Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
![]() |
Abstract |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
![]() |
Historical Overview |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
It is perhaps not surprising that many of the pioneers in comparative neuroscience were impressed by the similarity of the cerebral cortex in mammalian species. Their early studies revealed that the cerebral cortex is composed of the same basic neuronal types, often organized into a similar basic laminar pattern. The importance of these findings justified the emphasis placed upon them, and they were instrumental in shaping our present understanding of the structure, development, function and evolution of the cerebral cortex. However, unfortunately, similar was interpreted by many to imply same. As a result it became widely accepted during the latter part of the last century that the cerebral cortex is uniform in structure, the whole of cortex (with the exception of the primary visual area) being composed of the same basic repeated unit (Creutzfeldt, 1977; Mountcastle, 1978
; Szentagothai, 1978
; Rockel et al., 1980
; Eccles, 1984
; Douglas et al., 1989
; Hendry and Calkins, 1998
). Taken to its extreme, this interpretation suggested that any deviation from the basic cortical unit must be erroneous (Szentagothai, 1978
). Moreover, many assumed that cortical circuitry is the same in different species (Krubitzer, 1995
; Kolb and Tees, 2000
; Jerison, 2001
). In keeping with this dogma, regional differences in cortical function such as vision, somatosensation and hearing, were attributed solely to the source of their inputs. However, if circuitry in prefrontal cortex, the region of the brain often implicated in cognitive processing, is the same as that in any other cortical region, how could it perform such a complex function as human mentation?
A study of the literature reveals an alternative viewpoint, that is, that the cerebral cortex is characterized by regional and species variations in structure. Although these observations have been ignored by many, some of the pioneering comparative neuroscientists were keenly aware of the functional implications of these regional variations in cortical circuitry. Quoting directly from Santiago Ramón y Cajals observations:
En los ratones las prolongaciones basilares son cortas y poco ramificadas, en el hombre se hacen mas numerosas, largas y ramificadas. Ademas las colaterales nerviosas del raton, el mismo que las del conejo, etc, se dicotomizan solomente uno o dos veces, mientras que en el hombre estas mismas colaterales son mas numerosas y se dividen cuatro y cinco veces, constituyendo ramitas tan largas que no se pueden obtener enteras en un sole corte. (Ramon y Cajal, 1894a,b)
In mice the basal dendrites [of pyramidal cells] are short and have few branches, in man they [the basal dendrites] are numerous, long and highly branched. In addition, the nerve collaterals in mice, as in rabbits etc., divide only once or twice, while in man the same collaterals are more numerous and divide four or five times, making branches so long that the entire branch can never be seen in a single section.
La pirámide ó corpúsculo psíquico posee caracteres especificos que no faltan jamas . . . la presencia de un tallo y penancho protoplasmático, dirigido hacia al superficie cerebral; la existencia de espinas colaterales en las ramas protoplasmáticas . . . puesto que conforme se asciende en la serie animal, el corpúsculo psíquico se engrandece y complica, es natural atribuir a esta progresiva complicación morfológica, una parte al menos de su progresiva dignidad functional . . . puede, pues, estimarse como verosimil que la célula psíquica desempeña más amplia y últimamemte su actividad cuanto mayor número de expansiones protoplasmáticas, someaticas y colaterales ofrece, y cuanto mas copiosas, largas y ramificadas son las colaterales emergentes de su cilindro-eje. (Ramon y Cajal, 1893)
The pyramidal cell, or psychic cell, possesses specific characteristics that are never absent . . . a dendritic shaft and tuft directed toward the cerebral surface; the existence of collateral spines on the dendritic processes . . . as one ascends the animal scale the psychic cell becomes larger and more complex; its natural to attribute this progressive morphological complexity, in part at least, to its progressive functional state . . . it can thus be considered probable that the psychic cell performs its activity more amply and usefully the larger the number of somatic and collateral dendrites that it offers and the more numerous, long and branched the collaterals emitted by its axon.
See DeFelipe and Jones (1988) for a translation of Ramon y Cajals works.
Ramon y Cajal was not alone in documenting regional and species variation in cortical circuitry. Brodmann, von Economo, von Bonin, Walker, the Vogts and Hassler, to mention but a few, were all united in their thinking that different regions of the cortex are composed of different and distinguishable structures (Fig. 1). The extent of regional differences in cortical structures in the brain was investigated in painstaking detail by Conel (1941, 1947, 1955, 1959, 1963, 1967) who published a multiple volume series in which he quantified variation in cell structure in a multitude of cortical areas in the developing human cerebral cortex. Over 250 drawings reveal incredible diversity in pyramidal cell structure (Fig. 2). However, the functional importance of regional variation in cortical circuitry is still ignored by many. The irony is that, while particular cortical areas such as the primary visual area or the primary somatosensory area have become the focus of intensive research because they are uniquely identifiable, findings on the structure and function of these cortical areas, in many cases, continue to be generalized across all cortex.
|
|
![]() |
New Vistas on Regional Specialization in Cortical Circuitry |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Lessons from Sensory Cortex
Of all cortical regions in the brain, the most extensively studied is sensory cortex. In particular, the visual cortex of the macaque monkey has been the focus of much interest due to its parallels with the human visual system (Kaas, 1992). Visual cortex, like other sensory cortices, lends itself to the study of cortical function as specific stimuli can be used to measure specific cellular responses: both the cue and the response can be quantified and correlated.
Monkeys reportedly have as many as 30 cortical visual areas (Felleman and Van Essen, 1991) (Fig. 3), within which neurons process different aspects of vision (e.g. movement, contrast and spectral processing), the outcome of which is a conscious visual percept of the external world (for reviews, see Ungerleider and Mishkin, 1982
; Livingstone and Hubel, 1984
; Allman et al., 1985
; Crick and Koch, 1990
; Felleman and Van Essen, 1991
; Gross et al., 1993
; Singer and Gray, 1995
; Cavada et al., 1997
; Kaas, 1997
; Logothetis, 1998
; Zeki, 2001
). Recently, significant and systematic differences have been reported in the structure of pyramidal cells in these visual areas (Lund et al., 1993
; Elston et al., 1996
, 1999ac, 2001; Elston and Rosa, 1997
, 1998a,b, 2000; Elston, 2000
, 2003a; Elston and Jelinek, 2001
; Jacobs et al., 2001
) (Fig. 3). The magnitude and systematic nature of these regional variations in pyramidal cell structure and their consistency across species make it implausible that they might be accidental, as suggested by Szentagothai (1978
). Here, I will outline briefly how the structural differences in cortical circuitry in different visual areas influence neural and systems functions (for reviews, see Jacobs and Scheibel, 2002
; Elston, 2003b
,c).
|
Cellular Level
Many aspects of dendritic arbour structure can be identified that may influence neuronal function (for reviews, see Koch, 1999; Koch and Segev, 2001
). Three of these features size, branching pattern and number/distribution of inputs are considered here. Pyramidal cells characterized by a large dendritic arbour extend over a wider region of cortex than cells with smaller arbours. In macaque visual cortex, the differences in arbour size, coupled with receptive field map compression, result in a >100-fold difference in the region of the visual map sampled by individual pyramidal cells in the primary visual area (V1) and cytoarchitectonic area TEO (Elston and Rosa, 1998a
). The proportion of the visuotopic map sampled by pyramidal cells is further increased by patterns of intrinsic neuronal connectivity i.e. the lattice of horizontal intrinsic axonal patches in visual cortex (Rockland and Lund, 1982
, 1983; Rockland et al., 1982
; Livingstone and Hubel, 1984
; Rockland, 1985
; Lund et al., 1993
; Fujita and Fujita, 1996
) which are successively more widespread in V1, the second visual area (V2), the fourth visual area (V4) and cytoarchitectonic area TEO. The geometrical relationship between the size of pyramidal cell dendritic arbours and the topography of the intrinsic horizontal lattice of projections reportedly influences their sampling geometry (Lund et al., 1993
) and mixing of inputs from multiple sources (for reviews, see Malach, 1994
; Elston, 2003b
,c).
Differences in the dendritic branching patterns may determine the degree to which the integration of inputs is compartmentalized within their arbours (Koch et al., 1982; Koch, 1999
). The functional outcome of such dendritic processing has been demonstrated in the retina (Taylor et al., 2000
) and auditory brainstem (Agmon-Snir et al., 1998
). Thus, in visual cortex, the potential for compartmentalization of processing within the highly branched dendritic arbour of cells in the superior temporal polysensory area (STP), a polymodal association area, is greater than that in other cortical areas such as V1 and V2. Modelling studies have shown that the greater potential for compartmentalization results in a significant increase in the representational power of the cell and a greater capacity for learning and memory (Poirazi and Mel, 2001
) (Fig. 4). Marked differences in the density of dendritic spines, each of which receives at least one asymmetrical synapse (Colonnier, 1968
; Jones, 1968
; Peters and Kaiserman-Abramof, 1969
), the presynaptic terminals of which contain the excitatory neurotransmitter glutamate (DeFelipe et al., 1988
; Kharazia and Weinberg, 1993
), of pyramidal cells in different cortical areas may also influence various aspects of the integration of inputs along the dendrites. For example, the peak spine density along dendrites of pyramidal cells in TE, which contains neurons able to distinguish complex visual features (for a review, see Gross et al., 1993
), is more than three times higher than that found in V1 (Elston et al., 1999a
), which contains neurons that respond to relatively simple visual stimuli. As well as the obvious difference in the total number of putative excitatory inputs along the dendrite, differences in their density may influence local summation of post-synaptic potentials, or cooperativity between inputs (Shepherd et al., 1985
), being more likely to occur in highly spinous than in less spinous dendrites. Regional differences in the morphology of spines (Elston et al., 1999a
,b; Benavides-Piccione et al., 2003
) may also influence their functional properties (for reviews, see Shepherd, 1998
; Koch, 1999
). In conjunction, the regional differences in the size, branching pattern and spine density of pyramidal cells results in impressive variation in the total number of putative excitatory inputs sampled by each pyramidal cell in different cortical areas. For example, Layer III pyramidal cells in macaque area TE contain, on average, >11 times more spines in their basal dendritic arbours than those in macaque V1. Layer III pyramidal cells in macaque STP contain, on average, >13 times more spines in their basal dendritic arbours than those in macaque V1 (Elston et al., 1999a
).
|
Systems Level
Cortical circuits comprise many tens of thousands of neurons. Thus, any functional difference endowed at the neuronal level by specialization in pyramidal cell structure must necessarily then be amplified in the cortical circuitry. It follows that the extent of the cellular specialization, and differences in the numbers of cells within a network, may determine the functional capabilities of the cortical circuits. Surprisingly few studies have addressed this issue, and those that have have revealed spectacular results. Fuster and colleagues revealed that the discharge properties of neurons in V1 differed from those in inferotemporal (IT) cortex, those in the former being characterized by phasic discharge properties whereas those in the latter are characterized by tonic activity (Ashford and Fuster, 1985; see also Fuster and Alexander, 1971
; Fuster and Jervey, 1981
, 1983; Miller et al., 1993
; Miyashita et al., 1993a
,b; Melchitzky et al., 2001a
,b). Similar findings have been reported for highly spinous cells in parietal cortex (cf. Gnadt and Andersen, 1988
; Koch and Fuster, 1989
; Colby et al., 1996
; Constantinidis and Steinmetz, 1996
; Zhou and Fuster, 1996
, 1997; Elston and Rosa, 1997
; Chafee and Goldman-Rakic, 1998
; Elston and Rockland, 2002
). This persistent neural activity is now widely accepted to be important for holding a memory (for reviews, see Fuster, 2000
; Miller and Cohen, 2001
). Further evidence for regional variation in the functional characteristics of cortical circuitry comes from the work of Murayama et al. (1997)
, who demonstrated that tetanic stimulation of somata led to long-term potentiation in TE, but long-term depression in V1.
Visual processing, however, occurs in multiple cortical areas, not just the primary visual area or TE. Imaging studies reveal that the number of areas recruited at any given time depends on the visual task. Neural ensembles may be activated across various cortical areas. This leads us to an important point: not all aspects of visual processing are performed by all visual neurons, nor are neurons in all visual areas recruited for any given visual task. Neurons in different areas reportedly process different aspects of vision, being loosely grouped into those that process for motion detection and those that process for object recognition (Ungerleider and Mishkin, 1982; Livingstone and Hubel, 1984
; Felleman and Van Essen, 1991
; but see Lennie, 1998
). These basic differences in visual function are likely to be determined by gross differences in patterns of connectivity and the projections they receive (for reviews on connectivity, see Casagrande and Kaas, 1994
; Lund et al., 1994
; Shipp and Zeki, 1995
; Rockland, 1997
, 2003; Bullier et al., 2001
). However, cortical connections are complex (Young, 1992
, 1993) and objective analysis of corticocortical connections at the gross level fails to account for areal differences in specific aspects of neural function, such as discharge properties, direction selectivity and orientation selectivity.
Various theories exist for multiarea processing, including hierarchical and distributed models (for reviews, see Felleman and Van Essen, 1991; Mountcastle, 1995
). Common to both models is that ensembles of neurons in multiple cortical areas may be co-activated for any given task. How regional differences in pyramidal cell structure may influence processing within these different models has been covered in detail elsewhere (Elston, 2003b
). Briefly, within hierarchical models the flow of visual inputs through a pathway allows individual neurons within progressively higher areas to process inputs from a proportionately larger region of the visuotopic map. The potential advantage of such serial reconstruction of the visual scene is conceptually straight forward in the occipitotemporal pathway, where neurons in successively higher visual areas distinguish more complex features (for reviews, see Elston, 2003b
; Fujita, 2003
; Lund, 2003
). Within a distributed system, co-activation of ensembles of highly spinous pyramidal cells in association areas may be important for binding sensory perceptions (for reviews, see Singer and Gray, 1995
; Llinás and Paré, 1996
). In addition, there is a greater potential for recurrent excitation through re-entrant circuits composed of neurons that integrate large numbers of excitatory inputs and are highly interconnected than in circuits composed of sparsely interconnected neurons that sample relatively few inputs (for a review, see Wang, 2001
). Thus, co-operativity of ensembles of pyramidal cells of varying phenotype in different cortical areas potentially leads to a richness of diversity of, and functional cohesiveness in, cortical function not attainable in cortex composed of the same basic repeated circuit.
In summary, systematic areal specializations in cortical circuitry are likely to influence various aspects of visual processing. The small pyramidal cells in V1, and the circuits they form, allow high fidelity sampling of the visual scene, the relatively small number of inputs they integrate, and their patterns of connectivity, being instrumental in determining their phasic discharge properties (e.g. Ashford and Fuster, 1985). V1 circuit structure is specialized to subserve rapid processing of a constantly changing visual scene, allowing quick reset time for processing saccadic inputs. In other words, V1 circuitry is specialized to fire and flush. The integrative ability and patterns of connectivity of the larger, more branched and more spinous pyramidal cells in visual areas in IT cortex provide an anatomical substrate for the global integration of the visual scene. Each neurons ability to sample a large number of excitatory inputs is central to the tonic activity reported in these cells, which is widely believed to be important for visual memory.
![]() |
Prefrontal Circuitry |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Recent observations of pyramidal cells in prefrontal cortex (PFC) of man and macaques reveal that they are, in general, more branched and more spinous than their counterparts in the occipital, parietal and temporal lobes (Lund et al., 1993; Elston, 2000
; Elston et al., 2001
; Jacobs et al., 2001
). Layer III pyramidal cells in macaque monkey PFC have a peak branching complexity which, on average, is twice that of cells in V1 (Elston, 2000
). Those in human PFC have a peak branching complexity more than three times that of cells in V1 (Elston et al., 2001
). Spine densities along their basal dendrites also vary markedly, with the average peak spine density of cells in PFC (>30 spines per 10 µm) being more than four times greater than that in V1. The peak spine density in human prefrontal cells is as high as 61 spines per 10 µm. Consequently, layer III pyramidal cells in macaque monkey PFC are, on average, up to 16 times more spinous than those in macaque V1 (Elston et al., 2001
) (Fig. 5) Layer III pyramidal cells in human PFC are, on average, 23 times more spinous than those in macaque V1. These differences cannot be attributed to scaling in cell structure, but reflect regional and species specializations (e.g. Elston and Jelinek, 2001
; Jelinek and Elston, 2001
).
|
Neurons in the prefrontal cortex of man and macaque are characterized by sustained tonic activity, particularly those in the dorsolateral PFC (e.g. Fuster and Alexander, 1971; Kubota and Niki, 1971
; Fuster, 1973
; Funahashi et al., 1989
; Leung et al., 2002
). In the above section it was argued that cortical circuits, such as those in IT cortex, which are composed of highly branched, spinous pyramidal cells, provide an anatomical substrate for sustained neural discharge, whereas those composed of less-branched pyramidal cells with relatively few spines, such as in V1, provide a platform for phasic neural discharge. Pyramidal cells in PFC of man and macaque have a more complex structure than those in IT. Given the preceding logic, it would therefore be expected that their even more complex structure would endow PFC circuitry with more complex functional capabilities. This is reportedly so; cells in PFC differ from those in other cortical areas in that they remain active during the delay between cue and related execution despite interference from distractors (Miller et al., 1996
). Persistent activity reported for neurons in other areas is disrupted by distractors (Miller et al., 1993
, 1996; Constantinidis and Steinmetz, 1996
). Based on this difference, Miller and Cohen (2001
) conclude that, posterior cortical neurons reflect the most recent input regardless of its relevance, whereas the PFC selectively maintains task-relevant information. Moreover, neural reactivity to sensory stimuli is reportedly less sensitive in PFC than in sensory association cortex (Kojima, 1980
; Kubota et al., 1980
; Fuster and Jervey, 1982
; Miller et al., 1996
). An overview of patterns of projections to, and within, prefrontal cortex reveals why specialization of the PFC pyramidal cell phenotype may influence its ability to hold task-relevant information even in the presence of distractors.
PFC receives a diverse set of corticocortical inputs from a multitude of areas involved in processing all sensory modalities (for reviews, see Fuster, 1985, 1997; Cavada et al., 2000
; Pandya and Yeterian, 2000
; Petrides, 2000
; Rolls, 2000
). In addition, cortical areas within prefrontal cortex multiply interconnected (e.g. Barbas and Pandya, 1989
; Pandya and Barnes, 1987
; Preuss and Goldman-Rakic, 1991b
). Thus, pyramidal cells in PFC potentially process large numbers of diverse inputs. While it could be argued that the persistent neural activity in PFC results solely from a continual bombardment of such inputs, this explanation cannot account for the type of persistent activity reported for neurons in prefrontal cortex, nor for those prefrontal functions that do not require direct sensory input. Moreover, there are many other cortical regions that receive a multitude of inputs from diverse sources (e.g. Andersen et al., 1990
; Cavada et al., 1997
; Lewis and van Essen, 2000
). Thus, it appears likely that some aspect of prefrontal circuitry may subserve the sustained neural activity characteristic of PFC.
The superficial layers in PFC, like those in sensory cortex (Juliano et al., 1990; Huntley and Jones, 1991
; Lund et al., 1993
), are characterized by horizontal intrinsic axon projections that arise from supragranular pyramidal cells (Kritzer and Goldman-Rakic, 1995
; Pucak et al., 1996
; González-Burgos et al., 2000
; Melchitzky et al., 2001a
,b). However, the topography of these projections in PFC differs somewhat from those reported in sensory cortex: intrinsic horizontal projections in sensory areas tend to be restricted to a relatively small region of cortex surrounding their origin, whereas those in PFC are more widespread. In the primary visual cortex, these axon projections terminate in relatively dense clusters (Rockland and Lund, 1982
, 1983; Rockland et al., 1982
; Livingstone and Hubel, 1984
; Martin and Whitteridge, 1984
; Rockland, 1985
; Kisvárday et al., 1986
; McGuire et al., 1991
). The size and spread of intrinsic clusters is more widespread and diffuse in extrastriate visual areas (Yoshioka et al., 1992
; Lund et al., 1993
; Levitt et al., 1994
; Fujita and Fujita, 1996
), but the relative differences in the dimensions of the clusters in visual areas corresponds to the diameter of the basal dendritic arbours of supragranular pyramidal cells (Lund et al., 1993
; Elston et al., 1999a
). In PFC, however, these intrinsic axonal projections form less regular arbours, which extend up to 8 mm (Levitt et al., 1993
; Kritzer and Goldman-Rakic, 1995
; Pucak et al., 1996
). The average diameter of the pyramidal cell arbours is considerably greater than the width of the intrinsic stripes in PFC (
400 and 267 µm, respectively), but slightly less than the centre-to-centre spacing (536 µm) (Levitt et al., 1993
; Elston, 2000
). These differences in the size of the basal dendritic arbours and intrinsic axonal arbours may allow different sampling strategies in cortex (Fig. 6). Potentially, individual neurons in PFC sample a larger number of more diverse monosynaptic excitatory inputs over a more expansive region of cortex than in sensory cortex.
|
We have already seen that in humans and macaque monkeys, pyramidal cells in prefrontal cortex are structurally complex and that PFC circuitry may be endowed with specialized functional capabilities. The correlation between human PFC pyramidal cell complexity and human cognitive abilities may suit well our view that we are a highly cognate species. The macaque data also sit well with this interpretation. However, this is clearly not a satisfactory way to determine any possible correlation between the evolution of PFC cell structure and cognitive abilities (for reviews, see Preuss, 1995, 2000). Instead, a broad survey of pyramidal cell structure should be undertaken in a number of primate and non-primate species to correlate structural modification of PFC with cognitive styles. With these objectives in mind, we have begun to study pyramidal cell structure in other primate species.
Our first objective has been to study pyramidal cell structure in New World monkeys, which separated from the Old World lineage during the late Eocene period (Fleagle, 1999). We found that pyramidal cells in prefrontal cortex of New World marmoset monkeys have a relatively simple structure, being less than six times more spinous than those in V1 (cf. Elston et al., 1999b
, 2001). [Note that in both New World and Old World primates studied to date, estimates of the number of spines found in the basal dendritic arbours of layer III pyramidal cells in V1 are remarkably similar (597773).] The relative simplicity of their structure, however, does not reflect a basic characteristic of pyramidal cells in their brain. Pyramidal cells in marmoset visual cortex, for example, are characterized by the same progressive increase in structural complexity with anterior progression through occipitotemporal (OT) areas as seen in humans and macaque monkeys (Fig. 7). Indeed, cells in marmoset anterior IT (ITr, the homologue of macaque TE) are seven times more spinous than those in V1 (Fig. 7). The study of pyramidal cell structure in another New World monkey, Aotus, reveals a similar trend: pyramidal cells in PFC are
2.6 times more spinous than those in V1, whereas those in ITr are
4.8 times more spinous than cells in the primary visual area (Fig. 7). [Although these data were sampled from an aged animal and may have been influenced by age-related spine loss, the relative trends in OT and prefrontal cortex are noteworthy.] In absolute terms, our estimates reveal that human prefrontal pyramidal cells have, on average, 15 138 spines in their basal arbours (Brodmanns area 10), 72% more than those in macaque (8766, Preuss and Goldman-Rakics area 10), 3.8 times more than those in marmoset (3983, Brodmanns area 10) and 7.5 times more than those in Aotus (2031, dorsolateral granular PFC).
|
What then may act as a selective pressure for the evolution of more spinous pyramidal cells during cortical expansion? As pointed out by Ringo (1991), cortical expansion through the addition of more of the same basic cortical unit (or module) results in an overall decrease in connectivity in the brain. Processing in a larger brain would necessarily involve a larger number of synaptic connections (over a longer distance) for information to flow between distant modules than in a smaller brain. The addition of a sufficient number of modules (canonical circuits) to account for the 1000-fold difference in the size of mammalian brains would inevitably result in the segregation of processing into different foci. Theoretically, processing would become divergent and would be relatively slow. This problem may be avoided by adding more complex modules, i.e. by adding progressively more complex, highly interconnected, pyramidal cells. Said in another way, the addition of new prefrontal circuitry composed of V1-type pyramidal cells in the human brain would not result in the same functional advantage for human mentation as the addition of new circuitry composed of human PFC-type pyramidal cells.
![]() |
Conclusions |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
|
![]() |
Notes |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Address correspondence to Guy N. Elston, Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia. Email: g.elston{at}vthrc.uq.edu.au.
![]() |
References |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Allman J, Miezin F, McGuinness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for localglobal comparisons in visual neurons. Annu Rev Neurosci 8:407430.[CrossRef][ISI][Medline]
Amit DJ (1995) The Hebbian paradigm reintegrated; local reverberations as internal representations. Behav Brain Sci 18:617.[ISI]
Andersen RA, Asanuma C, Essick G, Siegel RM (1990) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296:65113.[ISI][Medline]
Angelucci A, Levitt JB, Lund JS (2002) Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. In: Progress in brain research (Azmitia EC, DeFelipe J, Jones EG, Rakic P, Ribak CE, eds), pp. 373388. Amsterdam: Elsevier.
Ashford JW, Fuster JM (1985) Occipital and inferotemporal responses to visual signals in the monkey. Exp Neurol 90:444446.[ISI][Medline]
Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353375.[ISI][Medline]
Beaulieu C, Colonnier M (1985) A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J Comp Neurol 231:180189.[ISI][Medline]
Beaulieu C, Somogyi P (1990) Targets and quantitative distribution of GABAergic synapses in the visual cortex of the cat. Eur J Neurosci 2:296303.[ISI][Medline]
Beaulieu C, Kisvárday Z, Somogyi P, Cynader M, Cowey A (1992) Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb Cortex 2:295309.[Abstract]
Benavides-Piccione R, Ballesteros-Yáñez I, DeFelipe J, Yuste R (2003) Cortical area and species differences in dendritic spine morphology. J Neurocytol 31:337346.[ISI]
Bernander O, Douglas RJ, Martin KA, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci USA 88:1156911573.[Abstract]
Blümcke I, Hof PR, Morrison JH, Celio MR (1991) Parvalbumin in the monkey striate cortex: a quantitative immunoelectron-microscopy study. Brain Res 554:237243.[CrossRef][ISI][Medline]
Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Leipzig: Johann Ambrosius Barth.
Brodmann K (1913) Neue Forschungsergebnisse der Grosshirnrindenanatomie mit Besonderer Berücksichtigung Anthropologischer Fragen.
Bugbee NM, Goldman-Rakic PS (1983) Columnar organization of corticocortical projections in squirrel and rhesus monkeys: similarity of column width in species differing in cortical volume. J Comp Neurol 220:355364.[ISI][Medline]
Bullier J, Hupé J-M, James AC, Girard P (2001) The role of feedback connections in shaping the responses of visual cortical neurons. In: Progress in brain research (Casanova C, Pitito M, eds), pp. 193204. Amsterdam: Elsevier.
Calford MB (2002) Dynamic representational plasticity in sensory cortex. Neuroscience 111:709738.[CrossRef][ISI][Medline]
Casagrande C, Kaas JH (1994) The afferent, intrinsic and efferent connections of primary visual cortex in primates. In: Cerebral cortex Vol. 10, primary visual cortex in primates (Peters A, Rockland KS, eds), pp. 201259. New York: Plenum.
Cavada C, Hernández-González A, Tejedor J, Reinoso-Suárez F (1997) Multiple processing streams versus global visual perception. A binding hypothesis based on the anatomical organization of the neural networks of primate visual association cortices. In: The association cortex, structure and function (Sakata H, Mikami A, Fuster J, eds), pp. 129136. Amsterdam: Harwood.
Cavada C, Compañy T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suárez F (2000) The anatomical connections of the macaque orbitofrontal cortex. Cereb Cortex 10:220242.
Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79:29192940.
Colby CL, Duhamel JR, Goldberg ME (1996) Visual, presaccadic and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol 76:28412852.
Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. Brain Res 9:268287.[CrossRef][Medline]
Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10:910923.
Conel JL (1941) The cortex of a one month old infant. In: The post natal development of the human cerebral cortex. Cambridge MA: Harvard University Press.
Conel JL (1947) The cortex of a three month old infant. In: The post natal development of the human cerebral cortex. Cambridge MA: Harvard University Press.
Conel JL (1955) The cortex of a fifteen month old infant. In: The post natal development of the human cerebral cortex. Cambridge MA: Harvard University Press.
Conel JL (1959) The cortex of a twenty-four month old infant. In: The post natal development of the human cerebral cortex. Cambridge MA: Harvard University Press.
Conel JL (1963) The cortex of a four year old child. In: The post natal development of the human cerebral cortex. Cambridge MA: Harvard University Press.
Conel JL (1967) The cortex of a six year old child. In: The post natal development of the human cerebral cortex. Cambridge MA: Harvard University Press.
Constantinidis C, Steinmetz MA (1996) Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J Neurophysiol 76:13521355.
Constantinidis C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5:175180.[CrossRef][ISI][Medline]
Creutzfeldt OD (1977) Generality of the functional structure of the neocortex. Naturwissenschaften 64:507517.[ISI][Medline]
Crick FHC (1995) An astonishing hypothesis: a scientific search for the soul. New York: Simon & Schuster.
Crick F, Jones E (1993) Backwardness of human neuroanatomy. Nature 361:109110.[CrossRef][ISI][Medline]
Crick FHC, Koch C (1990) Some reflections on visual awareness. Cold Spring Harbor Symp Quant Biol 55:953962.[Medline]
DeFelipe J (2002) Cortical interneurons: from Cajal to 2001. In: Progress in brain research (Azmitia EC, DeFelipe J, Jones EG, Rakic P, Ribak CE, eds), pp. 215238. Amsterdam: Elsevier.
DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563607.[CrossRef][ISI][Medline]
DeFelipe J, Jones EG (1988) Cajal on the cerebral cortex. New York: Oxford University Press.
DeFelipe J, Jones EG (1991) Parvalbumin immunoreactivity reveals layer IV of the monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations. Brain Res 562:3947.[CrossRef][ISI][Medline]
DeFelipe J, Conti F, Van Eyck SL, Manzoni T (1988) Demonstration of glutamate-positive axon terminals forming asymmetric synapses in cat neocortex. Brain Res 455:162165.[CrossRef][ISI][Medline]
DeFelipe J, del Río MR, González-Albo MC, Elston GN (1999) Distribution and patterns of connectivity of interneurons containing calbindin, calretinin and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J Comp Neurol 412:515526.[CrossRef][ISI][Medline]
del Rio MR, DeFelipe J (1994) A study of SMI-32 stained pyramidal cells, parvalbumin immunoreactive chandelier cells and presumptive thalamocortical axons in the human temporal cortex. J Comp Neurol 342:389408.[ISI][Medline]
del Rio MR, DeFelipe J (1997) Synaptic connections of calretinin immunoreactive neurones in human neocortex. J Neurosci 17:51435154.
Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal systems in the rhesus monkey. Cereb Cortex 11:975988.
Douglas RJ, Martin KAC, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comp 1:480488.
Eccles JC (1984) The cerebral neocortex: a theory of its operation. In: Cerebral cortex Vol. 2, functional properties of cortical cells (Jones EG, Peters A, eds), pp. 132. New York: Plenum.
Elston GN (2000) Pyramidal cells of the frontal lobe: all the more spinous to think with. J Neurosci 20:RC95(14).
Elston GN (2001) Interlaminar differences in the pyramidal cell phenotype in cortical areas 7m and STP of the macaque monkey. Exp Brain Res 138:141152.[CrossRef][ISI][Medline]
Elston GN (2003a) Pyramidal cell heterogeneity in the visual cortex of the nocturnal New World owl monkey (Aotus trivirgatus). Neuroscience 117:213219.[CrossRef][ISI][Medline]
Elston GN (2003b) Cortical heterogeneity: implications for visual processing and polysensory integration. J Neurocytol 31:317335.[ISI]
Elston GN (2003c) Comparative studies of pyramidal neurons in visual cortex of monkeys. In: The primate visual system (Kaas JH, Collins C, eds), pp. 365385. Boca Raton, FL: CRC Press.
Elston GN (2003d) The pyramidal neuron in occipital, temporal and prefrontal cortex of the owl monkey (Aotus trivirgatus): regional specialization in cell structure. Eur J Neurosci 17:13131318.[ISI][Medline]
Elston GN, DeFelipe J (2002) Spine distribution in neocortical pyramidal cells: a common organizational principle. In: Progress in brain research Vol. 136, changing views of Cajals neuron (Azmitia EC, Defelipe J, Jones EG, Rakic P, Ribak CE, eds), pp. 109133. Amsterdam: Elsevier.
Elston GN, González-Albo MC (2003) Parvalbumin-, calbindin- and calretinin-immunoreactive neurons in the prefrontal cortex of the owl monkey (Aotus trivirgatus): a standardized quantitative comparison with sensory and motor areas. Brain Behav Evol 62:1930.[CrossRef][ISI][Medline]
Elston GN, Jelinek HF (2001) Dendritic branching patterns of pyramidal cells in the visual cortex of the New World marmoset monkey, with comparative notes on the Old World macaque monkey. Fractals 9:297303.[ISI]
Elston GN, Rockland K (2002) The pyramidal cell in sensory-motor cortex of the macaque monkey: phenotypic variation. Cereb Cortex 12:10711078.
Elston GN, Rosa MGP (1997) The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb Cortex 7:432452.[Abstract]
Elston GN, Rosa MGP (1998a) Morphological variation of layer III pyramidal neurons in the occipitotemporal pathway of the macaque monkey visual cortex. Cereb Cortex 8:278294.[Abstract]
Elston GN, Rosa MGP (1998b) Complex dendritic fields of pyramidal cells in the frontal eye field of the macaque monkey: comparison with parietal areas 7a and LIP. Neuroreport 9:127131.[ISI][Medline]
Elston GN, Rosa MGP (2000) Pyramidal cells, patches, and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. J Neurosci 20:RC117(14).
Elston GN, Rosa MGP, Calford MB (1996) Comparison of dendritic fields of layer III pyramidal neurones in striate and extrastriate visual areas of the marmoset: a Lucifer Yellow intracellular injection study. Cereb Cortex 6:807813.[Abstract]
Elston GN, Tweedale R, Rosa MGP (1999a) Cortical integration in the visual system of the macaque monkey: large scale morphological differences of pyramidal neurones in the occipital, parietal and temporal lobes. Proc R Soc Lond Ser B 266:13671374.[CrossRef][ISI][Medline]
Elston GN, Tweedale R, Rosa MGP (1999b) Cellular heterogeneity in cerebral cortex. A study of the morphology of pyramidal neurones in visual areas of the marmoset monkey. J Comp Neurol 415:3351.[CrossRef][ISI][Medline]
Elston GN, Tweedale R, Rosa MGP (1999c) Supragranular pyramidal neurones in the medial posterior parietal cortex of the macaque monkey: morphological heterogeneity in subdivisions of area 7. Neuroreport 10:19251929.[ISI][Medline]
Elston GN, Benavides-Piccione R, DeFelipe J (2001) The pyramidal cell in cognition: a comparative study in human and monkey. J Neurosci 21:RC163(15).
Elston GN, Benavides-Piccione R, DeFelipe J, Rockland K (2002) The pyramidal cell in auditory, cingulate and prefrontal cortex of the macaque monkey: areal specialization of cell structure. Eur Soc Neurosci Abstr 10:222.
Emerson RC, Citron MC, Felleman DJ, Kaas JH (1985) A proposed mechanism and site for cortical directional selectivity. In: Models of the visual cortex (Rose D, Dobson VG, eds). New York: John Wiley.
Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in primate cerebral cortex. Cereb Cortex 1:147.[Abstract]
Fleagle JG (1999) Primate adaptation and evolution. San Diego, CA: Academic Press.
Fujita I (2003) The inferior temporal cortex: architecture, computation and representation. J Neurocytol 31:359371.[ISI]
Fujita I, Fujita T (1996) Intrinsic connections in the macaque inferior temporal cortex. J Comp Neurol 368:467486.[CrossRef][ISI][Medline]
Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkeys dorsolateral prefrontal cortex. J Neurophysiol 61:331349.
Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36:6178.
Fuster JM (1985) The prefrontal cortex, mediator of cross-temporal contingencies. Hum Neurobiol 4:169179.[ISI][Medline]
Fuster JM (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia, PA: Lippincott-Raven.
Fuster JM (2000) Cortical dynamics of memory. Int J Psychophysiol 35:155164.[CrossRef][ISI][Medline]
Fuster JM (2001) The prefrontal cortex an update; time is of the essence. Neuron 30:319333.[CrossRef][ISI][Medline]
Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652654.[ISI][Medline]
Fuster JM, Jervey JP (1981) Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212:952955.[ISI][Medline]
Fuster JM, Jervey JP (1982) Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J Neurosci 2:361375.[Abstract]
Garey LJ (1994) Brodmanns Localisation in the cerebral cortex. London: Smith-Gordon.
Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol 202:443474.[CrossRef][ISI][Medline]
Gilbert CD, Das A, Ito M, Kapadia M, Westheimer G (1996) Spatial integration and cortical dynamics. Proc Natl Acad Sci USA 93:615622.
Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70:216220.[ISI][Medline]
Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Handbook of physiology: the nervous system (Plum F, ed), pp. 373417. Bethesda, MD: American Physiological Society.
Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477485.[ISI][Medline]
Goldman-Rakic PS (1996) The prefrontal landscape: implications for functional architecture for understanding human mentation and the central executive. Phil Trans R Soc Lond Ser B 351:14451453.[ISI][Medline]
Goldman-Rakic PS (1999) The psychic neuron of the cerebral cortex. Ann NY Acad Sci 868:1326.
González-Burgos G, Barrioneuvo G, Lewis DA (2000) Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cereb Cortex 10:8292.
Goodchild AK, Martin PR (1998) The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of a New World monkey, the marmoset, Callithrix jacchus. Vis Neurosci 15:625642.[CrossRef][ISI][Medline]
Gross CG, Rodman HR, Gochin PM, Colombo MW (1993) Inferior temporal cortex as a pattern recognition device. In: Computational learning and recognition: proceedings of the 3rd NEC research symposium (Baum E, ed), pp. 4473. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Hebb DO (1949) The organization of behaviour. New York: Wiley.
Hendry SHC, Calkins DJ (1998) Neuronal chemistry and functional organization in the primate visual system. Trends Neurosci 21:344349.[CrossRef][ISI][Medline]
Hof PR, Nimchinsky EA (1992) Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey. Cereb Cortex 2:456467.[Abstract]
Hof PR, Mufson EJ, Morrison JH (1995) Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation. J Comp Neurol 359:4868.[ISI][Medline]
Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Wiesenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77116.[CrossRef][ISI][Medline]
Huntley GW, Jones EG (1991) Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. J Neurophysiol 66:390413.
Jacobs B, Schall M, Prather M, Kapler L, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M, Treml M (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative study. Cereb Cortex 11:558571.
Jacobs B, Scheibel AB (2002) Regional dendritic variation in primate cortical pyramidal cells. In: Cortical areas: unity and diversity (Schüz A, Miller R, eds), pp. 111131. London: Taylor & Francis.
Jelinek HF, Elston GN (2001) Pyramidal neurones in macaque visual cortex: interareal phenotypic variation of dendritic branching patterns. Fractals 9:287296.[ISI]
Jerison H (2001) Epilogue: the study of primate brain evolution: where do we go from here? In: Evolutionary anatomy of the primate cerebral cortex (Falk D, Gibson KR, eds), pp. 305335. Cambridge: Cambridge University Press.
Jones EG (1968) An electron microscopic study of the terminations of afferent fiber systems onto the somatic sensory cortex of the cat. J Anat 103:595597.[ISI]
Jones EG (1986) Connectivity of the primate sensory-motor cortex. In: Cerebral cortex Vol. 5, sensory motor areas and aspects of cortical connectivity (Peters A, Jones EG, eds), pp. 113182. New York: Plenum.
Jones EG (2000) Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 23:137.[CrossRef][ISI][Medline]
Juliano SL, Friedman DP, Eslin DE (1990) Corticocortical connections predict patches of stimulus-evoked metabolic activity in monkey somatosensory cortex. J Comp Neurol 298:2339.[ISI][Medline]
Kaas JH (1991) Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci 14:137167.[CrossRef][ISI][Medline]
Kaas JH (1992) Do humans see what monkeys see? Trends Neurosci 15:13.[CrossRef][ISI][Medline]
Kaas JH (1997) Theories of visual cortex organization in primates. In: Cerebral cortex Vol. 12, extrastriate cortex in primates (Rockland K, Kaas JH, Peters A, eds), pp. 91125. New York: Plenum.
Kharazia VN, Weinberg RJ (1993) Glutamate in terminals of the thalamocortical fibers in rat somatic sensory cortex. Neurosci Lett 157:162166.[CrossRef][ISI][Medline]
Kisvárday ZF, Martin KAC, Freund TF, Magloczky Z, Whitteridge D, Somogyi P (1986) Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp Brain Res 64:541552.[ISI][Medline]
Koch C (1999) Biophysics of computation. Information processing in single neurons. New York: Oxford University Press.
Koch C, Poggio T (1985) The synaptic veto mechanism: does it underlie direction and orientation selectivity in the visual cortex. In: Models of the visual cortex (Rose D, Dobson VG, eds), pp. 408419. New York: Riley.
Koch C, Segev I (2001) Methods in neuronal modeling. London: MIT Press.
Koch C, Poggio T, Torre V (1982) Retinal ganglion cells: a functional interpretation of dendritic morphology. Phil Trans R Soc Lond Ser B 298:227264.[ISI][Medline]
Koch KW, Fuster JM (1989) Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp Brain Res 76:292306.[ISI][Medline]
Kojima S (1980) Prefrontal unit activity in the monkey: relation to visual stimuli and movements. Exp Neurol 69:110123.[ISI][Medline]
Kolb B, Tees C (2000) The rat as a model of cortical function. In: The cerebral cortex of the rat (Kolb B, Tees C, eds), pp. 317. Cambridge, MA: MIT Press.
Kondo HT, Hashikawa T, Tanaka K, Jones EG (1994) Neurochemical gradient along the monkey occipito-temporal cortical pathway. Neuroreport 5:613616.[ISI][Medline]
Kritzer M, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in monkeys. J Comp Neurol 359:131143.[ISI][Medline]
Kritzer M, Cowey A, Somogyi P (1992) Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey. J Neurosci 12:45454564.[Abstract]
Krubitzer LA (1995) The organization of neocortex in mammals: are species differences really so different? Trends Neurosci 18:408417.[CrossRef][ISI][Medline]
Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34:337347.
Kubota K, Tonoike M, Mikami A (1980) Neuronal activity in the monkey dorsolateral prefrontal cortex during a discrimination task with delay. Brain Res 183:2942.[CrossRef][ISI][Medline]
Lennie P (1998) Single units and visual cortical organization. Perception 27:889935.[ISI][Medline]
Leung H-C, Gore JC, Goldman-Rakic PS (2002) Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. J Cogn Neurosci 14:659671.
Levitt JB, Lewis DA, Yoshioka T, Lund JS (1993) Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338:360376.[ISI][Medline]
Levitt JB, Yoshioka T, Lund JS (1994) Intrinsic cortical connections in macaque visual area V2: evidence for interactions between different functional streams. J Comp Neurol 342:551570.[ISI][Medline]
Levitt P, Rakic P, Goldman-Rakic P (1984) Comparative assesment of monoamine afferents in mammalian cerebral cortex. In: Monoamine innervation of the cerebral cortex (Descarries L, Reader TA, Jasper HH, eds), pp. 4159. New York: Liss.
Lewis JW, van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112137.[CrossRef][ISI][Medline]
Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4:309356.[Abstract]
Llinás R, Paré D (1996) The brain as a closed system modulated by the senses. In: The mind brain continuum (Llinás R, Churchland PS, eds), pp. 118. Cambridge, MA: MIT Press.
Logothetis NK (1998) Single units and conscious vision. Phil Trans R Soc Lond Ser B 353:18011818.[CrossRef][ISI][Medline]
Lund JS (2003) Specificity and non-specificity of synaptic connections within mammalian visual cortex. J Neurocytol 31:203209.[ISI]
Lund JS, Yoshioka T, Levitt JB (1993) Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cereb Cortex 3:148162.[Abstract]
Lund JS, Yoshioka T, Levitt JB (1994) Substrates for interlaminar connections in area V1 of the macaque monkey cerebral cortex. In: Cerebral cortex Vol. 10, primary visual cortex in primates (Peters A, Rockland KS, eds), pp. 3760. New York: Plenum.
McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN (1991) Targets of horizontal connections in macaque primary visual cortex. J Comp Neurol 305:370392.[ISI][Medline]
Malach R (1994) Cortical columns as devices for maximizing neuronal diversity. Trends Neurosci 17:101104.[CrossRef][ISI][Medline]
Martin KAC, Whitteridge D (1984) Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. J Physiol (Lond) 353:463504.[Abstract]
Mel B (1993) Synaptic integration in an excitable dendritic tree. J Neurophysiol 70:10861101.
Mel B (1999) Why have dendrites? A computation perspective. In: Dendrites (Stuart G, Spruston N, Häusser M, eds), pp. 271289. New York: Oxford University Press.
Melchitzky DS, González-Burgos G, Barrionuevo G, Lewis DA (2001a) Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex. J Comp Neurol 430:209221.[CrossRef][ISI][Medline]
Melchitzky DS, Sesack SR, Pucak ML, Lewis DA (2001b) Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex. J Comp Neurol 390:211224.[CrossRef]
Micheva KD, Beaulieu C (1995) An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. Proc Natl Acad Sci USA 92:1183411838.[Abstract]
Miller EK (1999) The prefrontal cortex: complex neural properties for complex behavior. Neuron 22:1517.[ISI][Medline]
Miller EK (2000) The prefrontal cortex and cognitive control. Nat Neurosci 1:5965.[CrossRef]
Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex. Annu Rev Neurosci 24:167202.[CrossRef][ISI][Medline]
Miller EK, Li L, Desimone R (1993) Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci 13:14601478.[Abstract]
Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:51545167.
Miyashita Y, Okuno H, Hasegawa I (1993a) Tuning and association neural memory mechanisms of complex visual forms in monkey temporal cortex. Biomed Res 14:8994.
Miyashita Y, Date A, Okuno H (1993b) Configurational encoding of complex visual forms by single neurons of monkey temporal cortex. Neuropsychologia 31:11191131.[CrossRef][ISI][Medline]
Morrison JH, Hof PR, Huntley GW (1998) Neurochemical organization of the primate visual cortex. In: Handbook of chemical neuroanatomy (Bloom FF, Björklund A, Hökfelt T, eds), pp. 299433. Amsterdam: Elsevier.
Mountcastle VB (1978) An organizing principle for general cortical function: the unit module and the distributed system. In: The mindful brain (Schmitt IO, ed), pp. 750. Cambridge, MA: MIT Press.
Mountcastle VB (1995) The evolution of ideas concerning the function of neocortex. Cereb Cortex 5:289295.[ISI][Medline]
Murayama Y, Fujita I, Kato M (1997) Contrasting forms of synaptic plasticity in monkey inferotemporal and primary visual cortices. Neuroreport 8:15031508.[ISI][Medline]
Ó Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1997) Areal segregation of face-processing neurons in prefrontal cortex. Science 278:11351138.
Pandya DN, Barnes CL (1987) Architecture and connections of the frontal lobe. In: The frontal lobes revisited (Perecman E, ed.), pp. 4172. New York: IRBN.
Pandya DN, Yeterian EH (2000) Comparison of prefrontal architecture and connections. In: The prefrontal cortex (Roberts AC, Robbins TW, Weiskrantz L, eds), pp. 5166. Oxford: Oxford University Press.
Passingham R (1997) Functional organisation of the motor system. In: Human brain function (Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC, eds), pp. 243274. San Diego, CA: Academic Press.
Peters A, Kaiserman-Abramof IA (1969) The small pyramidal neuron of the rat cerebral cortex. The synapses upon dendritic spines. Z Zellforsch 100:487586.[ISI][Medline]
Petrides M (1998) Specialised systems for the processing of mnemonic information within the primate frontal cortex. In: The prefrontal cortex (Roberts AC, Robbins TW, Weiskrantz L, eds), pp. 103106. Oxford: Oxford University Press.
Petrides M (2000) Mapping prefrontal cortical systems for the control of cognition. In: Brain mapping: the systems (Toga AW, Mazziotta JC, eds), pp. 159176. San Diego, CA: Academic Press.
Pettigrew JD, Jamieson BGM, Robson SK, Hall LS, McAnally KI, Cooper HM (1989) Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Phil Trans R Soc Lond B 325:489559.[ISI][Medline]
Poirazi P, Mel B (2001) Impact of active dendrites and structural plasticity on the storage capacity of neural tissue. Neuron 29:779796.[ISI][Medline]
Preuss TM (1995) The argument from animals to humans in cognitive neuroscience. In: The cognitive neurosciences (Gazzaniga MS, ed.), pp. 12271241. Cambridge, MA: MIT Press.
Preuss TM (2000) Whats human about the human brain? In: The new cognitive neurosciences (Gazzaniga MS, ed.), pp. 12191234. Cambridge, MA: MIT Press.
Preuss TM (2001) The discovery of cerebral diversity: an unwelcome scientific revolution. In: Evolutionary anatomy of the primate cerebral cortex (Falk D, Gibson KR, eds), pp. 138164. Cambridge: Cambridge University Press.
Preuss TM, Goldman-Rakic PS (1991a) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid Macaca. J Comp Neurol 310:475506.[ISI][Medline]
Preuss TM, Goldman-Rakic PS (1991b) Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates. J Comp Neurol 310:507549.[ISI][Medline]
Preuss TM, Kaas JH (1999) Human brain evolution. In: Fundamental neuroscience (Bloom FE, Landis SC, Robert JL, Squire LR, Zigmond MJ, eds), pp. 12881311. San Diego, CA: Academic.
Pucak ML, Levitt JB, Lund JS, Lewis DA (1996) Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. J Comp Neurol 376:614630.[CrossRef][ISI][Medline]
Ramón y Cajal S (1893) Neuvo concepto de la histologia de los centros nerviosos. Rev Cienc Méd Barcelona 18:2140.
Ramón y Cajal S (1894a) Estructura intima de los centros nerviosos. Rev Ciencias Med 20:145160.
Ramón y Cajal S (1894b) The Croonian lecture: la fine structure des centres nerveux. Proc R Soc Lond 55:445467.
Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821824.
Ringo JL (1991) Neuronal interconnection as a function of brain size. Brain Behav Evol 38:16.[ISI][Medline]
Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221244.[ISI][Medline]
Rockland KS (1985) A reticular pattern of intrinsic connections in primate area V2 (area 18). J Comp Neurol 235:467478.[ISI][Medline]
Rockland KS (1997) Elements of cortical architecture: hierarchy revisited. In: Cerebral cortex Vol. 12, extrastriate cortex in primates (Rockland K, Kaas JH, Peters A, eds), pp. 243293. New York: Plenum.
Rockland KS (2003) Feedback connections: splitting the arrow. In: The primate visual system (Kaas JH, Collins C, eds), pp. 387405. Boca Raton, FL: CRC Press.
Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215:15321534.[ISI][Medline]
Rockland KS, Lund JS (1983) Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol 216:303318.[ISI][Medline]
Rockland KS, Lund JS, Humphrey AL (1982) Anatomical banding of intrinsic connections in striate cortex of tree shrews (Tupaia glis). J Comp Neurol 209:4158.[ISI][Medline]
Rolls ET (2000) The orbitofrontal cortex. In: The prefrontal cortex (Roberts AC, Robbins TW, Weiskrantz L, eds), pp. 6786. Oxford: Oxford University Press.
Rosa MGP (1997) Visuotopic organization of primate extrastriate cortex. In: Cerebral cortex Vol. 12, extrastriate cortex in primates (Rockland K, Kaas JH, Peters A, eds), pp. 127204. New York: Plenum.
Semendeferi K, Lu A, Schenker N, Damasio H (2002) Humans and great apes share a large frontal cortex. Nat Neurosci 5:272276.[CrossRef][ISI][Medline]
Shepherd GM (1998) The synaptic organization of the brain. Oxford: Oxford University Press.
Shepherd GM, Brayton RK, Miller JP, Segev I, Rinzel J, Rall W (1985) Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proc Natl Acad Sci USA 82:21922195.[Abstract]
Shipp S, Zeki S (1995) Segregation and convergence of specialized pathways in macaque monkey visual cortex. J Anat 187:547562.[ISI][Medline]
Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555586.[CrossRef][ISI][Medline]
Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Rev 26:113135.[ISI][Medline]
Stephan H, Frahm J, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:129.[ISI][Medline]
Stuart GJ, Häusser M (1994) Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13:703712.[ISI][Medline]
Szentagothai J (1978) The neuron network of the cerebral cortex: a functional interpretation. Proc R Soc Lond Ser B 201:219248.[ISI][Medline]
Taylor WR, He S, Levick WR, Vaney DI (2000) Dendritic computation of direction selectivity by retinal ganglion cells. Science 289:23472350.
Ungerleider LG, Mishkin M (1982) Two cortical systems. In: Analysis of visual behavior (Ingle DJ, Goodale MA, Mansfield RJW, eds), pp. 549586. Cambridge, MA: MIT Press.
Wang X-J (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24:455463.[CrossRef][ISI][Medline]
Wang Y, Fujita I, Murayama Y (2000) Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex. Nat Neurosci 3:807813.[CrossRef][ISI][Medline]
Wang Y, Fujita I, Tamura H, Murayama Y (2001) Contribution of GABAergic inhibition to receptive field structures of monkey inferior temporal neurons. Cereb Cortex 12:6274.[ISI]
Wilson FAW, Ó Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:19551958.[ISI][Medline]
Yoshioka T, Levitt JB, Lund JS (1992) Intrinsic lattice connections of macaque monkey visual cortical area V4. J Neurosci 12:27852802.[Abstract]
Young MP (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358:152154.[CrossRef][ISI][Medline]
Young MP (1993) The organization of neural systems in the primate cerebral cortex. Proc R Soc Lond Ser B 252:113118.
Zeki S (2001) Localization and globalization in conscious vision. Annu Rev Neurosci 24:5786.[CrossRef][ISI][Medline]
Zeki SM (2003) Improbable areas in the visual brain. Trends Neurosci 26:2326.[CrossRef][ISI][Medline]
Zilles K, Clarke S (1997) Architecture, connectivity, and transmitter receptors of human extrastriate visual cortex. In: Cerebral cortex Vol. 12, extrastriate cortex in primates (Rockland K, Kaas JH, Peters A, eds), pp. 673742. New York: Plenum.
Zhou YD, Fuster J (1996) Mnemonic neural activity in somatosensory cortex. Proc Natl Acad Sci USA 93:1053310537.
Zhou YD, Fuster J (1997) Neuronal activity of somatosensory cortex in a cross-modal (visuo-haptic) memory task. Exp Brain Res 116:551555.[ISI][Medline]