Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
Address correspondence to Dr Xiaoqin Wang, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 419, Baltimore, MD 21205, USA. Email: xwang{at}bme.jhu.edu.
![]() |
Abstract |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Key Words: feedback marmoset sensorymotor interaction vocalization vocal production
![]() |
Introduction |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Alterations of physiological properties and neural activities during vocalization have been found throughout the auditory pathway. The intensity of acoustic inputs is attenuated during vocalization by the contraction of the middle ear muscles (Carmel and Starr, 1963; Henson, 1965
; Suga and Jen, 1975
). Studies of the bat brainstem have revealed echolocation-related activity in lateral leminsical and nearby nuclei (Suga and Shimozawa, 1974
; Metzner, 1989
) whose function is necessary for feedback-dependent alterations in echolocation call frequency (Smotherman et al., 2003
). Vocalization-related activity has also been found, though not systematically studied, in a small number of neurons in the primate auditory brainstem (Kirzinger and Jurgens, 1991
; Tammer et al., 2004
). However, in both humans and non-human primates, most studies of auditoryvocal interactions have been primarily focused on the auditory cortex. A variety of measurement techniques, including magnetoencephalography (MEG; Numminen et al., 1999
; Curio et al., 2000
; Gunji et al., 2001
; Houde et al., 2002
), positron emission tomography (PET; Paus et al., 1996
; Wise et al., 1999
) and intra-operative electrocorticography (ECoG, Crone et al., 2001
), have shown a reduction in human auditory cortical responses during speech production, compared with passive listening, that is largely absent from auditory-brainstem recordings (Houde et al., 2002
). Limited intra-operative multi-unit recordings have also shown both weakly excitatory and inhibitory events in the human middle and, to a lesser extent, superior temporal gyri (Creutzfeldt et al., 1989
).
Reduction of neural activity at the cellular level has been previously observed in the auditory cortex of squirrel monkeys electrically stimulated to vocalize (Müller-Preuss and Ploog, 1981). Our recent study in the auditory cortex of spontaneously vocalizing (self-initiated) marmoset monkeys revealed two types of single-neuron responses (Eliades and Wang, 2003
). The majority of cortical neurons showed vocalization-induced suppression beginning prior to the onset of vocal production, while the remaining minority showed vocalization-related excitation beginning after the vocal onset. The suppression was interpreted as inhibition originating from vocal production centers, whereas the excitation was thought to represent sensory responses to auditory feedback of the self-produced vocalization. Neurons suppressed during vocal production were generally driven or unresponsive, but not inhibited, by similar vocalizations played from a speaker. The neurons showing suppression were also found to respond poorly to external sounds during vocalization, but neurons showing excitation responded to external sounds similarly during or in the absence of vocal production. Quantitative analysis of the magnitude of suppression also suggested that it was at least partly attributable to cortical inhibition. This study, however, raised a number of unanswered issues. First, was the variability of vocalization-related modulations in individual neurons random, or related to acoustic properties of vocalization? Second, what are the possible origins for the response diversity between different neurons? Finally, how can single-unit observations from the primate auditory cortex be reconciled with the weak excitation during speech recorded from human brains by imaging and other measures? The current study attempts to address these issues by examining dynamic changes in the vocalization-related modulations of individual cortical neurons as a function of the acoustic structure of self-produced vocalization, and by examining the diversity between neurons as a function of their anatomic locations, auditory response properties and quality of action potential isolation.
![]() |
Materials and Methods |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Recordings were obtained from two awake marmoset monkeys (Callithrix jacchus), a highly vocal New World primate (Aitkin and Park, 1993; Wang, 2000
). Details of surgical and recording procedures have been previously published (Lu et al., 2001b
; Eliades and Wang, 2003
). Because of the unpredictable timing of animal's vocalizations, the auditory responses of the cortical neurons were studied using external stimuli while awaiting the animals to vocalize. All experiments procedures were approved by the Johns Hopkins University Animal Care and Use Committee.
Neural activities were recoded using tungsten microlectrodes (A-M Systems, Carlsborg, WA, or Microprobe, Potomac, MD) with impedances of 25 M. Action potentials were initially sorted online, using a template-based spike sorter (MSD, Alpha-Omega Engineering, Nazareth, Israel), in order to maximize the quality of the recorded spikes. The raw neural data from the electrode were also simultaneously digitized onto one channel of a DAT recorder (Panasonic SV-3700). Action potentials were sorted a second time (off-line) from the raw data recordings using a feature-based manual clustering method (Lewicki, 1998
). This allowed sorting of the well-isolated single-units separated during recording as well as simultaneously recorded single-units of smaller spike size. A multi-unit background activity was also obtained from crossings of a manually defined threshold, but excluding events already sorted as single-units. The majority of analyses presented were performed only on the large-size single-units, the same set of data used in our previous work (Eliades and Wang, 2003
).
Well-isolated single-units were acoustically characterized using auditory stimuli delivered free field from a speaker located 1 m in front of the animal. Basic auditory response characteristics were obtained for each neuron, including center frequency (CF), rate-level curve (RL), latency and responses to pure tone stimuli versus narrow and wideband noise. When a unit was unresponsive or weakly responsive to pure tone stimuli, narrow band noise was used instead to determine its CF and RL characteristics. Other stimuli were also presented as part of an ongoing study of complex sound representation, including click trains (Lu et al., 2001a
) and amplitude and frequency modulated tones (Liang et al., 2002
). Units were recorded from both primary auditory cortex (A1) and lateral belt areas, including all cortical layers. More extensive physiological recordings not included in this report allowed the separation of A1 from lateral belt areas based upon tone or noise preferences (Rauschecker et al., 1995
) and A1 from the adjacent rostral core area (R) based upon reversal of the tonotopic gradient.
Vocal Recordings and Analysis
The monkeys used in the reported experiments produced spontaneous, self-initiated vocalizations during extracellular recording sessions, each lasting 35 h. Behavioral conditions were identical to those noted in our previous study (Eliades and Wang, 2003). Briefly, an animal sat in a primate chair, with its head immobilized, within a double-walled sound attenuation chamber (IAC-1024) while acoustic stimuli were being presented. The stimuli were played at regular intervals within a given stimulus protocol, generally between 600 and 5000 ms (depending upon the protocol). Between the end of one protocol and the start of the next was period of silence of variable length. There were also periods of time when a variety of search stimuli (tone, noise, vocalization samples, etc.) were played while the experimenter was advancing the electrode to isolate single-units. While animals produced some vocalizations during the presentation of acoustic stimuli, the majority of vocalizations were produced during periods of silence or search stimuli. No clear correlation between self-initiated vocalizations and any particular stimuli was noted. Animals vocalized at irregular intervals, sometimes with only a single call over several h and other times occurring in bouts with a call occurring regularly every 2040 s over a 10 or 20 min period. Animals were not rewarded for vocalizing, and the regular presentation of auditory stimuli persisted regardless of whether or not the animal vocalized. A few attempts were made in later recording sessions to increase the number of vocalizations by introducing other animals or visual stimuli into the sound chamber, but without much success.
Vocal recordings were obtained using a directional microphone (AKG C100S) placed at mouth level 15 cm in front of the animal and were digitized simultaneously with the neural signal onto the other channel of the DAT recorder. The vocalizations obtained were distributed over 134 h of recording. All vocalizations obtained form the first animal were isolation calls (phee calls; Epple, 1968
; Agamaite and Wang, 1997
), while the second animal produced a mix of isolation and social calls. All together, 1236 vocalizations and their neural responses were recorded.
Recorded vocalizations were transferred to a PC for acoustic analysis. Because of their prevalence and long duration (simplifying analysis of the neural data), only phee calls were subjected to quantitative analyses. The onset and offset of vocalization were determined by the presence of spectral energy in vocal frequency bands (312 kHz). A short-time Fourier transform (spectrogram) was performed on each vocalization and the peak frequency (frequency with the maximum energy) obtained for each time bin (bin size = 2.6 ms). The mean frequency of the call was obtained by averaging the time-specific peak frequencies. The average energy of the vocalization was calculated from the logarithmic root-mean-square energy of the call, normalized by the energy of the quiet acoustic background, and divided by the duration of the call. When single and multi-phrase vocalizations were compared, only the first phrase results of the multi-phrase were used.
Analysis of Neural Data
Analysis was primarily performed on 109 well-isolated single-units whose recording included at least one instance of vocalization by the animal. These single-units were based on recorded large action potentials with signal-to-noise ratios (SNR) > 10 dB, the criterion of the data included in Eliades and Wang (2003). In the present study, we also analyzed additional single-units with smaller action potentials and multi-unit background activity that were recorded from the same electrode along with the large action potentials. For convenience, we will refer to these three sets of data as large unit, small unit and multi-unit, respectively. The small unit and multi-unit data were only used in a few specific analyses, as indicated in the text, figures and legends. Small units were analyzed primarily for comparisons between multiple units recorded simultaneously from a single electrode. Multi-units were included only when comparing our primate neurophysiology to imaging studies of the human auditory cortex.
The effect of vocalization on neural firing was quantified using a normalized rate metric, the Response Modulation Index (RMI), defined as RMI = (Rvocal Rprevocal)/(Rvocal + Rprevocal), where Rvocal and Rprevocal are the firing rate during and before vocalization, respectively. Multi-phrase vocalization RMIs were calculated individually for each phrase and used the same prevocal activity period for both phrases. An RMI of 0 indicates no vocalization-related change in firing rate, while an RMI of 1 indicates a complete suppression of all spontaneous or driven activity. An RMI of +1 indicates a unit with strong vocalization-related excitation, a low spontaneous rate or both. For the purposes of classification, units were considered suppressed or excited based on a median RMI, calculated across all vocalization responses recorded from that unit, of either less or greater than 0. Temporal patterns of vocalization-related activity were studied by constructing peri-stimulus time histograms (PSTHs) using 25 ms bins, and aligning the responses by either the onset or offset of vocal production. Responses from single-trials were converted to spike-density functions, for display purposes only, by convolving single-unit spike trains with a gaussian function ( = 25 ms) with unit area.
An attempt was made to discover the relationship between acoustic parameters of the produced vocalization (frequency and amplitude) and the modulation of neuronal firings. The limited number of samples available and the inability to control the acoustics thereof prevented the construction of a parametric tuning curve. The relationship between vocalization acoustics and neural responses was quantified using a Pearson's linear correlation coefficient (r) and tested using the t-distribution. This analysis was limited to those units in which four or more vocalization responses were recorded. Only the responses during the first phrase were used from multi-phrase vocalizations.
![]() |
Results |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
The majority of vocalizations produced by the animals under our experimental conditions were phee (isolation) calls. While most of these consisted of a single phrase, 39% of the phee calls contained two or more phrases (Fig. 1A). Our previous analysis of this set of data combined both single and multi-phrase vocalizations (Eliades and Wang, 2003). In the present study, we examined the multi-phrase cases independently. Similar to what we described in our earlier report, there were two types of responses during multi-phrase vocalizations, suppression and excitation (portayed in Fig. 1AC and DF, respectively). In the suppression case, the neuron's spontaneous activity was either partially or completely eliminated during the first vocal phrase, as illustrated by an example in Figure 1A. The end of the first phrase was usually followed by a burst of spikes during the inter-phrase period and then a second period of suppression during the second phrase of the phee. In this example, the degree of suppression was slightly less for the second phrase than for the first (phrase 1 RMI = 0.81, phrase 2 RMI = 0.56). Figure 1D shows an example of an excitation case. The excited response showed an increase in the number of spikes during the first phrase, followed by lag in firing during the inter-phrase period, and finally by a second increase in firing during the second phrase (Fig. 1D). The degree of excitation was decreased from the first to the second phrase for this particular example (phrase 1 RMI = 0.46, phrase 2 RMI = 0.05), to the point where the second phrase response was only marginally above spontaneous firing.
|
It is interesting to note the burst of spikes observed during the inter-phrase period of suppressed vocalization responses (Fig. 1A). This phenomenon was observed in many samples of vocalization-induced suppression (80/172), and is reflected in the averaged activity by a transient increase in firing rate after the first period of suppression (Fig. 1B). In order to examine this short increase in spiking activity, the PSTH of suppressed cases was recalculated, this time aligning spike trains to the end of the first vocalization phrase (Fig. 1C). Under this alignment, the transient return of activity becomes more pronounced. Following the offset of the first phrase, the firing rate increased from <1 to 5 spikes/s before decreasing to a suppressed level after 500 ms (presumably due to onset of the second vocalization phrase). It is also interesting to note that this increase in firing actually begins shortly (several hundred ms) before the end of the first phrase (Fig. 1C). An increase in firing rate following the end of the first phrase was also observed between phrases of the averaged excitatory vocalization responses (Fig. 1F). This increased activity following the first phrase may be indicative of the end of suppression and an attempt to gradually return to baseline neural firing between phrases. Alternatively, it could reflect an auditory response to the sound made when the animal inhaled between the two phrases (see the spectrograms in Fig. 1A,D); however, the inhalation sound tended to occur late during the inter-phrase period and the return of spiking activity began nearly synchronously with the end of the first phrase. Another possibility is that this burst could represent a rebound following a release from inhibition (unexpectedly seen for both suppressed and some excited modulations).
Another aspect of the temporal dynamics of response during multi-phrase vocalizations was the relative degree of suppression or excitation between phrases. The average activity, reflected in the respective PSTHs, was generally consistent across both phrases (Fig. 1B,E). This relationship was examined quantitatively by comparing the firing rate change deviation, from the spontaneous rate, between the first two phrases in each of the multi-phrase samples (Fig. 2). There was a strong correlation between the vocalization-related activity of the first and second phrase for both suppressed and excited responses (r = 0.93, t = 38.68, df = 246, P < 0.001). Overall, there was a slightly stronger modulation (suppressive or excitatory) caused by the first phrase than by the second. A linear regression comparing the vocalization-related activity of the second phrase to the first had a slope of 0.95 (95% confidence interval: 0.901.00). Excitatory responses tended to have more variability than suppressed ones, though this may reflect the larger dynamic range available for increased over decreased rates (decreased rates are bounded by zero). Vocalizations with three or more phrases also showed consistency between the responses during earlier and later phrases, though the correlation was much weaker between first and third phrases (r = 0.22, N.S.) than it was between the first and second phrases (r = 0.43, t = 2.01, df = 20, P < 0.05) or between second and third (r = 0.45, t = 2.24, df = 20, P < 0.05).
|
In addition to being either single or multi-phrased, phee vocalizations also varied in both amplitude and frequency. Repeated vocalizations exhibited a degree of variability in acoustic parameters that can be exploited when studying neural modulations, although this could also be a source of variability in the responses of individual units. Two parameters were measured to characterize acoustic variability of the vocalizations, the mean energy and mean frequency. These parameters varied both within and between phrase categories.
The first phrase of multi-phrase phees were, in general, of both higher energy and frequency than single phrase ones, though a small overlap was observed, particularly for frequency (Fig. 3A). The mean energy and frequency of vocalization were highly correlated (Fig. 3B), with vocalizations of higher frequency containing more energy (r = 0.91, t = 56.94, df = 673, P < 0.001). The second phrase of multi-phrase phees was generally similar to the first phrase, though it had slightly lower energy (Fig. 3C, upper; difference 3.8 ± 5.9 dB, mean ± STD) and a slightly higher frequency (Fig. 3C, lower; 0.06 ± 0.11 kHz). Relative to the first phrase, these were very small (4.0 and 0.7%, respectively) but significant differences (P < 0.01 and P < 0.001, Wilcoxon rank-sum test).
|
|
Most units analyzed (38/61) had an inverse relationship between RMI and mean vocal energy or frequency, as shown in Figure 4C, particularly those that were suppressed during vocalization. However, units with positive correlations were also observed (Fig. 5A,B). The example unit in Figure 5A had greater excitation, or less suppression, at higher mean energies and frequencies (Fig. 5A,B). The unit exhibited significant correlation between RMI and both energy (r = 0.92, t = 10.50, df = 20, P < 0.001) and frequency (r = 0.91, t = 9.82, df = 20, P < 0.001). Another example unit (Fig. 5B) showed no modulation by phees of low frequency or energy, but became driven when the vocalizations entered higher energy states. The response modulation was strongly correlated with both the mean energy (r = 0.91, t = 5.81, df = 7, P < 0.001) and mean frequency (r = 0.90, t = 5.46, df = 7, P < 0.001) in this unit. The example shown in Figure 5A is of particular interest in that it switched vocalization-related modulation from suppressed to excited depending upon the acoustics of the produced vocalization. This analysis provides an explanation for previous observations that some units appeared to show bimodal modulations during vocalization (Eliades and Wang, 2003).
|
|
In another set of analyses, we examined vocalization-related modulations as a function of units' anatomic location, both within columns and at different cortical depths. Columnar organization was studied using the responses of units recorded simultaneously on a single electrode. Frequently more than one single-unit was evident during recording and we examined the relationship between vocalization-related modulations in pairs of single-units. One such pair (Fig. 7A) showed a unit with large action potentials that was completely suppressed during vocalization, while a second unit, with smaller action potentials, increased its firing instead. The RMI values of simultaneously recorded pairs of units are plotted in Figure 7B. The response properties of these pairs were heterogeneous. Nearly complete suppression of responses, for example, was often recorded along with responses ranging from suppression (Fig. 7Ba) to excitation (Fig. 7Bb). Similarly, strongly excited vocalization responses were often paired with both suppressed (Fig. 7Bc) and excited (Fig. 7Bd) modulations. No discernable pattern could be found in the responses of these pairs of units (r = 0.026). The use of sharp, high impedance microelectrodes in recording these pairs limits their spatial distribution to a small volume of cortex, presumably from either the same or adjacent columns, and therefore suggests the involvement of a complex microarchitecture in generating vocalization-related modulations.
|
|
Comparison between Single Neuron Responses and Global Cortical Activity
Although we have found that single cortical units in a non-human primate show two types of vocalization-related responses, suppressed and excited, most human studies using imaging and other measurement techniques have thus far reported only dampened activation by self-produced speech. These results show that there is increased activity in auditory areas during speaking, but that the level of activity is smaller than that observed when the same speech sound is played back to the listener through a speaker. The methods used to record from the human brain lack the spatial specificity of microelectrode techniques, which suggests that the observations in these studies may reflect globally summed neural activity. In contrast, our previous findings have been based on well-isolated single units. In order to reconcile our neurophysiological findings with observations in humans, we further analyzed the population properties of both single units and simultaneously recorded multi-unit clusters (Fig. 9). Well-isolated single-unit recordings, based on large-action potentials, showed suppressed responses in 75% of units (Fig. 9A, solid line), as we reported previously (Eliades and Wang, 2003). Units of smaller action potential size, likely more distant from the recording electrode, exhibited a similar ratio of suppression and excitation but with a smaller magnitude of suppression (Fig. 9A, dashed line). Multi-unit background activity, however, showed both a further reduction in suppression and an increased proportion and magnitude of excitation (Fig. 9A, dotted line).
|
![]() |
Discussion |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
AuditoryVocal Interaction is Temporally Specific during Vocalizations
We have previously shown that vocalization-induced suppression began prior to, and excitation after, the onset of vocalization (Eliades and Wang, 2003). All neural activities returned to baseline after the end of vocalization. While both of these properties hold for multi-phrase as well as single-phrase vocalizations, the transient activity during the inter-phrase period reveals more complex temporal dynamics. During this period there is a short-lived return of activity following the suppression of the first phrase. This activity is centered just after the end of the first phrase, and actually begins shortly before the vocal offset. We consider this rebound to be temporally specific, despite the slow time scale over which it occurs, because it would be entirely plausible for suppression to be maintained during the interval in anticipation of the second phrase. Such rebounds between phrases of repetitive sensorymotor events have also been observed during cricket stridulation (Poulet and Hedwig, 2003
). The transient activity could represent a neuron's gradual return to spontaneous firing before being suppressed again at the beginning of the second vocal phrase. An alternate explanation is that the firing could represent a sensory response to the wideband breath sound made when the animal inhales between phrases. This alternative is unlikely because most units recorded were from A1 and are generally unresponsive to wideband sounds, and because the responses occurred early in the inter-phrase period, while the inhalation sound did not occur until later in the period. A third possibility is that the transient burst represents a release from inhibition. Neurons suppressed for prolonged periods of time often show a release from inhibition effect, a burst of spikes following the end of suppression (Kuwada and Batra, 1999
). This alternative gains strength in light of a similar inter-phrase burst occurring for excitatory vocalization responses, instead of a decrease in firing towards spontaneous that might be expected in the absence of auditory stimulation, which suggests that excitatory responses may also be subject to a degree of inhibitory modulation.
Origins of the Correlation between Vocalization-related Modulation and Vocal Acoustics
Animals in the present study produced multiple successive vocalizations that varied in their acoustic parameters. Recent behavioral data has shown that marmosets increased the intensity and phrase duration of their twitter call (a social call) in the presence of background noise (Brumm et al., 2004). This demonstrates that marmosets, like humans and other animals, exhibit auditory feedback control of their vocalizations. In contrast, the animals studied in our experiments vocalized largely in quite conditions (with the exception of intermittent external sounds). It is therefore likely that the observed acoustic variations of vocalizations in our experiments were due to animal's voluntary control rather than as a result of altered auditory feedback. We also observed a correlation between vocal intensity and frequency that was not reported during noise masking (Brumm et al., 2004
). The discrepancy could be attributable to a number of factors, including different vocalization types (twitter versus phee), the generally higher intensity of phee calls, differences between feedback and voluntary control, or simply that the effects on vocal frequency were not examined during noise masking.
The modulations of single neurons during these vocalizations were often found to be related to the acoustics of the vocalizations. It is unclear, however, whether the differences in modulation were specifically correlated to the acoustic parameters or if they varied more generally with the type of vocalization (i.e. single- versus multi-phrased). In many neurons, response modulations appeared to vary categorically between single- and multi-phrased vocalizations. It is likely, however, that this was just an artifact of sampling in these neurons. There were many examples where vocalizations of one phrase category had acoustics closely matching those of the other phrase category. In these examples, the neuron's responses were closer to vocalizations of similar acoustic parameters than vocalizations with the same number of phrases, but different acoustics. It is possible, on the other hand, that responses were instead categorical for acoustics. It would be hard to definitively answer the question without more samples of vocalization with intermediate acoustic parameters. The few units that were sampled with such intermediate parameters tended to show a more continuous, though nonlinear, relationship between modulation and acoustics, and may suggest some form of tuning instead of a categorical separation.
This observed correlation of vocalization-induced modulations with acoustic parameters of vocalization is also interesting given the role of auditory feedback in controlling vocal production. While such correlation is not direct evidence that auditory cortical neurons are actively participating in self-monitoring of feedback, like has been seen in the bat brainstem (Smotherman et al., 2003), it demonstrates that they are at least capable of encoding variations in vocal production, despite often being strongly suppressed. It is unclear, however, whether this correlation observed in the cortical neurons is due to auditory feedback or if it arises from internal signals, originating in vocal control centers, containing a neural representation of the produced vocalization (i.e. a corollary discharge). Both alternatives are consistent with a behavioral role for cortical modulation, though they may differ mechanistically in how they integrate sensory feedback.
The feedback hypothesis would argue that neurons in the auditory cortex are subjected to the same amount of suppression regardless of the type of vocalization being produced, although with diversity from neuron to neuron. The suppression, beginning prior to vocalization, is modified during vocal production as the neuron integrates acoustic feedback, the effects of which would likely be related to the inherent auditory properties of the neuron. The suggestion that all neurons, including those that are excited by vocalization, are subjected to some degree of inhibition is consistent with the transient rebound seen during the inter-phrase period for both suppressed and excited multi-phrase vocalizations. This hypothesis would not seem to accord, however, with the observation that vocal acoustics-modulation correlation is unrelated to passive auditory tuning, as we might expected when integrating feedback auditory responses. One possible functional mechanism for the suppression that could be reconciled with these observations would be if the suppression itself reflected an alteration in auditory receptive fields to maximize the ability of neurons to encode incoming feedback. Such alterations in receptive fields have been observed perisaccadically in parietal visual areas (Kusunoki and Goldberg, 2003). Receptive field changes could conceivably include changes in frequency and amplitude tuning to focus around the range of vocalization acoustics. If this were the case, it might explain how auditory neurons show sensitivity to acoustics well outside their passive tuning range, even to the point of neurons strongly excited during vocalization, but whose receptive fields do not include the spectrum produced during vocalization. This hypothesis would also suggest that any efferentafferent comparison necessary for feedback monitoring and resulting vocal control would likely have to take place outside the auditory cortex, perhaps directly in vocal control centers, where efferent information would be available.
A second hypothesis is that the corollary discharge contains specific information about the acoustics of the vocalization being produced. The correlation between acoustics and auditory cortical modulation, including both suppression and excitation, would not arise from feedback as much as feed-forward inputs. Specific modulation of auditory neurons would allow efferentafferent comparisons to take place directly in the auditory cortex, the output of which could be fed to vocal control centers. Specific modulation would also allow cancellation of expected feedback to maintain sensitivity to external stimuli. It would not, however, explain why suppressed, but not excited, neurons respond poorly to external stimuli (Eliades and Wang, 2003), unless the effects of modulation are broader for suppression and more specific for excitation.
Regardless of the mechanism, the relationship between vocalization-related modulation and vocalization acoustics explains the high degree of response variability seen in a subset of auditory cortical neurons (Eliades and Wang, 2003). The variation in these neurons can now be understood as non-random and as a result of the variation in the vocalizations produced. This also suggests that our earlier attempts to classify neurons as either suppressed or excited may have been overly simplistic. While most neurons can be divided this way, a few switch behaviors depending on the vocalization and may need to be separately classified as bimodal. All neurons, whether suppressed, excited or bimodal, also need to be understood in terms of how their modulation varies with vocal acoustics, at the very least including the direction of correlation (positive or negative).
A related issue is the apparent lack of correlation between vocalization-related modulations and a neuron's frequency and amplitude tuning. A priori, one might expect that vocal modulation might depend on the relationship between vocalization acoustics and a neuron's receptive field. The feedback model we introduced to explain the correlation between acoustics and modulation is based upon such an assumption. However, this was not the case based on the observations from the present study. Neither a neuron's median RMI nor its vocalacoustic versus RMI correlation coefficient is related to either its CF or RL tuning. Furthermore, some neurons were found to be strongly excited during vocalization despite the fact that the energy in a vocalization's spectrum fell outside a neuron's receptive field (for example, a neuron whose CF was >30 kHz). One possible explanation for this dissociation could be the presence of inputs outside the classic receptive field (i.e. center excitation surrounded by sideband inhibitions), such as multiple frequency peaks, which have been observed in many neurons in marmoset auditory cortex (Kadia and Wang, 2003). These inputs could account for some of the response modulation during vocalization. The extent of inputs outside the classic receptive field was not characterized for the neurons reported in this study because of experimental limitations. Another explanation could be that vocalization-related modulations, including acoustic-modulation correlations, could be heavily, or entirely, determined by the motor command signal. As we have suggested above, receptive fields could be altered by the modulatory signal to maximize the ability to encode the vocalization being produced. It is also possible that vocalization-related modulation is completely independent of a neuron's receptive field.
Possible Biological Mechanisms Underlying SensoryMotor Suppression
While it is more than likely that the suppression of auditory cortical neurons during vocalization arises from signals from vocal production centers, the details of how such pathways interact with cortical neurons is unclear. The similarity of observed suppression with the electric fish system (Bell, 1989) suggests that auditory suppression is also a result of GABA-mediated inhibition. It is not known, however, whether the auditory cortex directly receives such inhibition, or whether the suppression is a reflection of inhibition in lower auditory areas. Previous works have shown reduced brainstem activity in the bat during echolocation (Metzner, 1989
), although these may reflect a specialized adaptation for bat echolocation, as studies in primates have failed to find suppression in similar nuclei (Kirzinger and Jurgens, 1991
). Sensorymotor suppression has been observed in the primate inferior colliculus during vocalization, but only in non-central areas (Tammer et al., 2004
). These areas are not common inputs to lemeniscal auditory thalamus (Calford and Aitkin, 1983
) and, as a result, are not primary inputs to A1 (Morel and Kaas, 1992
). It is unlikely, therefore, that they alone can manifest the strong suppression observed in both A1 and non-primary auditory cortex. Although the non-lemensical auditory thalamus does project to layers I and VI in A1 (Huang and Winer, 2000
), our analysis shows vocalization-induced suppression is strongest in the upper layers (layers IIIII and part of layer IV), but not in depths corresponding to layer I. It is possible that layer I neurons could act to suppress layers II/III (but it would require excitatory not suppressed inputs from MGB to A1). This would still be consistent with the auditory cortex as the site of the vocalization-related inhibition. Quantitative analysis of the magnitude of cortical suppression also suggests that the auditory cortex is subjected to additional inhibition beyond what may be inherited from the brainstem (Eliades and Wang, 2003
).
Further evidence for cortical mechanisms is provided by multiple neurons recorded simultaneously from single electrodes. Vocalization-induced responses of such pairs were uncorrelated, despite their spatial proximity. Because of the dissipation of electric potentials in the extracellular space, units recorded from a single electrode are limited to a small volume of cortex (Gray et al., 1995), likely from the same or adjacent cortical columns. Stimulus responses of closely spaced neurons are usually similar because of columnar structure of auditory cortex (Abeles and Goldstein, 1972
; Merzenich and Brugge, 1973
; Merzenich et al., 1975
). This was not the case for vocalization-related modulations, where completely suppressed neurons were often adjacent to unresponsive or even excited neurons. The absence of correlation between simultaneously recorded neuron pairs in a column supports the hypothesis that vocalization-induced inhibition has a cortical contribution, as each column generally receives similar subcortical inputs. This architectural complexity also suggests the involvement of local cortical microcircuits rather than some broader, indiscriminate top-down process that would likely modulate neurons in a column similarly. The involvement of a pyramidal cellinterneuron interaction in this circuit, each with different vocalization-related modulations, could explain uncorrelated responses between some neuron pairs and remains an intriguing possibility that might underlie cortical mechanism of vocalization-induced inhibition.
Although the diversity between neural modulations was not explainable based upon a columnar organization, an analysis of the laminar distribution of modulations revealed differences between the distributions of suppression and excitation. Inhibition was unequally concentrated in upper cortical layers, while deeper layers received a more balanced number of inhibited and excited neurons. One possible explanation for the predominance of inhibition in the upper layers is that it could result from cortical connections projecting to the auditory cortex. The upper layers are the primary target for both long- and short-range inhibitory cortico-cortical connections, connections that can act to inhibit their target through local GABAergic interneurons (Fitzpatrick and Imig, 1980; Hirsch and Gilbert, 1991
). If correct, this would suggest that vocalization-related modulatory signals arise from a cortical source and act directly on the auditory cortex itself. One possible source for such signals could be prefrontal areas that are reciprocally connected with the auditory cortex (Hackett et al., 1999
; Romanski et al., 1999
), areas that are responsive to vocalizations and other sounds (Romanski and Goldman-Rakic, 2002
). This hypothesis is tempting given the role of frontal-temporal interactions in human speech (Penfield and Roberts, 1959
; Geschwind, 1970
).
Comparison between Monkeys and Human Studies
Our recordings in the non-human primate auditory cortex have revealed both excitatory and inhibitory responses of single cortical neurons during vocalization. When we broaden the type of activity recorded to include not just well isolated single units, but also the multi-unit background, the resulting overall pattern is weakly excitatory. A likely reason that this overall pattern is excitatory, despite a large population of suppressed neurons, is the asymmetry of neural excitation and inhibition. Most auditory cortical neurons in awake animals have low spontaneous discharge rates. The maximum amount of discharge rate reduction observable by extracellular recordings is bounded by zero (no firing), while stimulus-driven firing rates can be many times higher than spontaneous discharge rates. This asymmetry allows a much smaller number of excitatory neurons to mask a larger number of inhibited neurons when summed together as a group. The direct implication is that studies of auditoryvocal interaction are best conducted using single-units, or one may miss the inhibitory interaction being hidden in multi-unit recordings.
Human studies have thus far reported only dampened activation in auditory cortical areas during speech (MEG: Numminen et al., 1999; Curio et al., 2000
; Gunji et al., 2001
; Houde et al., 2002
; PET: Paus et al., 1996
; Wise et al., 1999
; ECoG: Crone et al., 2001
). Such signals recorded during speaking are elevated over baseline, but are smaller than signals evoked by the same speech sound when played back through a speaker. These results resemble the weak activation seen in the global summed activity of multi-units in the marmoset (Fig. 9B), and this could suggest that the reduced strength of net activation during speaking, compared with playback of sound, may be attributable to underlying suppression by individual neurons. However, care must be taken when making such a comparison because single and multiple unit recordings are only indirectly linked to signals obtained from imaging techniques used in humans. It is also important to note that our global activity measure does not equate to field potential measurement, which would be a closer comparison for MEG and ECoG methods.
When comparing the results from marmosets and humans, one should also keep in mind potential differences between the species. It is clear that both human speech and the architecture of the human brain are far more complex than marmoset vocalizations and brain structure. Nonetheless, there are certain parallels of auditory cortical anatomy between humans, Old World primates (Hackett et al., 2001) and New World primates (Morel and Kaas, 1992
), including the connections between the auditory cortex and the prefrontal cortex (Morel and Kaas, 1992
; Hacket et al., 1999
). It remains unknown whether other primates, particularly Old World primates like the macaque, have similar mechanisms of auditoryvocal interaction. This is likely the case, given the similar modulations seen in both humans and marmosets, and it would be interesting to study auditoryvocal interactions in an intermediate species, such as the macaque.
Functional Models for SensoryMotor Interaction during Vocalization
Sensorymotor interactions that modulate sensory processing have been described in a number of systems. The common proposed mechanism involves a neural signal, termed efference copy (Holst and Mittelstaedt, 1950) or corollary discharge (Sperry, 1950
), relaying information from motor control areas that influences the activities of sensory neurons. The precise form of this signal is unclear, since it is rarely measured directly, though it has been suggested to contain a representation of the expected sensory responses produced by a motor action (Bell, 1989
; Poulet and Hedwig, 2003
). In most cases, these discharges result in the inhibition of sensory neurons, similar to what we have seen during primate vocalization. The weakly electric fish, perhaps the most well characterized model of neuronal sensorymotor interactions, uses corollary discharges from the electric organ to influence central sensory neurons through GABA-mediated inhibition (Bell, 1989
). In addition to the auditory cortex, other sensory cortices have also been shown to be inhibited during sensation-generating motor activities, including the primate visual cortex (Judge et al., 1980
) and the somatosensory cortex (Rushton et al., 1981
; Blakemore et al., 1998
). Vocalization-induced modulation of auditory cortical neurons is another example of a behaviorally relevant sensorymotor interaction that, presumably, shares common mechanisms and functions with other systems.
The possible functions of efference copy-mediated inhibition are twofold. First, it may play a role in distinguishing self-generated from external sensory stimuli. Central electrosensory neurons in the fish perform a subtractive comparison of efferent and afferent signals, the output of which reflects environmental stimuli, but not the fish's own electric discharges (Bell, 1989). The cricket cercal system is suppressed during stridulation (rubbing of wings to generate sound) in order to prevent saturation, and the resulting loss of acoustic sensitivity, of auditory neurons due to self-generated sounds (Poulet and Hedwig, 2003
). This alteration of sensory activity to remove self-generated inputs appears quite robust, but is not limited to biologically natural sensory events (e.g. fish electric discharge, touch, animal vocalization or human speech). While MEG measurements from the human auditory cortex are reduced during speech, they are also reduced when self-generated sounds are artificially produced, such as a tone played following a button press (Martikainen et al., 2005
). While such a role is possible during vocalization, our previous data have suggested that suppression reduces the auditory sensitivity to external sounds (Eliades and Wang, 2003
). It is possible that the excitatory neurons, who respond to external sound normally during vocalization, have this function.
The second possible function of efferent-mediated sensorymotor interaction is self-monitoring for the control of motor behavior. Every action generates sensory feedback, and this feedback is often used in on-line motor control. Visual feedback, for example, is used for both oculomotor (Sommor and Wurtz, 2002) and arm movement (Goodbody and Wolpert, 1999
) control. Somatosensory feedback is used to control the amount of force applied when grasping an object (Edin et al., 1992
), as well as providing a source of feedback control for the lips during speech (Gracco and Abbs, 1985
). The auditory equivalent of this sort of sensorymotor control is the monitoring of vocal/speech feedback in order to maintain desired acoustic production, including the control of vocal frequency, intensity and temporal patterns. It is clear that this feedback plays an important role in vocal production in humans and, perhaps, primates. However, the neural mechanisms, including the possible involvement of efferent signals, remain unclear. The echolocating of bats is one example where specific neural structures have been demonstrated to have such a role. Brainstem neurons in the nuclei surrounding the bat lateral lemeniscus are suppressed during the production of bat echolocation sounds (Metzner, 1989
), similar to what we have observed in primate cortex. These nuclei, which may represent a specialized adaptation for echolocation, are involved in the control of echolocation frequency production when presented with frequency-shifted feedback, a phenomenon known as Doppler-shift compensation (Smotherman et al., 2003
). Application of bicuculine to block GABA-ergic inhibition in these areas resulted in an elimination of feedback compensation behavior. A role for the auditory cortex in vocal production has been demonstrated in humans, where intra-operative electrical stimulation has been shown to disturb, but not interrupt, ongoing speech production (Penfield and Roberts, 1959
). The auditory cortex has also been implicated in the neural origins of stuttering during speech (Fox et al., 1996
). Whether or not our observations of cortical modulation in primates plays a role in vocal production remains to be seen. The correlation between neural modulation and vocalization acoustics suggests that cortical neurons are at least capable of encoding variations in auditory feedback, a prerequisite for feedback monitoring.
![]() |
Acknowledgments |
---|
![]() |
References |
---|
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Agamaite JA, Wang X (1997) Quantitative classification of the vocal repertoire of the common marmoset (Callithrix jacchus jacchus). Assoc Res Otolaryngol Abstr 20:573.
Aitkin L, Park V (1993) Audition and the auditory pathway of a vocal new world primate, the common marmoset. Prog Neurobiol 41:345367.[CrossRef][ISI][Medline]
Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146:229253.[Abstract]
Blakemore SJ, Wolpert DM, Frith CD (1998) Central cancellation of self-produced tickle sensation. Nat Neurosci 1:635640.[CrossRef][ISI][Medline]
Brumm H, Voss K, Kollmer I, Todt D (2004) Acoustic communication in noise: regulation of call characteristics in a New World monkey. J Exp Biol 207:443448.
Burnett TA, Freedland MB, Larson CR, Hain TC (1998) Voice F0 responses to manipulations in pitch feedback. J Acoust Soc Am 103:31533161.[CrossRef][ISI][Medline]
Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3:23652380.[Abstract]
Carmel PW, Starr A (1963) Acoustic and nonacoustic factors modifying middle ear muscle activity in waking cats. J Neurophysiol 26:598616.
Creutzfeldt O, Ojemann G, Lettich E (1989) Neuronal activity in the human lateral temporal lobe. II. Responses to the subjects own voice. Exp Brain Res 77:476489.[ISI][Medline]
Crone NE, Hao L, Hart J, Boatman D, Lesser RP, Irizarry R, Gordon B (2001) Electrocorticographic gamma activity during word production in spoken and sign language. Neurology 57:20452053.
Curio G, Neuloh G, Numminen J, Jousmaki V, Hari R (2000) Speaking modifies voice-evoked activity in the human auditory cortex. Hum Brain Mapp 9:183191.[CrossRef][ISI][Medline]
Cynx J, Lewis R, Tavel B, Tse H (1998) Amplitude regulation of vocalizations in noise by a songbird, Taeniopygia guttata. Anim Behav 56:107113.[CrossRef][ISI][Medline]
Edin BB, Westling G, Johansson RS (1992) Independent control of human finger-tip forces at individual digits during precision lifting. J Physiol 450:547564.[Abstract]
Eliades SJ, Wang X (2003) Sensorymotor interaction in the primate auditory cortex during self-initiated vocalizations. J Neurophysiol 89:21942207.
Epple G (1968) Comparative studies on vocalization in marmoset monkeys (Hapalidae). Folia Primatol 8:140.[ISI][Medline]
Fairbanks G (1955) Selective vocal effects of delayed auditory feedback. J Speech Hear Disord 20:333346.[Medline]
Fitzpatrick KA, Imig TJ (1980) Auditory cortico-cortical connections in the owl monkey. J Comp Neurol 192:589610.[CrossRef][ISI][Medline]
Fox PT, Ingham RJ, Ingham JC, Hirsch TB, Downs JH, Martin C, Jerabek P, Glass T, Lancaster JL (1996) A PET study of the neural systems of stuttering. Nature 382:158161.[CrossRef][ISI][Medline]
Geschwind N (1970) The organization of language and the brain. Science 170:194195.[ISI][Medline]
Goodbody SJ, Wolpert DM (1999) The effect of visuomotor displacements on arm movement paths. Exp Brain Res 127:213223.[CrossRef][ISI][Medline]
Gracco VL, Abbs JH (1985) Dynamic control of the perioral system during speech: kinematic analyses of autogenic and nonautogenic sensorimotor processes. J Neurophysiol 54:418432.
Gray CM, Maldonado PE, Wilson M, McNaughton B (1995) Tetrodes markedly improve the reliability and yield of multiple single unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods 63:4354.[CrossRef][ISI][Medline]
Gunji A, Hoshiyama M, Kakigi R (2001) Auditory response following vocalization: a magnetoencephalographic study. Clin Neurophysiol 112:514520.[CrossRef][ISI][Medline]
Hackett TA, Stepniewska I, Kaas JH (1999) Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Res 817:4558.[CrossRef][ISI][Medline]
Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197222.[CrossRef][ISI][Medline]
Henson OW Jr (1965) The activity and function of the middle-ear muscles in echo-locating bats. J Physiol 180:871887.[ISI][Medline]
Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat's visual cortex. J Neurosci 11:18001809.[Abstract]
Holst E von, Mittelstaedt H (1950) Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37:464476.[CrossRef][ISI]
Houde JF, Jordan MI (1998) Sensorimotor adaptation in speech production. Science 279:12131216.
Houde JF, Nagarajan SS, Sekihara K, Merzenich MM (2002) Modulation of the auditory cortex during speech: an MEG study. J Cogn Neurosci 14:11251138.
Huang CL, Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. J Comp Neurol 427:302331.[CrossRef][ISI][Medline]
Judge SJ, Wurtz RH, Richmond BJ (1980) Vision during saccadic eye movements. I. Visual interactions in striate cortex. J Neurophysiol 43:11331155.
Kadia SC, Wang X (2003) Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics. J Neurophysiol 89:16031622.
Kirzinger A, Jurgens U (1991) Vocalization-correlated single unit activity in the brain stem of the squirrel monkey. Exp Brain Res 84:545560.[ISI][Medline]
Kusunoki M, Goldberg ME (2003) The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J Neurophysiol 89:15191527.
Kuwada S, Batra R (1999) Coding of sound envelopes by inhibitory rebound in neurons of the superior olivary complex in the unanesthetized rabbit. J Neurosci 19:22732287.
Lane H, Tranel B (1971) The Lombard sign and the role of hearing in speech. J Speech Hear Res 14:677709.[ISI]
Lee BS (1950) Effects of delayed speech feedback. J Acoust Soc Am 22:824826.[ISI]
Leonardo A, Konishi M (1999) Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399:466470.[CrossRef][ISI][Medline]
Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9:R53R78.[ISI][Medline]
Liang L, Lu T, Wang X (2002) Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. J Neurophysiol 87:22372261.
Lu T, Liang L, Wang X (2001a) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4:11311138.[CrossRef][ISI][Medline]
Lu T, Liang L, Wang X (2001b) Neural representations of temporally asymmetric stimuli in the auditory cortex of awake primates. J Neurophysiol 85:23642380.
Martikainen MH, Kaneko KI, Hari R (2005) Suppressed responses to self-triggered sounds in the human auditory cortex. Cereb Cortex (in press).
Merzenich MM, Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50:275296.[CrossRef][ISI][Medline]
Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol 38:231249.
Metzner W (1989) A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats. Nature 341:529532.[CrossRef][ISI][Medline]
Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318:2763.[CrossRef][ISI][Medline]
Müller-Preuss P, Ploog D (1981) Inhibition of auditory cortical neurons during phonation. Brain Res 215:6176.[CrossRef][ISI][Medline]
Nonaka S, Takahashi R, Enomoto K, Katada A, Unno T (1997) Lombard reflex during PAG-induced vocalization in decerebrate cats. Neurosci Res 29:283289.[CrossRef][ISI][Medline]
Numminen J, Salmelin R, Hari R, (1999) Subject's own speech reduces reactivity of the human auditory cortex. Neurosci Lett 265:119122.[CrossRef][ISI][Medline]
Paus T, Perry DW, Zatorre RJ, Worsley KJ, Evans AC (1996) Modulation of cerebral blood flow in the human auditory cortex during speech: role of motor-to-sensory discharges. Eur J Neurosci 8:22362246.[ISI][Medline]
Penfield W, Roberts L (1959) Speech and brain-mechanisms. Princeton, NJ: Princeton University Press.
Poulet JF, Hedwig B (2003) A corollary discharge mechanism modulates central auditory processing in singing crickets. J Neurophysiol 89:15281540.
Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111114.[ISI][Medline]
Romanski LM, Bates JF, Goldman-Rakic PS (1999) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141157.[CrossRef][ISI][Medline]
Romanski LM, Goldman-Rakic PS (2002) An auditory domain in primate prefrontal cortex. Nat Neurosci 5:1516.[CrossRef][ISI][Medline]
Rushton DN, Rothwell JC, Craggs MD (1981) Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104:465491.[ISI][Medline]
Schuller G, Beuter K, Schnitzler H-U (1974) Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum. J Comp Physiol 89:275286.[CrossRef][ISI]
Siegel GM, Pick HL Jr (1974) Auditory feedback in the regulation of voice. J Acoust Soc Am 56:16181624.[ISI][Medline]
Sinnott JM, Stebbins WC, Moody DB (1975) Regulation of voice amplitude by the monkey. J Acoust Soc Am 58:412414.[ISI][Medline]
Smotherman M, Zhang S, Metzner W (2003) A neural basis for auditory feedback control of vocal pitch. J Neurosci 23:14641477.
Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of movements. Science 296:14801482.
Sperry RW (1950) Neural basis of the spontaneous optokinetic responses produced by visual inversion. J Comp Physiol Psychol 43:482489.[ISI][Medline]
Suga N, Jen PH (1975) Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol 62:277311.[Abstract]
Suga N, Shimozawa T (1974) Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science 183:12111213.[ISI][Medline]
Tammer R, Ehrenreich L, Jurgens U (2004) Telemetrically recorded neuronal activity in the inferior colliculus and bordering tegmentum during vocal communication in squirrel monkeys (Saimiri sciureus). Behav Brain Res 151:331336.[CrossRef][ISI][Medline]
Wang X (2000) On cortical coding of vocal communication sounds in primates. Proc Natl Acad Sci USA 97:1184311949.
Wise RJ, Greene J, Buchel C, Scott SK (1999) Brain regions involved in articulation. Lancet 353:10571061.[CrossRef][ISI][Medline]
|