A Short History of Biomedical & Health Informatics

Key historical developments of informatics

- Ledley & Lusted paper
- First era of artificial intelligence (AI)
- Early electronic health records (EHRs)
- National Library of Medicine (NLM) and early information retrieval (IR) systems
- Internet and World Wide Web
- Genomics and bioinformatics
- Institute of Medicine reports
- Health Information Technology for Clinical & Economic Health (HITECH) Act
- Second era of AI
- Backlash and challenges ahead
Ledley & Lusted (1959)

- Attributed as scientific origin of field
- Aimed to model and understand physician reasoning through
 - Symbolic logic – representing concepts such as patient findings, tests, diagnoses, etc.
 - Probability – likelihood of outcomes (e.g., diagnosis) based on concepts (symbols)
 - Value theory – complexity of values going into medical decision-making
- Led to early attempts at computer-based decision-making in medicine
- Widely cited (Beck, 1984)

First era of AI

- Focus on hand-crafted “knowledge bases” with algorithms to provide “artificial intelligence”
- Warner (1961) developed mathematical model for diagnosing congenital heart disease
 - System predicted diagnosis with the highest conditional probability given a set of symptoms
- Problem-knowledge couplers aimed to connect patient findings and diagnoses (Weed, 1969)
- Next was emergence of “expert systems” – computer programs mimicking human expertise
 - Early work focused on rule-based expert systems – PhD dissertation of Shortliffe (1975) and subsequent work (Clancey, 1984)
First era of AI

- Another early AI approach developed systems using scoring algorithms
 - INTERNIST-1 (Miller, 1982) and DxPlain (Barnett, 1987) used disease profiles and scoring
- “Demise of the Greek Oracle” led to focus on decision support systems – mimicking human expertise but acting in supportive rather than independent role (Miller, 1990)
 - Led to more focused clinical decision support in 1990s (Greenes, 2014)

Era also saw early EHR systems

- COSTAR – Massachusetts General Hospital (Barnett, 1979)
 - Built using MUMPS (Greenes, 1969)
- HELP – Utah (Kuperman, 1991)
- TMR – Duke (Stead, 1988)
- Regenstrief – Indiana (McDonald, 1999)
 - Led to development of Gopher (Duke, 2014)
- El Camino – California (Carter, 1987)
- VistA and CPRS – Veteran’s Administration (Brown, 2003)
NLM and early IR systems

- A critical organization in history of informatics was NLM
 - 30-year leadership of Donald Lindberg, MD, with torch passed to Patricia Brennan, PhD, RN (Brennan, 2016)
- Early application was IR from bibliographic databases
 - From Index Medicus to time-sharing systems (e.g., ELHILL; Lindberg, 1986) to PCs (e.g., Grateful Med; Lindberg, 1996) to Web (PubMed)
 - Subsequent connection to full text of scientific literature and other knowledge resources
- Leader in terminology development and standardization (Humphreys, 1998)
- Also funder of research as well as training grants and other education

Genomics and bioinformatics

- Human Genome Project to sequence human genome began in 1988
- In 2001, NIH-based project published “first draft” (Anonymous, 2001) simultaneously with private effort from Craig Venter of Celera Genomics (Venter, 2001)
- Project “completed” in 2003 (Collins, 2003)
- Sequencing of more humans increased understanding of genomic variation and complexity
Continued advances in bioinformatics

- Next-generation sequencing technologies and rapidly lowering costs (Goodwin, 2016)
- Other biomolecular technologies (Lesk, 2017)
 - Gene expression
 - Protein structure and function
- Elucidation of other “omes and omics”
 - Proteomics – protein structure and function
 - Transcriptomics – expression of DNA
 - Microbiome – microorganisms
 - Mapping phenotype to genotype – full circle to clinical data
- Many data resources from NLM National Center for Biotechnology Information (NCBI) (Sayers, 2020) and others (Rigden, 2020)
- Manifested in precision medicine (Parikh, 2017)

Internet and World Wide Web

- Emergence in 1980s of Internet – network of networks
 - Initial use focused on sharing information, e.g., file transfer, email
- Major application empowering Internet was World Wide Web
 - 1990s boom and bust in dot-com era
 - Subsequent success of business models, e.g., Facebook/Apple/Amazon/Netflix/Google (FANG)
- Ubiquitous now with wired (broadband) and wireless (wifi, cellular) connectivity
Important thought leadership led by initial IOM reports

- The Computer-Based Patient Record (Dick, 1997) – paper records illegible, inefficient, and error-prone; computer-based record vital to modern healthcare
- For the Record: Protecting Electronic Health Information (1997) – benefits of electronic health information compromised by inadequate protection; informed HIPAA legislation
- Networking Health (2000) – value of networks important but do not need separate health Internet
- To Err is Human (Kohn, 2000) – medical errors are common and a systems problem

Next round of IOM reports laid out vision for better healthcare system

- Crossing the Quality Chasm – set of aims and rules for high-quality 21st century healthcare (IOM, 2001)
- Aims included care that was
 - Safe – avoid injuries from care intended to help
 - Effective – provide service based on scientific knowledge and avoid care unlikely to benefit
 - Patient-centered – care respectful of patients’ preferences, needs, and values
 - Timely – reduce waits and delays in care
 - Efficient – avoid waste of equipment, supplies, and energy
 - Equitable – provide care that does not vary based on personal characteristics
Other important IOM reports and concepts

- The “learning health system” must measure provision and outcomes of care to know what works (Eden, 2008)
- Components of learning health system (Smith 2012) included
 - Transparency of data and information
 - Reward outcomes and value, not volume
 - Errors promptly identified and corrected
- Health IT systems that improve healthcare may also introduce error and cause harm if not designed and applied properly (Anonymous, 2012)

ARRA and the HITECH Act

- By mid-2000s, emergence of research supporting value of EHR and CDS for improving quality and safety of healthcare
- Great Recession of 2008 led to American Recovery & Reinvestment Act (ARRA), which included HITECH Act that allocated $30+B for
 - Incentives for adoption and “meaningful use” of EHR ($30B)
 - $2B investment in health information exchange, regional extension centers, workforce development, and research (Blumenthal, 2011; Blumenthal, 2011; Washington, 2017)
Second era of AI

- Reinvigorated with success of machine learning, which occurred from increasing availability of data, more powerful computers, and advances in deep learning (Topol, 2019)
- Popularized by Topol (2019)
- Retrospective from Shortliffe (2019)
- Drawing attention from leading policy bodies, such as National Academy of Medicine (Matheny, 2019)

Backlash

- EHRs and clinicians – current systems slow work of clinicians, prioritize non-clinical aspects of care, and lead to clinician burnout (Halamka, 2017; Gawande, 2018; NAM, 2019)
- Standards and interoperability – HITECH led to systems that could not talk to each other (Adler-Milstein, 2017)
- Privacy and security – not limited to healthcare, but growing concern (Health Care Industry Cybersecurity Task Force, 2017)
Key challenges ahead based on historical perspectives

• Improving usability of systems in clinical care, especially EHR
• Access to data, information, and knowledge
• Learning from data while protecting privacy and security
• Integrating new AI into healthcare professions and activities