(Received for publication, March 19, 1997, and in revised form, June 12, 1997)
From the Department of Biological Sciences, State University of New York, Buffalo, New York 14260-1300
The ability of P22 repressor protein to distinguish between the six naturally occurring operator binding sites is critically important in determining whether the bacteriophage chooses to grow lytically or lysogenically. We have shown that changes in the highly conserved bases at P22 operator positions 3, 5, 6, and 7 prevent specific binding of P22 repressor. Moreover, studies of mutant proteins identified the three repressor amino acids that directly contact these conserved bases. The pattern of operator sequence conservation permits these direct amino acid-base pair interactions to occur in all except one of the 12 operator half-sites in the phage chromosome. Therefore, repressor differential affinity for these sites cannot be due to these highly conserved base pair-amino acid interactions. Our binding studies show that the nonconserved bases at positions 2 and 4 also play an important role in determining the relative affinity of the naturally occurring P22 operators for P22 repressor. Our data indicate that the direct contacts between the three solvent-exposed amino acids and the conserved bases in the binding site lock these amino acids in place, forming a scaffold allowing the rest of the amino acids side chains to form weaker interactions with the nonconserved bases in the binding site.
The c2 gene of the lambdoid bacteriophage P22 codes for
a DNA-binding protein called the P22 repressor (1). P22 repressor displays both structural and functional homology with the two other
well-studied repressors of lambdoid bacteriophages, and 434 (2).
The repressor proteins of all these lambdoid phages regulate the
developmental fate of the phage by acting as transcriptional regulators
(3). This regulation is mediated by the binding of repressor to two
operator regions on the phage chromosome. These two regions, designated
OR and OL, are each further divided into three
closely spaced binding sites, called operators. In all three phages,
the repressor displays a hierarchy of affinities for these six
operators. Binding of repressor to its highest affinity binding sites
activates transcription of genes responsible for the maintenance of
lysogeny and concurrently inhibits transcription of the genes
responsible for lytic development. The phage's decision between lytic
or lysogenic development is thus critically dependent on the ability of
the repressor to discriminate between these different
operators.
The amino-terminal domains of the bacteriophage repressors contain the
amino acids that are responsible for making all base-specific interactions with its DNA binding site (4-6). The sequences of the DNA
binding domains of the repressor proteins from 434 and P22
bacteriophages are highly homologous, sharing 31% amino acid identity
(2), and their three-dimensional structures are virtually identical (7,
8). Both proteins contain a helix-turn-helix structural motif and bind
as homodimers to partial rotationally symmetric, naturally occurring
operator sequences. Despite the high degree of both functional and
structural homology between these two proteins, they bind to different
recognition sequences (see Fig. 1).
To a first approximation, the basis for the different operator specificities of the P22 and 434 repressors is known. Wharton and Ptashne (9) replaced the amino acids along the solvent-exposed face of the second helix of the 434 repressor helix-turn-helix unit with the corresponding amino acids from the recognition helix of P22 repressor in the so-called "helix swap" experiment. The resulting hybrid 434 repressor protein binds specifically to the 18-base pair P22 operator instead of the 14-base pair 434 operator (9). This result shows that the amino acids in the recognition helix determine the DNA binding specificity of helix-turn-helix-containing proteins.
Although the results of the helix swap experiments suggest that the P22 and 434 repressors employ a nearly identical strategy for operator sequence recognition, several observations suggest that this is not the case. First, as mentioned above, the size of the consensus operator sequences of the two proteins differ (see Fig. 1). Second, inspection of the sequences of naturally occurring 434 and P22 operators reveals that the sequence conservation patterns of these binding sites are also different (see Fig. 1). Each 434 operator half-site contains four highly conserved positions at its outer edge, but the P22 operator half-site contains five highly conserved bases. Moreover, the completely conserved bases in each of the naturally occurring 434 operators are the first four contiguous outer base pairs in each half-site. The highly conserved bases in the P22 repressor binding sites are not contiguous and are located at positions 3, 5, 6, and 7 of the P22 operator. The observed differences between the recognition site sequences of the P22 and 434 repressor are difficult to reconcile with the implied similarity in their DNA recognition mechanisms (9), especially since the conserved bases are thought to be directly contacted by amino acids of repressors.
Although the affinities of both 434 and P22 repressors for their respective operators vary with the sequence of noncontacted bases at the center of the operator, these two proteins also employ different strategies in recognizing these bases. Whereas 434 repressor is apparently sensitive to DNA sequence-dependent differences in DNA flexibility (10-12), differences in the structure of the unbound P22 operator central sequence variants influence the affinity and specificity by modulating the strength of specific contacts between the P22 repressor and operator (13-15).
A major stumbling block for obtaining information regarding how P22 repressor discriminates between the naturally occurring operator sites is the absence of a three-dimensional structure of the P22 repressor-operator complex. We have obtained detailed insights into how the noncontacted base pairs at the center of the P22 operator contribute to operator specificity (13-15). However, the role of contacted bases located at the outer edges of the binding site in this process is unclear. Wüthrich and co-workers (7) report the three-dimensional structure of the amino-terminal domain of P22 repressor in the absence of DNA. The tertiary structure of the helix-turn-helix unit of the P22 repressor revealed in their studies is similar to that of bacteriophage repressors. Unfortunately, large differences between the P22 protein and the other phage repressors elsewhere in their structures, especially in the region of the protein likely for dimerization, prohibit us from building a reliable model of the P22 repressor-operator interactions. The purpose of the work reported here is to obtain data that will provide us with the insight needed to understand the mechanism of operator recognition and discrimination by P22 repressor.
DNA manipulations were performed as described previously (16). The binding site oligonucleotides were purchased (Integrated DNA Technologies), annealed, and ligated into the unique SalI site in pUC18 (17). The positions of the individual bases in the rotationally symmetric synthetic binding sites and the partially symmetric naturally occurring sites sequences are numbered consecutively from 1 to 18 along one strand (see Fig. 1A). The center of symmetry of all the sequences lies between bases 9 and 10. Our studies used operators bearing doubly symmetric base substitutions at positions 2-7 of the operator. For simplicity in the text, base changes are referred to by the identity of the base at a particular position on the upper strand; however, all changes made are alterations of the base pair at the specified position in both half-sites. The sequences of the resulting plasmids were confirmed by dideoxy sequencing (18). The apparent affinity of the repressor for nonspecific DNA was assessed using unmodified pUC18 that did not contain a P22 operator site.
The DNA molecules were cleaved at the EcoRI site and
3-end-labeled by repairing the recessed ends with Klenow fragment and [
-32P]dATP. The resulting ~2700-base pair linear
EcoRI cut DNAs were used directly in some filter binding
studies as noted in the legends to the figures. In other experiments,
this labeled DNA was subsequently cleaved with HindIII, and
the resulting 83-base pair DNA fragments were isolated by gel
electrophoresis (see legends to the figures for experiments that use
this fragment). Control experiments showed that the affinity of
repressor for DNA is not significantly dependent on DNA length.
P22 repressor was isolated from the
Escherichia coli strain XA90 bearing either the pTP125 (6),
pTP125-Ala32, pTP
125-Ala33,
pT7-Gln32, pT7-Ala37, or pT7-Asn37
plasmids, which causes the overproduction of wild-type or mutant P22
repressors bearing either an Asn-32
Ala, Val-33
Ala, Asn-32
Gln, Gln-37
Ala, or Gln-37
Asn change, respectively. pTP125 was
a gift from A. Poteete (University of Massachusetts Medical Center).
pTP
125-Ala32 and -Ala33 were constructed in
two steps. First, one of the two EcoRI sites (upstream of
the tac promoter in pTP125) was destroyed by partial digestion of the plasmid pTP125 with EcoRI followed by
repair of the recessed ends with Klenow in the presence of
deoxynucleotides and subsequent ligation. This created the plasmid
pTP
125. Second, the 220-base pair EcoRI-Csp
45I fragment of pTP
125 that encodes the amino-terminal portion of
the P22 repressor was replaced with a DNA fragment bearing either a
mutation that changes Gln-32
Ala or Val-33
Ala. pT7-7 (19) was
a gift from Stan Tabor (Harvard University). pT7-Gln32,
-Ala37, and -Asn37 were constructed in two
steps. First the 680-base pair EcoRI to HindIII
fragment from pTP125, which contains the entire coding region of the
P22 repressor protein, was ligated into pT7 that had been previously
cut with EcoRI and HindIII, thereby creating pT7-P22. Second, the 220-base pair EcoRI-Csp 45I
fragment from pT7-P22 was replaced with a DNA fragment bearing either
one of the three mutations noted. The overexpression of P22 repressors from pTP125 derivatives was induced by
isopropyl-1-thio-
-D-galactopyranoside. (19). The pT7
constructs were induced to synthesize protein by infecting transformed
XA90 cells with mpG1-2, an M13 phage that overproduces T7 RNA
polymerase (19). All the P22 repressor proteins were purified according
to the procedure by DeAnda et al. (6).
Nitrocellulose filter binding
experiments were performed as described previously (13). The reaction
buffer for this assay contained 10 mM Tris-HCl, pH 7.8, and
50 mM or 100 mM KCl. Three to five duplicate
measurements were averaged, and the apparent dissociation constants
(Kd) determined from nonlinear least squares fits to
the data. The apparent Kd is defined as the
concentration of repressor monomers needed to half-maximally occupy a
binding site. This apparent Kd represents the complex equilibrium between unbound monomeric repressor and DNA-bound repressor dimers. Since under the conditions of these experiments P22
repressor would be anticipated to be 100% monomeric (6), any changes
in apparent Kd in response to mutations in protein
or DNA should accurately reflect changes in the stability of the
repressor-DNA complexes. The protein concentrations used were corrected
for activity (80% active in all cases). The standard deviations of
the reported apparent dissociation constants were <5% of the
value.
The first
step toward generating a model of the interaction between the
amino-terminal domain of the P22 repressor and operator DNA was to
superimpose the peptide backbone atoms of residues 29-45 of the P22
repressor (7) over the homologous amino acids in 434 repressor,
residues 25-41, in complex with OR1 DNA (8). Before the
superposition, the 434 repressor·OR1 complex
structure had been energy-minimized to convergence. These regions of
the proteins that were superimposed correspond to the helix-turn-helix structural motifs of these proteins. B-form DNA, corresponding to the
sequence of the symmetric P22 operator, bases 1-12, was then
superimposed over the DNA of the energy-minimized 434 repressor-operator structure, aligning the bases as in Fig.
1. The resulting P22 repressor-operator
complex was then subjected to energy minimization using the Discover
3.0.0 software (Molecular Simulations) with its proprietary CVFFII
force field. To do this, the atoms of the backbone and side chains of
amino acids 1-28 and 46-75 of the P22 repressor protein were
constrained, thus decreasing the computation time required for the
minimization. All other residues in the model-built complex were
allowed to move. The distance between the Gln-37 -O and the N-4 of
the position 7 cytosine was constrained between 2.5 and 3.5 Å. The
constrained complex was then allowed to converge to an energy minimum,
assuming a distance-dependent dielectric of 1. After
convergence, the root mean square value of the resulting complex
superimposed over the initial complex was 2.24 Å for all atoms. To
check the reliability of the final model, the minimization procedure
was repeated several times. The final structures resulting from each
round were highly similar and displayed a root mean square deviation
of
0.5 Å.
As a first step toward identifying the protein-DNA contacts made by P22 repressor, we mutated the bases at position 2-7 in the P22 operators and measured the apparent affinity of these mutant operators for repressor. We did not examine the effect of position 1 on repressor-operator interaction, since the results of other experiments indicate that operator position 1 does not influence repressor binding (data not shown). The role of the four noncontacted bases at the center of the P22 operator on determining operator affinity for repressor has been the subject of our other work (13-15).
As shown in Fig. 2, repressor only binds
specifically to operators that contain the consensus bases at positions
3, 5, 6, and 7. Under the conditions of this experiment, the affinities of repressor for the operators bearing mutations at these positions are
indistinguishable from its affinity for nonspecific DNA (see also
below). These data are consistent with the suggestion that P22
repressor makes direct contacts with these bases.
By contrast with the drastic effects of changing the conserved bases at positions 3, 5, 6, and 7 on operator affinity for repressor, substituting the nonconserved bases at operator positions 2 and 4 has much less dramatic effects on operator strength (Fig. 2). At 100 mM KCl, changing position 2 from the consensus T:A to either a C:G or G:C decreases the apparent affinity of repressor by only 4.3- and 3.2-fold, respectively. The affinities of operators bearing A:T, G:C, or C:G base pairs at position 4 for repressor are decreased 3.8-, 7.6-, and 5-fold, respectively, relative to the operator bearing the consensus T:A base pair at this position. These data indicate that wild-type P22 repressor does not directly contact the bases at operator positions 2 and 4, but they do suggest that the repressor does recognize the bases at these positions in some way. The observed magnitude of changes in operator affinity for repressor upon operator position 2 and/or 4 substitution is consistent with disruptions of weak contacts between the protein and the bases at these positions. Alternatively, changes in operator position 2 and/or 4 may modulate affinity of operator for repressor indirectly by altering DNA structure.
Elucidation of Base Contacts by Loss of Contact MutationsWe
initially changed three amino acids along the solvent-exposed face of
the recognition helix to alanine residues and examined the ability of
these mutant proteins to distinguish between the various mutant
operators. Alanine substitutions were used for two reasons. First,
mutant proteins bearing alanine substitutions at DNA contacting
positions would be expected to lose specificity at the operator
position that is contacted by the wild-type protein. Second, based on
its relatively strong propensity to form -helices, we reasoned that
substituting alanine would not dramatically affect the structure of the
recognition helix.
Changing Asn-32 Ala
eliminates the ability of P22 repressor to discriminate between various
base substitutions at operator position 3 (compare Figs. 2 and
3). Its affinity for operators bearing
the different bases at position 3 varies by no more than 1.7-fold. This
is in marked contrast to the large deleterious effect of position 3 substitutions on binding of wild-type repressor (Fig. 2). These results
are consistent with the suggestion that Asn-32 makes a direct contact
with the base(s) at operator position 3.
The data in Fig. 3 show that the Ala-32 mutant protein is largely unable to distinguish between operators bearing position 4 changes. Its affinity for these various operators spans only a 2-fold range as compared with the ~4-7-fold effect that substituting position 4 bases has on operator affinity for the wild-type protein (Fig. 2). Similarly, as opposed to the >4-fold effect of position 2 substitution on operator affinity for wild-type protein (Fig. 2), the alanine substitution has less than a 2-fold effect on operator binding to the Ala-32 mutant repressor (Fig. 3). These data suggest that amino acid 32 is also at least partly responsible for P22 repressor base preferences at operator positions 2 and 4.
Although the Ala-32 protein displays decreased sensitivity to position
2, 3, and 4 operator substitutions relative to the Asn-32 wild-type
repressor (compare Figs. 2 and 3), the mutant protein still
discriminates between position 5 changes as well as does wild-type
repressor. This observation shows that the Asn-32 Ala mutation does
not eliminate base discrimination at all positions in the P22 operator.
Thus, the amino acid at position 32 appears to direct the base
preferences of the P22 repressor at operator positions 2, 3, and 4.
The ability of wild-type P22 repressor to discriminate between base
substitutions at operator positions 2 and 4 appears to require the
direct interaction between Asn-32 and operator position 3. To test this
idea, we constructed a mutant P22 repressor that is able to make a
direct, but non-native contact at position 3 and then examined the base
specificity of this mutant protein at the other operator positions. We
reasoned that a protein bearing an Asn-32 Gln substitution would
display "434 repressor-like" base
preference at position 3 (Ref. 20 and Fig. 4) and bind specifically
only to operators bearing an A:T base pair at this operator position.
As is evident in Fig. 5, the Gln-32
repressor protein displays the predicted new specificity at position 3, binding only to binding sites bearing an A:T base pair at position 3 as
opposed to the wild-type protein requirement for an T:A base pair at
this position.
Since the P22 Gln-32 repressor has a new position 3 preference, we are unable to assess the mutant protein position 2 and 4 base specificities in the background of the P22 consensus T:A base at position 3. We therefore constructed a series of operators bearing an A:T base pair at position 3 and various bases at positions 2 and 4. Fig. 5 shows that the Gln-32 mutant repressor is able to discriminate between base changes at operator position 4. Moreover, this protein displays the same order of position 4 base preferences, T > A > G > C as does the wild-type P22 repressor (compare Figs. 2 and 5). Similarly, the Gln-32 repressor also is able to discriminate between base pair changes at operator position 2 (Fig. 5). Although the Gln-32 mutant repressor protein displays an altered specificity at position 3 of the operator, it nearly retains wild-type specificity at operator position 5 (Fig. 5). Substituting position 5 in the context of a 3 T:A base pair decreases the affinity of the operator for the Gln-32 repressor by 4.7-39.5-fold.
Base Preferences Determined by Val-33In contrast to the
large deleterious effects of substituting the bases at operator
position 5 on the apparent operator affinity of wild-type repressor
(Fig. 2), the P22 repressor bearing an Ala-33 substitution is capable
of specifically binding all operator position 5 variants (Fig.
6). Substituting the 5 A:T consensus with
either a G:C, T:A, or C:G decreases the apparent affinity of operator
for the Ala-33 repressor by 25-, 6.4-, and 7-fold, respectively. Two
factors may contribute to the residual position 5 specificity of the
Ala-33 protein. First, one or more additional repressor amino acids
besides Val-33 may make contacts to the base at position 5. Thus,
removal of only the Val-33-mediated contact would still allow the
protein to maintain at least partial position 5 specificity (see
below). Second, since the Val Ala substitution is a chemically
conservative change, it is possible that despite its shorter side
chain, the alanine may continue to function in position 5 discrimination. Although the Ala-33 protein displays a range of
affinities for the position 5 substituted operators, it is clear that
the Val-33
Ala substitution results in a mutant protein that has
not completely lost specificity; rather, this substitution causes a
relaxed specificity at this position. Nonetheless, these data indicate
that Val-33 contacts the base pair at operator position 5.
Changing Val-33 Ala reduces but does not completely abolish the
ability of P22 repressor to discriminate between base changes at
position 4 of the operator (Fig. 6). We suggest that the residual position 4 base preferences displayed by the Ala-33 mutant protein are
due to contacts made by Asn-32, as presented above (see also below).
Hence, P22 repressor position 4 base preferences appear to be
determined by two amino acids even though the base sequence at this
operator position is not well conserved among the naturally occurring
binding sites. Thus, whereas position 4 does not appear to be important
in defining the overall consensus sequence of the P22 operator, it may
be important in modulating the ability of the repressor to discriminate
between the six P22 operators in the phage chromosome.
The Ala-33 mutant repressor protein is capable of binding specifically to operators bearing substitutions at position 6 (compare Figs. 2 and 6). The affinities vary from 17- and 18- to 24-fold as the position 6 A:T base pair is substituted with a T:A, G:C, or C:G, respectively (Fig. 6). This observation suggests that the Val-33 residue contacts the bases at operator positions 6 as well as 4 and 5; however, the loss of specificity at position 6 conferred by this alanine substitution is not as complete as that seen at operator position 5 (Fig. 6). The Ala-33 repressor does retain overall sequence specificity as evidenced by the observation that any position 3 substitution prevents specific operator binding of the Ala-33 repressor (Fig. 6 and data not shown). Taken together, the results of binding studies performed with wild-type and Ala-33 repressors indicate that Val-33 is largely responsible for P22 repressor position 5 base specificity and, to a lesser extent, its specificity at operator positions 4 and 6.
Base Preferences Determined by Gln-37Changing Gln-37 to
alanine resulted in a mutant repressor protein that no longer
specifically bound to any one of our sets of synthetic P22 operators,
although this protein does bind tightly to DNA derived from the
dicAB operon
(21-23).1 This observation
suggested that position 37 plays a unique role in determining the P22
repressor operator sequence preferences. As an alternative strategy to
probe the potential DNA contacts made by Gln-37, we changed Gln-37 Asn. The Asn-37 protein is able to bind specifically to P22 operators;
however, the poor filter retention of the Asn-37 repressor-operator
complexes at 100 mM KCl prevented us from investigating the
full range of the alteration in specificity of this protein under these
conditions (data not shown). We were able to perform this study at 50 mM KCl. Thus, the results of the binding studies performed
with the Asn-37 mutant and the results from a parallel set of
experiments performed with the wild-type repressor under these
conditions are shown in Fig. 7.
As compared with the results obtained at 100 mM KCl (Fig.
2), the apparent operator affinity of wild-type repressor at 50 mM KCl is less sensitive to changes at operator positions 3 and 5 (Fig. 7). Under these conditions, changing the bases at these positions does not eliminate specific binding (Fig. 7). Examination of
Fig. 7 shows that the position 3 and 5 specificities of the Asn-37
mutant repressor are nearly identical to that of wild-type P22
repressor, consistent with our data showing that other amino acids in
the repressor are involved in determining the base preferences of the
protein at these positions. These data also show that the Gln-37 Asn substitution does not cause P22 repressor to have a generalized
loss of base specificity over the entire operator.
The wild-type repressor protein strongly prefers the consensus base at operator positions 6 and 7 at lower salt (Fig. 7). The affinity of operator for repressor decreases from 10- to >20-fold as either one of these positions is altered (Fig. 7). In contrast, changes at these positions have at most a 10-fold effect on the operator affinity of the Asn-37 mutant protein. Position 6 substitutions result in a decrease in the apparent affinity of mutant operator for Asn-37 ranging from only 3.3-10-fold as compared with the 10- to >20-fold decrease observed with the Gln-37 wild-type protein (Fig. 7). A loss of specificity by the Asn-37-substituted protein is also observed at position 7. When position 7 is changed to a C:G, A:T, or T:A, the apparent affinity of operator for Asn-37 repressor decreases by 4.3-, 5.6-, and 9.3-fold (Fig. 7). Not only is this range of affinities lower in magnitude as compared with those for the Gln-37 wild-type repressor, but the order of binding to the Asn-37 mutant protein also differs from the wild-type protein. The Gln-37 wild-type repressor prefers 7C > 7A = 7T (Fig. 7), whereas the Asn-37 mutant prefers 7T > 7A > 7C. Together, these results suggest that the glutamine residue at amino acid position 37 specifically contacts the bases both at position 6 and 7 in the P22 operator.
Model Building Studies of the P22 Repressor-Operator ComplexThe contacts described (see Figs.
8B and
9 for a summary) do not agree with the
pattern of protein-DNA contacts we had initially predicted (compare
Fig. 5B with Fig. 9). We turned to molecular modeling to
both help us understand the basis of this difference and to gain an
insight into how the amino acids Asn-32, Val-33, and Gln-37 specify all
the contacted bases in the P22 operator. As described under
"Experimental Procedures," our model building efforts utilized the
434 repressor-operator complex as a starting template (8). The root
mean square difference between the starting and final structures is
2.24 Å for all atoms, indicating that most traces of the starting
structure have been effaced during the minimization. Although we do not
suggest that the P22 repressor-operator model structure is flawless in
every detail, we assert that it does provide an accurate framework for
understanding the molecular basis of P22 repressor operator specificity
determinants.
Comparing the structures of the model-built complex with that of the 434 repressor-operator complex reveals that the overall positioning of the recognition helix with respect to the major groove of the DNA is different in the two complexes (Fig. 8A). In general, the C-terminal end of the recognition helix of P22 repressor is shifted closer to the bases at positions 6 and 7 than this helix is in the 434 complex (Fig. 8A). The difference in the angle of helix insertion into the major groove between the 434 and P22 repressor-DNA complexes causes a marked difference in the relative juxtapositioning of their respective amino acids and base pairs. In addition, the model of the P22 repressor-DNA complex suggests that the operator DNA is distorted from the B-form helix between bases 3 and 5 (Fig. 8A). This distortion is an overall increase in the propeller twist of the thymine bases at positions 3, 4, and 5, forming a van der Waals pocket into which the Val-33 residue is inserted (Fig. 8B). Together, the DNA distortions and positioning of the recognition helix in the major groove are critical in accounting for the results of our biochemical studies.
The model-built structure of the P22 repressor-operator complex shows
that the first amino acid of the recognition helix, in this case
-NH2 of Asn-32, is positioned to make a hydrogen-bonded interaction with the O-4 of the thymine base at P22 operator position 3. Consistent with biochemical data indicating that Asn-32 is the sole
determinant of P22 repressor position 3 specificity, the model shows
that no other amino acid is in close proximity to the bases at this
position (Fig. 8B).
As opposed to the direct contact between Val-33 and the operator
position 4 that we initially predicted (Fig. 4), both the model
building and binding studies show that this amino acid directly interacts with the bases at operator position 5. The close approach of
Val-33 and the base pair at position 5 suggests a van der Waals contact
between the C-5 CH3 group of the thymine on the bottom strand at this position and the -CH3 of Val-33. Our
current model does not explain the residual discrimination of the
Ala-33 mutant repressor against operators bearing G:C base pairs at
position 5 (Fig. 6, compare position 5 T:A and C:G versus
G:C substitutions). It appears unlikely that this residual
discrimination is due to contacts from other amino acids in the
recognition helix, since no other amino acids appear to closely
approach these bases.
The model building suggests that the P22 repressor preference for A:T
base pairs at position 4 is determined solely by hydrophobic interaction with the C-5 CH3 of the thymine base at this
position. No other amino acids appear to closely approach any other
functional groups of the bases on either strand at this operator
position. The - and
-CH2 of both Val-33 and Asn-32
apparently contribute to position 4 specificity by forming a
hydrophobic pocket for the C-5 CH3 group of the thymine at
this position. From careful inspection of our model, the positioning of
the side chains of Val-33 and Asn-32 could not contribute to
recognition of position 4 without the primary contacts made by these
amino acids to positions 5 and 3, respectively. A mechanism for
recognition of the base in the homologous position in the 434 operator
by 434 repressor has already been proposed (8).
Biochemical studies show that changing Gln-37 Ala renders P22
repressor unable to bind any wild-type or single-position mutant
operator (data not shown). This observation implies that Gln-37
contributes a larger fraction of the binding energy of the complex than
does either Asn-32 or Val-33. Consistent with this, the model suggests
that Gln-37 donates a hydrogen bond to the O-4 of thymine of the A:T
base at position 6 with the
-NH2, and the
-O accepts
a hydrogen bond from the N-4 of the cytosine on the bottom strand at
position 7 (Fig. 8B). The formation of this bridging
configuration placed the torsion angles of Gln-37 in the fully extended
configuration, indicating that these hydrogen-bonded contacts may
mutually support each other in this unfavorable glutamine conformation.
Another possibility is that either the recognition helix is moved even
closer to bases 6 and 7 in this region than our modeling has
demonstrated, and/or there exists a distortion in the structure of the
DNA within this region, allowing for contact between the Gln-37 residue
and positions 6 and 7, simultaneously, without fully extending the Gln
side chain.
The ability of P22 repressor protein to distinguish between the six naturally occurring operator binding sites is critically important in determining whether the bacteriophage chooses to grow lytically or lysogenically. Examination of the naturally occurring operator sequences reveals highly conserved bases at positions 3, 5, 6, and 7. We have shown that changes in these conserved base pairs in P22 operator prevent specific binding of P22 repressor. Our data show that the strong preference of the repressor for the consensus base sequence at operator positions 3, 5, 6, and 7 is conferred by direct contacts from three amino acids on the solvent-exposed surface of the recognition helix of P22 repressor. The pattern of operator sequence conservation permits these amino acid-base pair contacts to occur in all except one of the 12 operator half-sites in the phage chromosome. Therefore, differential affinity of the repressor for these sites cannot be due to these conserved amino acid-base pair interactions. We have shown in other work that the noncontacted bases at the center of the P22 operator affect the relative affinity of P22 operator for repressor by modulating the strength of specific protein-DNA contacts via DNA sequence-specific effects on the structure of the repressor-operator complex. Our binding studies presented here show that the nonconserved bases at positions 2 and 4 also play an important role in determining the relative affinity of repressor for its naturally occurring operators. The results of the mutagenesis studies indicate that direct interactions between the three solvent-exposed amino acids and the conserved bases in the binding site lock these amino acids in place, forming a scaffold allowing the rest of the amino acid side chains to form weaker interactions with the nonconserved bases in the binding site.
The idea that the direct contacts between repressor and conserved bases in the operator facilitate recognition of the nonconserved bases in the operator is best illustrated by examining recognition of the bases at position 2, 3, and 4. Recognition of the bases at these positions is eliminated by mutating the residue Asn-32, which only directly contacts position 3. Restoring a non-native contact at position 3 by substituting a Gln at this position creates a P22 repressor with an alternate position 3 preference and also restores the ability of repressor to discriminate between base changes at operator positions 2 and 4. This result strongly suggests that recognition of positions 2 and 4 by the amino acid at position 32 in the protein requires a direct interaction of amino acid 32 with the base at operator position 3.
Although the ability of the repressor to express base preferences at operator positions 2 and 4 requires contacts between Asn-32 and/or Val-33 at positions 3 and 5, respectively, it is not evident from the biochemical data how the amino acid-conserved base pair contacts help in recognizing the nonconserved bases. Two nonexclusive hypotheses can explain these results. First, direct amino acid-base pair contacts at the conserved positions may serve to properly position the protein side chains so that atoms not involved in making the primary contact can form weak interactions between the amino acids and functional groups on the bases. Alteration of these weak interactions would have measurable but not catastrophic effects on repressor affinity. Alternatively, the nonconserved bases may influence the range of DNA structures that the operator can form or alter the ease of forming the DNA structure that is most compatible with complex formation. According to this idea, in order for the repressor to form the appropriate contacts with the conserved bases, the P22 operator must be deformed. The changes in the sequences of nonconserved bases would affect operator affinity for protein by changing the energy needed to deform the DNA or alter the strength of conserved base pair-amino acid contacts.
Despite making base-specific contacts, changing either amino acids 32 or 33 to alanine has at most an 8-fold effect on the apparent affinity
of the repressor for operator. This observation suggests that the
contacts made by these residues to the DNA do not make a large
contribution to the overall stability of the repressor-operator
complex. Instead these amino acids function in a relatively
energetically neutral fashion to provide sequence specificity to the
repressor. This suggestion is consistent with our previous observation
that changing the composition of the noncontacted central sequence can
eliminate repressor base preferences at positions 3 or 5, with only a
20-fold decrease in affinity of repressor for operator (15).
Binding data show that P22 repressor position 4 base preference is
modulated by Asn-32 and Val-33. An examination of the model of the P22
repressor-operator complex suggests that the P22 repressor preference
for a T:A base pair at this position may result from both weak
interactions of protein groups with this base pair and sequence-dependent DNA structural effects. The Asn-32
-CH2 and
-CH3 of Val-33 form a
hydrophobic pocket into which nestles the thymine C-5 CH3
at operator position 4. These amino acid side chain groups are held in
this position via their interactions with positions 3 and 5, respectively. Changing the base at position 4 would remove the
CH3 group from this pocket, resulting in the observed
decrease in affinity. Structurally, the model of the P22 repressor-DNA
complex reveals that the DNA deformation observed in the complex is
essential in allowing the contact between Val-33 and the bases at
position 5. The T:A at position 4 may help facilitate the observed DNA
deformation within this region.
Although the detailed analysis of our data provides a plausible explanation for P22 repressor position 4 base preferences, we are unable to gain a similar insight into how P22 repressor specifies the position 2 T:A base pair. Either or both of two circumstances may prevent us from determining the structural basis for repressor operator position 2 base preferences. First, our modeling may not take into account DNA distortions that could be occurring within this region of the operator in the complex. If the DNA substantially bends toward the protein in this region, a direct interaction between either the Asn-32 residue or some other portion of the protein may be possible. An examination of the structure of homeodomain protein antP-DNA complex shows that a DNA distortion within a region of that complex that is analogous to the region around P22 operator position 2 allows for contacts to be made between the protein and the DNA that could not be made with and B-form DNA (24). There is currently no biochemical evidence indicating whether or not the P22 repressor protein significantly bends the DNA in the region lying near amino acid 32.
Alternatively, the observed position 2 specificity may be determined indirectly through DNA sequence-dependent structural variation. For example, bases not directly contacted by the CAP protein influence the stability of the CAP-DNA complexes by changing the ease with which this can be bent (25-27). The position 2 T:A base pair may play a similar role in the P22 repressor-operator complex. This T:A base pair forms part of a stretch of poly(dA-dT) sequence at the end of the P22 operator. Structural studies suggest that these sequences are rigid and straight (28-31) and that they introduce kinks or bends into the DNA at the junction between the A-tract and the surrounding sequence. Any base pair substitution may result in a deviation from the preferred DNA conformation.
The six naturally occurring operator sites bind P22 repressor with different affinities, and these differences are crucial to the developmental decisions of the bacteriophage (32). We have previously shown that changes in the sequence of bases at the center of the P22 operator can markedly affect operator affinity for P22 repressor. These effects alone cannot account for the observed differential affinities of the naturally occurring binding sites for P22 repressor. We suggest that variation at positions 2 and 4 together with central base sequence differences act in concert to determine relative operator affinity for repressor. For example, based on their similar central base sequence, we would predict that OL1 and OR1 would have the identical affinity for repressor, but instead OL1 binds repressor 2-fold more tightly than does OR1. This small but biologically significant difference in relative affinity for repressor can be readily accounted for by the observation that OR1 bears a A:T base at position 4, which should reduce its affinity for repressor relative to OL1 by about this amount. Unfortunately, taking into account the effect of variations in both the central base sequence (13-15) and positions 2 and 4 on operator affinity for repressor does not allow us to completely account for the relative affinities of all the naturally occurring binding sites. We hypothesize that this inability to predict the relative affinity of an operator for repressor may be due to the long distance effects of central base sequence on recognition of contacted bases. Further operator mutagenesis and binding studies will be required to test this idea.
The authors thank Dr. Paul Gollnick for critical reading of the manuscript. We also acknowledge members of our laboratory for helpful discussions.
HOME | HELP | FEEDBACK | SUBSCRIPTIONS | ARCHIVE | SEARCH | TABLE OF CONTENTS |
All ASBMB Journals | Molecular and Cellular Proteomics |
Journal of Lipid Research | Biochemistry and Molecular Biology Education |