|
One important feature of xHsl7-stimulated nuclear Wee1 degradation in oocytes was its dependence upon progesterone treatment, suggesting that M phasepromoting factors were required for Wee1 degradation (such factors must be distinct from Cdc2cyclin B, as these experiments were performed in the presence of roscovitine; unpublished data). Interestingly, Wee1 exhibited a noticeable electrophoretic shift within the nuclear, but not cytoplasmic, fraction before degradation, which may reflect phosphorylation by kinases active at G2/M (Fig. 6 A). It is also of interest to note that xHsl7 and Wee1 were unable to interact in Xenopus egg extracts lacking nuclei, consistent with an intranuclear locus of xHsl7 action (Fig. 6 E); we have also found that xHsl7 is efficiently transported into nuclei (unpublished data). These data suggest either that xHsl7 and Wee1 do not achieve sufficient concentration in the cytoplasm for interaction or that additional intranuclear factors are required for xHsl7Wee1 binding. Consistent with these data, xHsl7 and Wee1 did not interact in mitotic extracts of Xenopus eggs where there is no nuclear compartmentalization (Fig. 6 F).
Hsl7 overexpression overrides the DNA replication checkpoint
In S. cerevisiae, inhibition of budding or actin depolymerization triggers the morphogenesis checkpoint to prevent Hsl7-stimulated Swe1 degradation (McMillan et al., 1999). Accordingly, overexpression of Hsl7 will override the morphogenesis checkpoint. Using similar logic, it was attractive to speculate that overexpression of xHsl7 might override the DNA replication checkpoint as this has been reported to promote stabilization of nuclear Wee1. To test this, we added excess xHsl7 mRNA to cycling extracts supplemented with nuclei and the DNA polymerase inhibitor, aphidicolin, and monitored activation of Cdc2cyclin B1-catalyzed histone H1 kinase activity. Remarkably, excess xHsl7 abrogated G2/M arrest by the checkpoint, allowing the efficient activation of Cdc2cyclin B and entry into mitosis even when DNA synthesis was inhibited (Fig. 7 A).
|
Plx regulates the xHsl7Wee1 interaction
DNA responsive checkpoints are known to inhibit the Polo-like kinase (Plk1; Smits et al., 2000; van Vugt et al., 2001; Deming et al., 2002) and the Plk1 homologue Cdc5 interacts genetically with yeast Swe1 (Bartholomew et al., 2001). Moreover, Cdc5 can phosphorylate Swe1 (Sakchaisri et al., 2004), and it was recently found that SCFß-TrCP recognition of human Wee1 requires Plk1-mediated phosphorylation (Watanabe et al., 2004). Therefore, we sought to determine if checkpoint signaling through Xenopus Polo-like kinase (Plx1) might impact the xHsl7Wee1 interaction. Remarkably, when we supplemented Xenopus egg extracts with a constitutively active Plx1 kinase (Qian et al., 1999), xHsl7Wee1 interactions that were abrogated by the DNA replication checkpoint were restored even in the continued presence of aphidicolin to maintain a replication arrest (Fig. 7 C). These data strongly suggest that inhibiting Plx1 function is important for stabilizing Wee1 and that the ability of the DNA replication checkpoint to inhibit Plx1 feeds into control of Wee1 stability, at least in part, by modulating the xHsl7Wee1 complex.
![]() |
Discussion |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Hsl7 and the control of nuclear Wee1 stability
The ability of xHsl7 to accelerate mitotic entry in egg extracts only in the presence of nuclei is consistent with previous reports suggesting that Wee1 degradation is an intranuclearlycontrolled event. Indeed, we also found that overexpression of xHsl7 in oocytes had no effect on M phase entry unless Wee1 was present and this effect was apparently exerted at the level of nuclear Wee1 stability. There are a number of possible explanations for this nuclear requirement. First, it may be that xHsl7 and Wee1 only achieve sufficient concentration for binding when both are present within nuclei. Consistent with this idea, we observed a strong interaction between these proteins only in the presence of nuclei. It is also possible that a specific nuclear structure serves to promote their colocalization and interaction. For example, modulation of xHsl7Wee1 interactions in response to the DNA replication checkpoint may reflect a direct effect of replication structures on xHsl7Wee1 binding. It is also possible that the effect of nuclei reflects a requirement for specific nuclearly localized cofactors in Wee1 degradation. For example, we note that both Wee1 and xHsl7 appear to be phosphorylated just before the disappearance of Wee1. It may be that nuclear kinases contribute to Wee1 degradation.
Our data suggest that Plx1 can facilitate Wee1 degradation by promoting xHsl7Wee1 interactions. Moreover, the reported down-regulation of polo-like kinases by DNA-responsive checkpoints could potentially lead to stabilization of Wee1 by preventing efficient xHsl7Wee1 binding. Recently, it was reported that Plk1 can stimulate interactions between human Wee1 and ß-TrCP through phosphorylation of Wee1 (Watanabe et al., 2004). One intriguing possibility is that the Plx1 stimulation of xHsl7Wee1 interactions leads to enhanced interactions of Wee1 with SCF E3 ubiquitin ligases. Although this issue merits further investigation, we have observed only weak (potentially nonspecific) interactions between Xenopus Wee1 and its two reported F-box interactors (ß-TrCP and Tome1) and these interactions do not appear to be markedly altered by either xHsl7 overexpression or depletion. With regard to ß-TrCP interactions, it is worth noting that the Plk1 phosphorylation site on the somatic human Wee1A (S53) that has been implicated in Wee1 degradation is not conserved in Xenopus Wee1 (Watanabe et al., 2004). Thus, further evaluation of Plx1 involvement in promoting xHsl7Wee1 binding and Wee1 degradation will require identification of sites phosphorylated by Plx1 on Xenopus Wee1. As preliminary in vitro kinase assays using purified Plx and Wee1 proteins suggest that there are likely to be multiple sites of Plx1 phosphorylation on Xenopus Wee1 (unpublished data), it may require extensive mutagenesis to identify sites relevant for promoting Wee1 degradation (note the presence of at least 20 Cdc5 sites on S. cerevisiae Swe1; Sakchaisri et al., 2004).
With regard to the role of phosphorylation in promoting xHsl7Wee1 interactions, it is also of interest that one of the key regulators of Swe1 stability in yeast is an Hsl7-interacting kinase, Hsl1 (McMillan et al., 1999; Cid et al., 2001). A true vertebrate Hsl1 has not yet been identified, in part because Hsl1 is a member of a large class of protein kinases, most of which do not function in cell cycle control, and the conservation between Hsl1-like proteins in different species is too low to allow definitive identification of a vertebrate ortholog by sequence analysis. It may soon be possible, however, to identify such a protein through interaction with our Xenopus Hsl7 clone.
Multiple roles for Hsl7
Hsl7 homologues have been reported to have different roles in different species (Gilbreth et al., 1998; McMillan et al., 1999; Pollack et al., 1999; Shulewitz et al., 1999; Yang et al., 1999; Ma, 2000; Bao et al., 2001; Friesen et al., 2001; Meister et al., 2001). For example, unlike in S. cerevisiae where Hsl7 has been shown to regulate Swe1 stability (McMillan et al., 1999), the S. pombe Hsl7 has been reported to inhibit Cdc2 through direct binding (Gilbreth et al., 1998). We have been unable to detect any such direct interactions between xHsl7 and Cdc2 in Xenopus (unpublished data). Because the vertebrate cell cycle shares with S. pombe the use of Cdc2 tyrosine phosphorylation to control both the timing of unperturbed mitotic entry and cell cycle delay in response to DNA checkpoints (Rhind and Russell, 1998; Norbury et al., 1991), it is perhaps surprising that xHsl7 function is more akin to that of its S. cerevisiae homologue, where DNA responsive checkpoints do not promote a specific G2 arrest. With regard to vertebrate Hsl7, we note that it has been reported that the human homologue, JBP1, can complement an S. cerevisiae Hsl7 mutation (Lee et al., 2000). Moreover, at the start of this work we found that S. cerevisiae Hsl7 can interact physically with Xenopus Wee1.
In both S. cerevisiae and in our own experiments in Xenopus, it appears that residues critical for Hsl7 methyltransferase activity are dispensable for the cell cycle effects of Hsl7 (Theesfeld et al., 2003). These data suggest that Hsl7 functions in at least two modesas a cell cycle regulator (perhaps through direct binding of its targets or recruitment of other factors to its targets) and as a methyltransferase involved in distinct biological processes. In this regard, it has been reported that the S. pombe Hsl7 homologue is a mediator of hyperosmotic stress whose methyltransferase activity is stimulated under stressor conditions and in human cells, JBP1 can interact with Jak family kinases, presumably to control transcription (Pollack et al., 1999; Bao et al., 2001). In addition, the human 20S methylosome that methylates Sm proteins before assembly into SnRNP core particles contains Hsl7 as a catalytic subunit (Friesen et al., 2001; Meister et al., 2001). Our data showing that xHsl7 can affect cell cycle progression in the transcriptionally inactive Xenopus egg extract further strengthens the idea that the effects of xHsl7 on RNA transcription/processing are very likely to be distinct from its cell cycle effects. Additionally, xHsl7 methyltransferase activity is likely to be more important for the former than the latter.
Hsl7Wee1 as a checkpoint control module
In budding yeast, degradation of Swe1 involves the hierarchical association of Hsl1, then Hsl7, then Swe1 to the mother/bud neck (Shulewitz et al., 1999; Longtine et al., 2000). When budding is prevented, the morphogenesis checkpoint is activated, leading to inactivation of the Hsl1Hsl7Swe1 cell cycle control module and consequent stabilization of Swe1 (McMillan et al., 1999). This is accomplished, at least in part, by impairing proper recruitment of Hsl7 to the septin cortex. Although these specifics of Swe1 degradation are obviously not directly applicable to Wee1 degradation in animal cells that do not reproduce by budding, our data indicate that Hsl7 can also be used to control Wee1 stability in vertebrates. In effect, these data demonstrate that cell cycle control "modules" can be co-opted for use by different checkpoint signaling pathways. In S. cerevisiae, Hsl7 does, indeed, regulate Swe1 stability, but this regulatory module is under the control of pathways responding to perturbations in morphogenesis. In vertebrate cells, control of Wee1 stability is important for the operation of DNA-responsive checkpoints that operate to control the state of Cdc2 tyrosine phosphorylation.
![]() |
Materials and methods |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Plasmid construction and RNA synthesis
GST-xHsl7 was constructed by inserting the Xenopus EST clone into the BglII and HindIII sites of pGEX'KG, resulting in addition of nine amino acids to the linker between GST and xHsl7. FLAG-xHsl7 was amplified by PCR using FLAG-xHsl7/BglII (5'-TTT AGA TCT ATG GAC TAC AAG GAC GAC GAT GAC AAG ATG GCG GCA GGT G-3') and xHsl7/NotI (5'-TTG CGG CCG CAA TCA CAG GCC AAT TG-3'). The amplified fragment was digested with BglII and NotI and subcloned into pSP64T, yielding pSP64T/FLAG-xHsl7. The metyltransferase mutant of xHsl7 (Arg364 to Ala) was made using the Quick Change Site-Directed Mutagensis Kit (Stratagene); the primers used were 5'-GTG CTC GGA GCA GGC GCG GGA CCC CTT-3' and 5'-AAG GGG TCC CGC GCC TGC TCC GAG CAC-3'. To prepare pSP64T/HA-Wee1, Wee1 was PCR amplified using xWee1/BglII (5'-AAG GTG AGA TCT ATG AGA ATG GCC-3') and xWee1/NotI (5'-TTG CGG CCG CAA TTA ATA CCC TCC GC-3'). The PCR fragment was digested with BglII and NotI, and subcloned into pEBB-HA vector. Then, HA-Wee1 was amplified again by PCR using HA/BamHI (5'-CTT GGA TCC ATG GCT TCT AGC TAT CCT TAT GAC-3') and xWee1/NotI, digested with BamHI and NotI, and subcloned into pSP64T. Constructs were digested with XbaI and mRNAs prepared using Stratagene's mCAP RNA capping kit.
Purification of recombinant xHsl7 and Plx1
GST-xHsl7 in BL21 E. coli. was grown to an OD600 of 0.5 at 37°C. It was then transferred to 18°C and grown to an OD600 of 0.8 and induced with 50 µl 0.5 M isopropyl-1-thio-ß-D-galactopyranoside per liter for 18 h. Proteins were prepared as in Walsh et al. (2003). To obtain cleaved xHsl7, GST-xHsl7 beads were washed twice and incubated with 500 µl of thrombin cleavage buffer (20 mM Tris, pH 8.4, 150 mM NaCl, and 2.5 mM CaCl2) with 10 U thrombin for 1 h at room temp. Cleaved protein was dialyzed into XB buffer (100 mM KCl, 50 mM sucrose, 10 mM Hepes, pH 7.7, 1 mM MgCl2, and 0.1 mM CaCl2). For binding assay of GST-xHsl7 and Wee1 protein, GST-xHsl7 or GST beads were washed twice with egg lysis buffer (ELB; pH 7.7; 250 mM sucrose, 50 mM KCl, 10 mM Hepes, 2.5 mM MgCl2, and 1 mM DTT) and then incubated with interphase egg extract for 1 h at 4°C. The beads were washed five times in ELB and bound proteins were eluted with SDS-PAGE sample buffer, resolved by SDS-PAGE and blotted with anti-Wee1 (Zymed Laboratories). Plx1 and constitutively active Plx1 (T201D) were purified as described previously (Qian et al., 1998). GST-Hsl7 (yeast) was a gift from the lab of Daniel Lew (Duke University, Durham, NC).
Xenopus egg extract and immunodepletion of Hsl7
Xenopus egg extracts (cycling, interphase [S], and ultra S) and sperm chromatin were prepared as described previously (Murray, 1991). For immunodepletion of xHsl7 from egg extract, 10 µg of anti-JBP1(Hsl7) or control mouse IgG1 (Abcam) was bound to 40 µl of a 1:1 mixture of protein ASepharose 4B beads and Sepharose 4B rat antimouse IgG1 beads and then washed twice with egg lysis buffer. These beads were then incubated under constant agitation with 100 µl of egg extract for 30 min at 4°C. The depletion procedure was then repeated with a new set of beads to allow for maximal depletion.
Histone H1 kinase assay
2 µl of cycling extracts was added to 28 µl of H1 kinase reaction mix (final concentrations, 10 mM Hepes KOH [pH 7.2], 5 mM MgCl2, 50 mM NaCl, 83 µM ATP, 4.2 mM DTT, 5 µg of histone H1) and 2 µCi [-32P]ATP. The reactions were incubated at room temperature for 10 min and resolved by 12.5% SDS-PAGE. The bands corresponding to histone H1 were quantified with a phosphorimager (Molecular Dynamics).
Oocyte injection and Wee1 degradation assay
Stage VI oocytes were prepared as described previously (Swenson et al., 1989). 40 nl of mRNAs (40 ng) encoding ß-globin or FLAG-xHsl7 were injected into oocytes. Injected oocytes were incubated in 50 µM roscovitine. After 12 h, they were injected with 40 nl of 35S-labeled in vitrotranslated Wee1 and treated with 1 µM progesterone and roscovitine in modified Barth's + Ca buffer. Five oocytes were separated into nuclear and cytoplasmic fractions by manual dissection under mineral oil. Nuclei were resuspended in SDS-PAGE sample buffer. Cytoplasmic fractions were suspended in buffer (20 mM Hepes KOH, pH 7.5, 20 mM ß-glycerophosphate, 15 mM MgCl2, 20 mM EGTA, 1 mM PMSF, and 5 ng/µl aprotinin/leupeptin) and spun for 5 min at 13,000 g to remove insoluble material. The fractions were separated on 10% SDS-PAGE and the remaining Wee1 in these fractions was quantified by phosphorimager.
Co-immunoprecipitation of xHsl7 and Wee1
For co-immunoprecipitation of Wee1 and xHsl7 in interphase extracts, 10 µg anti-Wee1 or control rabbit IgG was bound to 20 µl of protein ASepharose 4B beads, washed twice with ELB, and then incubated with interphase egg extract for 1 h at 4°C. Beads were then washed three times with ELB, eluted with SDS-PAGE sample buffer, resolved by SDS-PAGE, and blotted with anti-JBP1 (BD Biosciences). For co-immunoprecipitation of xHsl7 and Wee1 in cycling extracts, 7.5 µg of HA-Wee1 mRNA was added to 150 µl of extract with or without 5,000/µl sperm chromatin and 0.5 mM Na3VO4 and incubated at room temperature for 60 min. In some cases, 0.2 mg/ml aphidicolin was added. Extracts were then diluted with buffer (10 mM Hepes KOH, pH 7.5, 0.1 M KCl, 0.1% Nonidet P-40, and 10 mM ß-glycerophosphate) and incubated with 20 µl of anti-HA affinity matrix (Roche) at 4°C. After 2 h, beads were washed twice and eluted with SDS-PAGE sample buffer. Bound fractions were subjected to SDS-PAGE followed by anti-JBP1 immunoblotting.
Cdc2 Tyr15 phosphorylation
To measure the effect of Hsl7 on Cdc2 tyrosine 15 phosphorylation rates, 100 µl aliquots of egg were either depleted with anti-JBP1 sera or with preimmune sera. In addition, 100 µl aliquots of cytosol were supplemented with 10 µl of XB buffer or 10 µl of recombinant xHsl7 in XB buffer. Samples were incubated for 10 min at 4°C with an ATP-regenerating system with or without 0.5 mM Na3VO4. Kinase assays were initiated by addition of 1 µl of cyclin B113 and proceeded for 10 min before SDS-PAGE sample buffer addition. 2 µl of each sample was then resolved by SDS-PAGE and blotted with anti-phosphoCdc2 (Cell Signaling Technology).
Microscopy
DNA was stained with Hoechst 33258 and nuclear morphology was examined using a Zeiss Axioskop with a 40x Plan-Neofluar air objective with an NA of 0.75. Images were captured using a Pentamax cooled charge-coupled device camera (Princeton Instruments), interfaced with MetaMorph software (Universal Imaging Corp.) and levels were adjusted using Adobe Photoshop 7.0.
![]() |
Acknowledgments |
---|
This work was supported by National Institutes of Health grant RO1GM067225 to S. Kornbluth. A. Yamada was supported by the Yamada Science Foundation, and is currently supported by the Uehara Memorial Foundation. B. Duffy is a predoctoral fellow of the Pharma Foundation.
Submitted: 8 June 2004
Accepted: 28 October 2004
![]() |
References |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Ayad, N.G., S. Rankin, M. Murakami, J. Jebanathirajah, S. Gygi, and M.W. Kirschner. 2003. Tome-1, a trigger of mitotic entry, is degraded during G1 via the APC. Cell. 113:101113.[Medline]
Bao, S., Y. Qyang, P. Yang, H. Kim, H. Du, G. Bartholomeusz, J. Henkel, R. Pimental, F. Verde, and S. Marcus. 2001. The highly conserved protein methyltransferase, Skb1, is a mediator of hyperosmotic stress response in the fission yeast Schizosaccharomyces pombe. J. Biol. Chem. 276:1454914552.
Bartholomew, C.R., S.H. Woo, Y.S. Chung, C. Jones, and C.F. Hardy. 2001. Cdc5 interacts with the Wee1 kinase in budding yeast. Mol. Cell. Biol. 21:49494959.
Cid, V.J., M.J. Shulewitz, K.L. McDonald, and J. Thorner. 2001. Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle. Mol. Biol. Cell. 12:16451669.
Deming, P.B., K.G. Flores, C.S. Downes, R.S. Paules, and W.K. Kaufmann. 2002. ATR enforces the topoisomerase II-dependent G2 checkpoint through inhibition of Plk1 kinase. J. Biol. Chem. 277:3683236838.
Elledge, S.J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science. 274:16641672.
Friesen, W.J., S. Paushkin, A. Wyce, S. Massenet, G.S. Pesiridis, G. Van Duyne, J. Rappsilber, M. Mann, and G. Dreyfuss. 2001. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell. Biol. 21:82898300.
Gilbreth, M., P. Yang, G. Bartholomeusz, R.A. Pimental, S. Kansra, R. Gadiraju, and S. Marcus. 1998. Negative regulation of mitosis in fission yeast by the shk1 interacting protein skb1 and its human homolog, Skb1Hs. Proc. Natl. Acad. Sci. USA. 95:1478114786.
Lee, J., A. Kumagai, and W.G. Dunphy. 2001. Positive regulation of Wee1 by Chk1 and 14-3-3 proteins. Mol. Biol. Cell. 12:551563.
Lee, J.H., J.R. Cook, B.P. Pollack, T.G. Kinzy, D. Norris, and S. Pestka. 2000. Hsl7p, the yeast homologue of human JBP1, is a protein methyltransferase. Biochem. Biophys. Res. Commun. 274:105111.[CrossRef][Medline]
Lew, D.J., and S. Kornbluth. 1996. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr. Opin. Cell Biol. 8:795804.[CrossRef][Medline]
Longtine, M.S., C.L. Theesfeld, J.N. McMillan, E. Weaver, J.R. Pringle, and D.J. Lew. 2000. Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol. Cell. Biol. 20:40494061.
Ma, X.J. 2000. Cell-cycle regulatory proteins Hsl7p/Skb1p belong to the protein methyltransferase superfamily. Trends Biochem. Sci. 25:1112.[CrossRef][Medline]
McMillan, J.N., M.S. Longtine, R.A. Sia, C.L. Theesfeld, E.S. Bardes, J.R. Pringle, and D.J. Lew. 1999. The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol. Cell. Biol. 19:69296939.
Meister, G., C. Eggert, D. Buhler, H. Brahms, C. Kambach, and U. Fischer. 2001. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr. Biol. 11:19901994.[CrossRef][Medline]
Michael, W.M., and J. Newport. 1998. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science. 282:18861889.
Murray, A.W. 1991. Cell cycle extracts. Methods Cell Biol. 36:581605.[Medline]
Nakajo, N., S. Yoshitome, J. Iwashita, M. Iida, K. Uto, S. Ueno, K. Okamoto, and N. Sagata. 2000. Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev. 14:328338.
Norbury, C., J. Blow, and P. Nurse. 1991. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J. 10:33213329.[Abstract]
Pollack, B.P., S.V. Kotenko, W. He, L.S. Izotova, B.L. Barnoski, and S. Pestka. 1999. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J. Biol. Chem. 274:3153131542.
Qian, Y.W., E. Erikson, C. Li, and J.L. Maller. 1998. Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol. Cell. Biol. 18:42624271.
Qian, Y.W., E. Erikson, and J.L. Maller. 1999. Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1. Mol. Cell. Biol. 19:86258632.
Rhind, N., and P. Russell. 1998. Tyrosine phosphorylation of cdc2 is required for the replication checkpoint in Schizosaccharomyces pombe. Mol. Cell. Biol. 18:37823787.
Sakchaisri, K., S. Asano, L.R. Yu, M.J. Shulewitz, C.J. Park, J.E. Park, Y.W. Cho, T.D. Veenstra, J. Thorner, and K.S. Lee. 2004. Coupling morphogenesis to mitotic entry. Proc. Natl. Acad. Sci. USA. 101:41244129.
Shulewitz, M.J., C.J. Inouye, and J. Thorner. 1999. Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:71237137.
Sia, R.A., H.A. Herald, and D.J. Lew. 1996. Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol. Biol. Cell. 7:16571666.[Abstract]
Sia, R.A., E.S. Bardes, and D.J. Lew. 1998. Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J. 17:66786688.
Smits, V.A., R. Klompmaker, L. Arnaud, G. Rijksen, E.A. Nigg, and R.H. Medema. 2000. Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat. Cell Biol. 2:672676.[CrossRef][Medline]
Swenson, K.I., J.R. Jordan, E.C. Beyer, and D.L. Paul. 1989. Formation of gap junctions by expression of connexins in Xenopus oocyte pairs. Cell. 57:145155.[Medline]
Theesfeld, C.L., T.R. Zyla, E.G. Bardes, and D.J. Lew. 2003. A monitor for bud emergence in the yeast morphogenesis checkpoint. Mol. Biol. Cell. 14:32803291.
van Vugt, M.A., V.A. Smits, R. Klompmaker, and R.H. Medema. 2001. Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J. Biol. Chem. 276:4165641660.
Walsh, S., S.S. Margolis, and S. Kornbluth. 2003. Phosphorylation of the cyclin b1 cytoplasmic retention sequence by mitogen-activated protein kinase and Plx. Mol. Cancer Res. 1:280289.
Watanabe, N., H. Arai, Y. Nishihara, M. Taniguchi, T. Hunter, and H. Osada. 2004. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc. Natl. Acad. Sci. USA. 101:44194424.
Yang, P., R. Pimental, H. Lai, and S. Marcus. 1999. Direct activation of the fission yeast PAK Shk1 by the novel SH3 domain protein, Skb5. J. Biol. Chem. 274:3605236057.
|
|