Only one C-mannosylated protein, human RNase 2, has been reported so far (Hofsteenge et al., 1994; de Beer et al., 1995; Löffler et al., 1996). C-Mannosylation was discovered in endogenous RNase 2 purified from human urine and human blood cells (Löffler et al., 1996) and was also found in recombinant RNase 2 (Krieg et al., 1997). This raises the question as to how general this type of glycosylation is. Although indirect evidence strongly suggests that other C-mannosylated proteins exist (Krieg et al., 1997, 1998), no direct proof is available. C-Mannosylation of RNase 2 involves the attachment of an [alpha]-mannosyl residue via a C-C link to the indole moiety (Figure
Figure 1. Structure of C2-[alpha]-mannosyltryptophan [(C2-Man-)Trp].
IL-12 (also called cytotoxic lymphocyte maturation factor) is a cytokine that is structurally unique among the interleukins in that it is a heterodimer composed of two disulfide-linked chains. The [alpha]-chain is 253 amino acids long and contains three potential N-glycosylation sites, whereas the [beta]-chain consists of 328 amino acids with five potential N-glycosylation sites in addition to a C-mannosylation site at the C-terminal end (position 319[beta]-322[beta]). IL-12 plays a central role in the immune system by promoting the development of type 1 T-helper cells and by regulating cellular functions of T- and natural killer cells (Trinchieri et al., 1994; Hendrzak et al., 1995). It has great therapeutic potential because of its potent antitumor activity. This is presently leading to clinical trials, including gene therapy (Tahara et al., 1995), for the treatment of human cancer (Zitvogel et al., 1995). Furthermore, IL-12 has been demonstrated to be active in several mouse models of infectious diseases caused by viruses, protozoans, fungi, and mycobacteria (Gately et al., 1996).
Here we demonstrate by ESIMS analysis and NMR spectroscopy that rHuIL-12 from CHO cells is partially C-mannosylated on Trp-319[beta]. This raises the question as to whether nonrecombinant IL-12 is also modified. Toward this aim, the presence of the C-mannosyltransferase in human B-lymphoblastoid cells (NC-37) which secrete IL-12 was investigated using an in vitro assay.
rHuIL-12 from CHO cells is C-mannosylated
Figure 2. Characterization of the modified C-terminal peptide from rHuIL-12. (A) Reduced and carboxamidomethylated rHuIL-12 was digested with trypsin, and the two C-terminal peptides (a and b) were isolated by LC-ESIMS (upper panel) and characterized by nanospray ESIMSMS. The spectra of peptide a and b are shown in the lower panels. The numbers indicate the m/z. (B) The ESIMSMS spectrum of the modified peptide ('a") is shown. Ions with m/z 162 amu larger than in the unmodified peptide have been underlined. The loss of 120 Da from the b12- and the [M+2H]2+ ion has been indicated with '120" an '60," respectively. (C) Edman degradation of peptide 'a" of rHuIL-12. The phenylthiohydantoin amino acid observed at cycle 6 (lower trace) coelutes with the (C2-Man-)Trp derivative obtained from position 7 of RNase 2 (upper trace).
To examine whether Trp-319 of the [beta]-chain of rHuIL-12 is C-mannosylated, tryptic peptides were isolated from the reduced and carboxamidomethylated protein. The C-terminal tryptic fragment of the rHuIL-12 [beta]-chain was isolated by reversed phase HPLC interfaced with LC-ESIMS. Two peptides from this region of the molecule were isolated, peak 'a," eluting at 39.6 min, and peak 'b," eluting at 44.1 min, with a mass of 1957 and 1795 Da, respectively (Figure
Figure 3. Part of the 600 MHz TOCSY spectrum at 300 K of the peptide comprising residues 316[beta]-322[beta] of rHuIL-12, recorded with a mixing time of 80 ms. The resonance assignment of the modification is indicated in the 1-dimensional spectrum placed on top. Crucial cross peaks are boxed and annotated. The peptide is identified as S-S-S-(C2-Man-)W-S-E-W. Non-annotated peaks are [alpha]-[beta] connectivities of Ser and Trp.
In order to obtain unequivocal proof for the identity of the hexosyl residue, the chymotryptic peptide comprising residues 316[beta]-322[beta] was analyzed by NMR spectroscopy. Figure
Table I.
Chemical shift (ppm)
3J-Coupling (Hz)
IL-12 residue 319[beta]
RNase 2a residue 7
IL-12 residue 319[beta]
RNase 2a residue 7
H1[prime]
5.18
5.22
J1[prime]2[prime]
7.5
7.8
H2[prime]
4.44
4.42
J2[prime]3[prime]
3.0
3.2
H3[prime]
4.07
4.09
J3[prime]4[prime]+ J4[prime]5[prime]
9.1
9.3
H4[prime]
3.93
3.96
J5[prime]6[prime]
8.3
8.3
H5[prime]
3.83
3.87
J5[prime]6[prime][prime]
3.4
3.3
H6[prime]
4.18
4.21
J6[prime]6[prime][prime]
-12.5
-
H4
7.65
7.67
H5
7.14
7.14
H6
7.20
7.20
H7
7.42
7.41
The C-terminal peptide of IL-12-[beta] is a substrate for the C-mannosyltransferase
The results described above predict that the C-terminal peptide of the IL-12-[beta] chain should be an acceptor for the C-mannosyltransferase. Incubation of the peptide Ac-RYYSSSWSEWAS-NH2 with Dol-P-[2-3H]Man and rat liver microsomes (55 µg of protein) for 30 min at 37°C resulted in the incorporation of 4.2 × 104 c.p.m., compared to 1.37 × 103 c.p.m. in a control without peptide. To obtain sufficient product for a detailed structural characterization, the peptide was incubated for 20 h at 26°C, at which time 83% of the [2-3H]Man had been transfered from Dol-P-[2-3H]Man to the peptide. The peptide was treated with trypsin to remove the N-terminal acetylated Arg and purified. The purification yielded a single radioactive peptide with a molecular mass of 1514 Da, corresponding to that of a monomannosylated peptide (Figure
Figure 4. In vitro C-mannosylation of synthetic IL-12 peptide. (A) The radiolabeled peptide was digested with trypsin and fractionated by C8 reversed phase HPLC. The elution of the column was monitored at 214 nm (upper panel). The lower panel shows the radioactivity; the width of the bar indicates the fraction size. (B) the purified IL-12 radiolabeled peptide was subjected to solid-phase Edman degradation and the radioactivity of the anilinothiazolinone amino acid released at each cycle was measured.
The purified radiolabeled peptide was subjected to solid-phase Edman degradation to determine the site of mannosylation. A burst of radioactivity appeared with the Trp at position 7 (Figure
IL-12 secreting B-lymphoblastoid cells contain the C-mannosyltransferase
The question remains whether nonrecombinant IL-12 is also C-mannosylated. The direct analysis of endogenous IL-12 is not practical due to its extremely low abundance. Stern et al. (1990) obtained only 10 µg of purified IL-12 from 60 l of conditioned medium from EBV-transformed lymphoblastoid cells. This can be compared with the 9.6 mg used in the complete analysis of the C-mannosylation of the recombinant protein by MS and NMR. As an alternative, we examined C-mannosyltransferase activity in IL-12 secreting NC-37 cells. Incubation of NC-37 cell microsomes with Dol-P-[2-3H]Man and the IL-12 derived peptide (Ac-RYYSSSWSEWAS-NH2), or the general acceptor tetrapeptide Ac-WAKW-NH2, resulted in the transfer of radioactivity from the Dol-P-[2-3H]Man to the peptides (Figure
Figure 5. C-Mannosyltransferase activity in IL-12 producing cells. (A) The presence of C-mannosyltransferase activity in microsomes from NC-37 cells was determined by incubation of acceptor peptide (0.9 mM) with 0.9 µM Dol-P-[2-3H]Man (5.61 Ci/mmol) and NC-37 cell microsomes (55 µg of protein) for 30 min at 37°C. After extraction with chloroform/methanol (3/2, v/v), the radioactivity in the aqueous phase was determined. Peptide 1 corresponds to the IL-12 derived dodecapeptide: Ac-RYYSSSWSEWAS-NH2. Peptide 2 and peptide 3 correspond to the tetrapeptides Ac-WAKW-NH2 and Ac-WAKA-NH2, respectively. In the experiment indicated with 'b" microsomes were heated at 95°C for 8 min, before the assay was performed. (B) The time dependence of the in vitro C-mannosylation reaction was examined using the peptide Ac-WAKW-NH2. The reaction was stopped by extraction with chloroform/methanol (3/2, vol/vol) at the indicated time the amount of radioactivity in the upper phase was determined (solid circles). Control experiments were performed without acceptor peptide (open circles). The inset shows the incorporation of radioactivity after 30 min incubation at 37°C, as a function of the concentration of the same acceptor peptide. The values were corrected for background by subtracting the values obtained in the absence of peptide. (C) Dependence of the rate of reaction on the amount of added microsomes was examined using the peptide Ac-WAKW-NH2. All data shown represent the average of two independent experiments.
The results presented here show that rHuIL-12 contains (C2-Man-)Trp at position 319 of the [beta]-chain. Initial evidence was obtained by ESIMS and Edman degradation of the C-terminal tryptic peptide. Although these techniques allow the analysis of picomolar amounts of material, they do not provide unequivocal identification of the hexosyl moiety. For example, due to the lack of synthetic standards of the various (C2-hexosyl-)tryptophans, it cannot be excluded that their PTH-derivatives comigrate on HPLC following Edman degradation. Unambiguous proof has been obtained by NMR spectroscopy (Figure
RNase 2 and IL-12 are structurally and functionally unrelated, indicating that C-mannosylation is not restricted to a single family of proteins. Trp-319[beta] occurs in the sequence Trp-x-x-Trp, which in RNase 2 has been demonstrated to be the recognition motif for the C-mannosyltransferase. This suggests that this sequence may be general and serve the same role in other proteins as well. The motif has been found in 336 secreted mammalian proteins currently present in protein databases (Krieg et al., 1998). It is not to be expected that all of these will be modified, however, since their availability may depend on the tertiary structure. Krieg et al. (1998) and Doucey et al. (1998) have demonstrated that the primary structure as such is recognized by the transferase, and concluded that C-mannosylation of RNase 2 must occur before folding is completed.
Lymphoblastoid cells (NC-37) secrete IL-12 and contain a microsome-associated protein transferase that carries out the C-mannosylation reaction. This shows that potentially also nonrecombinant IL-12 is C-mannosylated. The enzyme from NC-37 cells has the same requirement for a Trp residue at position +3 as a signal for C-mannosylation as the transferase from rat liver microsomes (Krieg et al., 1998). Also the amount of activity in microsomes from the NC-37 cells is of the same order of magnitude as that in rat liver.
rHuIL-12 from CHO cells was only partially C-mannosylated on Trp-319[beta]. The degree of mannosylation depends on the cell line used (Krieg et al., 1997). With RNase 2, CHO cells were found to be the least active, yielding 49% C-mannosylation, whereas, e.g., NIH 3T3 gave 81%. No activity at all was found in insect cells, plant protoplasts, E.coli (Krieg et al., 1997) and S.cerevisiae (A.-M. Vicentini and M.-A. Doucey, unpublished observations). rHuIL-12 has been reported to have the same biological activity in vitro as the endogenous human protein (Gubler et al., 1991). If, however, C-mannosylation would in analogy to N-linked glycans affect parameters such as protein stability, circulatory lifetime, biodistribution, or uptake (Rasmussen, 1992), differences may be found in in vivo investigations. Because the therapeutic potential of IL-12 was demonstrated in several mouse models, it is important to note that in contrast to human IL-12, the protein from mouse does not contain the C-mannosylation motif. Therefore, the investigation of the therapeutic potential of rHuIL-12 in mouse models might be inappropriate.
The use of recombinant proteins in the therapy of human disease is of increasing importance. To minimize the risks of unwanted side effects substantial efforts are made to copy the human endogenous protein as faithfully as possible (Hayes et al., 1997). This aim is hardly reached completely, due to heterogeneity of, e.g., N- or O-linked glycans or, as demonstrated here, the presence of a new or unexpected posttranslational modification. A major question that remains to be answered concerns the presently unknown function of C-mannosylation. In view of the widespread occurrence of the C-mannosyltransferase in mammalian tissues (M.-A. Doucey, unpublished observations), and the unique stability of the C-C link between the carbohydrate and the protein, it is to be expected that a specific biological role will emerge.
Tissue culture
NC-37 cells (ATCC CCL214) were grown in RPMI 1640 medium supplemented with 10% fetal calf serum (Life Technologies/Gibco BRL, Gaithersburg, MD) (Stern et al., 1990).
Protein chemistry
rHuIL-12 from CHO cells was a gift from Dr. Alvin Stern, Roche Research Center, Hoffman-La Roche, Inc., Nutley, NJ (Stern et al., 1990). The protein was reduced and carboxymethylated according to the method described previously (Hofsteenge et al., 1991). Digestion with trypsin (Worthington, Freehold, NJ) and fractionation of the peptides by reversed phase LC-ESIMS were performed as described previously (Krieg et al., 1997). The C-terminal [beta]-chain peptide and its modified counterpart were detected by extraction of the MS data for ions with m/z 898 and 979 (the [M+2H]2+ ions), respectively. Final purification was achieved by C8 reversed phase HPLC in 10 mM trimethylamine-acetate, pH 6.0 (Hofsteenge et al., 1991). Nanospray ESIMSMS (Wilm et al., 1996) and solid-phase Edman degradation (Pisano et al., 1993) were performed according to published methods.
NMR spectroscopy
The peptide comprising residues 316[beta]-322[beta] was obtained by cleaving the tryptic peptide from 9 mg rHuIL-12 (see above) with chymotrypsin (Worthington, Freehold, NJ), followed by purification on a C18 HPLC column. The identity and homogeneity of the peptide (mass: 1029 Da) were confirmed by Edman degradation. The peptide was dissolved in D2O and transferred into a susceptibility matched 5 mm NMR tube (Shigemi Co., BMS-005V) with a sample volume of 200 µl. The concentration was ~35 µM. Clean-TOCSY spectra (Griesinger et al., 1988) with mixing times of 40 ms and 80 ms were recorded on a Varian Unityplus 600 MHz spectrometer equipped with a 1H, 13C, 15N triple resonance probe head with z-gradients. The 2-dimensional spectra were folded once in t1, and were acquired with 160 scans and 176 increments using phase sensitive data acquisition in both dimensions. Data were processed using the VNMR program.
In vitro C-mannosylation and product characterization
Microsomes from rat liver and NC-37 cells were prepared as described previously (Graham, 1992), except that in the case of the cells, the 10,000 × g centrifugation was omitted. The microsomes were washed with 50 mM phosphate, pH 7.4 containing 150 mM NaCl, 1 mM MgCl2, 20% glycerol, 2 µg/ml benzamidine, 5 µg/ml pepstatin A, 5 µg/ml leupeptin, and 2 mM EGTA, frozen, and stored at -80°C. Before use the microsomes were washed with 500 mM NaCl in the same buffer to remove proteases and endogenous acceptor proteins.
The IL-12 peptide (Ac-RYYSSSWSEWAS-NH2) was C-mannosylated in vitro using rat liver microsomes as a source of C-mannosyltransferase and Dol-P-[2-3H]Man as the sugar donor (Doucey et al., 1998). The reaction mixture contained in a final volume of 24 µl: 0.9 µM Dol-P-[3H]Man (5.61 Ci/mmol), 0.9 mM of peptide, rat liver microsomes (150 µg of protein), 20 mM Hepes-NaOH pH 7.2, 110 mM K-acetate, 2 mM Mg-acetate, proteases inhibitors (2 µg/ml benzamidine, 5 µg/ml pepstatin A, 5 µg/ml leupeptin, 2 mM EDTA), 0.2% Triton X-100. The reaction was performed at 26°C for 20 h and stopped by adding 2 ml of chloroform/methanol 3:2 (v/v) and 0.48 ml of water. The long incubation period was necessary to obtain sufficient quantity of modified peptide for detailed structural analysis. The aqueous phases of 12 experiments were combined and dried. The peptide was isolated by chromatography using a C18 Sep-Pak cartridge (Waters, Milford, MA) and purified by reversed phase HPLC at pH 6.0 (see above). The purified peptide was digested with trypsin and fractionated by C8 reversed phase LC-ESIMS (Krieg et al., 1997). Final purification was achieved by re-chromatography. The purified radioactive peptide was subjected to nanospray ESIMSMS (Wilm et al., 1996) and to solid-phase Edman degradation (Pisano et al., 1993).
C-Mannosyltransferase activity in microsomes from NC-37 cells was assayed with the IL-12 derived peptide, as well as the general acceptor peptide Ac-WAKW-NH2 . In the standard assay the reaction mixture contained in a final volume of 24 µl: 0.9 mM of peptide, 0.9 µM Dol-P-[2-3H]Man (5.61 Ci/mmol) and microsomes from NC-37 cells (55 µg of protein) in the buffer described above (Doucey et al., 1998). The Triton X-100/protein ratio was always kept constant at 0.34 (w/w). The reaction was stopped after 30 min at 37°C by adding 2 ml of chloroform/methanol 3:2 (v/v) and 0.48 ml of water. After centrifugation, the upper, aqueous phase contained the peptide and the lower, organic phase the Dol-P-[3H]Man. The radioactivity in 0.2 ml of the upper phase was determined by scintillation counting. As controls, either the peptide or microsomes were omitted, or the peptide was substituted with a homolog missing the C-mannosylation motif (Ac-WAKA-NH2). Furthermore, microsomes were heated or treated with chymotrypsin as described previously (Doucey et al., 1998).
We thank Dr. Alvin Stern, Roche Research Center, NJ, for his generous gift of rHuIL-12, Renate Matthies for amino acid sequencing and Drs. Jack Rohrer and Yoshikuni Nagamine for reading the manuscript. We are grateful to Dr. Wolfgang Gläsner for stimulating discussions.
(C2-Man-)Trp, C2-[alpha]-mannopyranosyltryptophan; Dol-P-Man, dolichyl-phosphate-mannose; ESIMS, electrospray ionization mass spectrometry; EBV, Epstein-Barr virus; IL-12, interleukin-12; LC, liquid chromatography; PTH, phenylthiohydantoin; rHuIL12, recombinant human interleukin 12; RNase 2, ribonuclease 2; TOCSY, total correlated spectroscopy.
2To whom correspondence should be addressed