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Motivations for secondary use of
clinical data

* Many “secondary uses” or re-uses of electronic health
record (EHR) data, including (Safran, 2007)
— Personal health records (PHRs)

— Clinical and translational research — generating hypotheses
and facilitating research

— Health information exchange (HIE)
— Public health surveillance for emerging threats
— Healthcare quality measurement and improvement
* Opportunities facilitated by growing incentives for
“meaningful use” of EHRs in the HITECH Act
(Blumenthal, 2011; Blumenthal, 2011), aiming toward
the “learning healthcare system” (Friedman, 2010)
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Challenges for secondary use of clinical
data

* EHR data does not automatically lead to
knowledge
— Data quality and accuracy is not a top priority for busy
clinicians
* Little research, but problems identified

— EHR data is inaccurate and incomplete, especially for
longitudinal assessment (Berlin, 2011)

— Many steps in process of ICD-9 assignment can lead to
inaccuracy (O’Malley, 2005)
* There are also important “provocations” about
use of “big data” for research (Boyd, 2011)
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Challenges (cont.)

e Many data idiosyncrasies (Weiner, 2011)

— “Left censoring”: First instance of disease in record
may not be when first manifested

— “Right censoring”: Data source may not cover long
enough time interval

— Data might not be captured from other clinical (other
hospitals or health systems) or non-clinical (OTC
drugs) settings

— Bias in testing or treatment

— Institutional or personal variation in practice or
documentation styles

— Inconsistent use of coding or standards
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Data in EHRs is incomplete

e Claims data failed to identify more than half of patients
with prognostically important cardiac conditions prior
to admission for catheterization (Jollis, 1993)

* Various approaches generated variable rate of retrieval
of cases for quality measurement (Benin, 2005;
Rhodes, 2007); algorithmic methods can lead to
improvement (Benin, 2011)

e At Columbia University Medical Center, 48.9% of
patients with ICD-9 code for pancreatic cancers did not
have corresponding disease documentation in
pathology reports, with many data elements
incompletely documented (Botsis, 2010)
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Data incomplete (cont.)

* In Texas academic hospital, billing data alone only
identified 22.7% and 52.2% respectively of
patients with breast and endometrial cancer,
increasing to 59.1% and 88.6% with a machine
learning algorithm (Bernstam, 2010)

* Alerting system to add 17 problems to patient
problem lists accepted 41% of time (Wright,
2012)

e Data from two medical centers in a Minnesota
were found to better predict Type 2 diabetes
mellitus than single center (Wei, 2012)
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Patients get care in multiple places

e Study of 3.7M patients in Massachusetts
found 31% visited 2 or more hospitals over 5
years (57% of all visits) and 1% visited 5 or
more hospitals (10% of all visits) (Bourgeois,
2010)

e Study of 2.8M emergency department (ED)
patients in Indiana found 40% of patients had
data at multiple institutions, with all 81 EDs
sharing patients in common (Finnell, 2011)
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Primer on information retrieval (IR)
and related topics

¢ |Information retrieval
e Evaluation
e Challenge evaluations
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Information retrieval (Hersh, 2009)

William Hersh

* Focus on indexing and
retrieval of knowledge- Information
based information Retrieval

A Health and Biomedical
Perspedlve

» Historically centered on text
in knowledge-based
documents, but increasingly
associated with many types :
of content " i Eaion

HEALTH INFORMATICS SERIES

e www.irbook.info
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Elements of IR systems

Retrieval Indexing
Metadata
- Boolean - Words
- Natural language - Terms
- Attributes
Queries Content
A
7/
///
7
Search 7
engine
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Evaluation of IR systems

e System-oriented — how well system performs
— Historically focused on relevance-based measures

¢ Recall and precision — proportions of relevant documents retrieved
— When documents ranked, can combine both in a single
measures

¢ Mean average precision (MAP) — mean of average precision across
topics
¢ Bpref —takes into account retrieved but unjudged documents
e User-oriented — how well user performs with system
— e.g., performing task, user satisfaction, etc.
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System-oriented IR evaluation

» Historically assessed with test collections, which
consist of

— Content — fixed yet realistic collections of documents,
images, etc.

— Topics — statements of information need that can be
fashioned into queries entered into retrieval systems

— Relevance judgments — by expert humans for which
content items should be retrieved for which topics
e Evaluation consists of runs using a specific IR
approach with output for each topic measured and

averaged across topics
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Recall and precision

e Recall
__ #retrieved and relevant documents
#relevant documents incollection

— Usually use relative recall when not all relevant
documents known, where denominator is number
of known relevant documents in collection

e Precision

#retrieved and relevant documents

P—
#retrieved documents .
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Example of recall and precision

Database

1,000,000

Relevant )
Retrieved

Retrieved and relevant
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Some measures can be combined into
a single aggregated measure

* Mean average precision (MAP) is mean of
average precision for each topic (Harman,
2005)

— Average precision is average of precision at each
point of recall (relevant document retrieved)

— Despite name, emphasizes recall

» Bpref accounts for when relevance
information is significantly incomplete
(Buckley, 2004)
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Challenge evaluations

e A common approach in computer science, not limited to IR

* Develop a common task, data set, evaluation metrics, etc.,
ideally aiming for real-world size and representation for
data, tasks, etc.

* In case of IR, this usually means

— Test collection of content items

— Topics of items to be retrieved — usually want 25-30 for
“stability” (Buckley, 2000)

— Runs from participating groups with retrieval for each topic

— Relevance judgments of which content items are relevant to
which topics — judged items derived from submitted runs
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Challenge evaluations (cont.)

* Typical flow of events in an IR challenge evaluation

Release of 3
Experimental
document ;
) runs and Relevance | | Analysis of
collectionto L . ]
L submission judgments | | results
participating
of results
groups

* In IR, challenge evaluation results usually show wide
variation between topics and between systems

— Should be viewed as relative, not absolute performance

— Averages can obscure variations
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Some well-known challenge evaluations
in IR

Text Retrieval Conference (TREC, trec.nist.gov; Voorhees,
2005) — sponsored by National Institute for Standards and
Technology (NIST)

— Many “tracks” of interest, such as routing/filtering, Web searching,
guestion-answering, etc.

— Non-medical, with exception of Genomics Track (Hersh, 2009)
Cross-Language Evaluation Forum (CLEF, www.clef-

campaign.org)

— Focus on retrieval across languages, European-based

— Additional focus on image retrieval, which includes medical image

retrieval tasks (Hersh, 2009; Miiller, 2010)
Both operate on annual cycle of test collection release,
experiments, and analysis of results
, HEALTH B

o &SCIENCE
UNIVERSITY

TREC Medical Records Track

Appealing task given societal value and leveraging
HITECH investment

— NIST involved in HITECH in various ways
Has always been easier with knowledge-based

content than patient-specific data due to a
variety of reasons

— Privacy issues
— Task issues
Facilitated with development of large-scale, de-

identified data set from University of Pittsburgh
Medical Center (UPMC)
l\-\'}\d‘\
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Test collection

VISIT LIST S
PRINCIPAL DIAGNOSES:
Urinary tract infection.

RECORD-VISIT MAP

. Gastroenteritis.

2
3. Dehydration.
20071026ER-9qWiuGEk8Xkz-488-541231171 4. Hyperglycemia.
5. Diabetes mellitus.
20073482D$-56d83298-100-34234561 6. Ostecarthritis.
g 7 / 7. History of anemia.
7 20071026RAD-0qWiuGEK8Xkz-488-1222308213 8. History of tobacco use.
SEKrCWvnwel L | 20073482DS-56d8329-100-34234561 K OURSE: Tne patient 15 2 TTAGELIn 40s)
I A
r = j T 20071027HP-9qWiuGEKBXkz-488-1348146618 ids. a sliding scale,
\ 4 t: nfect: -
HA A\ 20073482DS-56d8329-100-34234561 ey tract dpeeetien
|| \ n n h ted on Lantus, and overall
H 2007100542DS-56d8329-100-34234561 is feeling better. She is tolerating a regular diet.
Her sugars have been under better COntro.
20073482HP-56d8329-100-342348376 she is being discharged to home. So
~ potassium was 4.5, BUN was 21, creati
( —\ 200782RAD-56d83asd29-100-34238923847 glucoses recently ranged from 80 to the s
\ 219. Her sugar as high as 300. Her white count
\ b 20071028HP-9qWiuGEK8Xkz-488-1617583866 was 7.5, hemoglobin was 11, and hematocrit was 33.0.
I“. \\ Urinalysis was positive.
\ \| 2007348932DS-56dnp29-100-34289345023804 -
20073482DS-56d83fsdf29-344-3423456 1 Report Extract
\ b 20071030DS-9qWiuGEK8Xkz-488-856269896 20071030DS-9qWiuGEk8Xkz-488-856269896
——————4 200734462RAD-56d8329-800-87342345323
17,265 visits 101,712 reports (93,552 mapped to visits) OREGON .;
21 (Courtesy, Ellen Voorhees, NIST) I l lA l_l l i
&SCIENCE
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Some issues for test collection

e De-identified to remove protected health
information (PHI), e.g., age number - range

e De-identification precludes linkage of same
patient across different visits (encounters)

e UPMC only authorized use for TREC 2011 and
nothing else, including TREC 2012 or any other
research
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Wide variations in number of
documents per visit

4000

23 visits > 100 reports; max report size 415

3500 -

3000 -

2500 -

2000 -

1500

1000 -

500 -

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of reports in visit

23 (Courtesy, Ellen Voorhees, NIST)

Topic development and relevance
assessments

e Task — Identify patients who are possible candidates for
clinical studies/trials

— Had to be done at “visit” level due to de-identification of
records
* Topics derived from 100 top critical medical research
priorities in comparative effectiveness research (IOM,
2009)

* Topic development done as IR course student project

— Selected topics appropriate for data and with at least some
relevant “visits”

e Relevance judgments by OHSU BMI students who were
physicians
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Sample topics

Patients taking atypical antipsychotics without
a diagnosis of schizophrenia or bipolar
depression

Patients treated for lower extremity chronic
wound

Patients with atrial fibrillation treated with
ablation

Elderly patients with ventilator-associated

pneumonia
HEALTH
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Participation

Runs consisted of ranked list of up to 1000 visits per topic
for each of 35 topics

— Automatic — no human intervention from input of topic
statement to output of ranked list

— Manual — everything else
Up to 8 runs per participating group
Subset of retrieved visits contributed to judgment sets

— Because resources for judging limited, could not do complete
judgments, necessitating use of BPref for 1° evaluation measure

127 runs submitted from 29 groups
— 109 automatic
— 18 manual
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... BUT, wide variation among topics
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Easy and hard topics

e Easiest — best median bpref
— 105: Patients with dementia

— 132: Patients admitted for surgery of the cervical spine for fusion or
discectomy

¢ Hardest — worst best bpref and worst median bpref
— 108: Patients treated for vascular claudication surgically

— 124: Patients who present to the hospital with episodes of acute loss
of vision secondary to glaucoma

e Large differences between best and median bpref
— 125: Patients co-infected with Hepatitis C and HIV

— 103: Hospitalized patients treated for methicillin-resistant
Staphylococcus aureus (MRSA) endocarditis

— 111: Patients with chronic back pain who receive an intraspinal pain-

medicine pump
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What approaches did (and did not)
work?

e Best results obtained from NLM group (Demner-Fushman,
2011)

— Top results from manually constructed queries using Essie
domain-specific search engine (Ide, 2007) — BPref = 0.658

— Other automated processes fared less well, e.g., creation of
PICO frames, negation, term expansion, etc. — BPref = 0.4822

e Best automated results also obtained by Cengage (King,
2011)

— Filtered by age, race, gender, admission status; terms expanded
by UMLS Metathesaurus — BPref = 0.552

* Benefits of approaches commonly successful in IR did
provided small or inconsistent value for this task
— Document focusing, term expansion, etc.
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30 &SCIENCE

UNIVERSITY

15



OHSU approach
(Bedrick, 2011)

Manually constructed
queries of text and
ICD-9 codes, run
against all and high-
yield (discharge
summary, emergency
department)
documents

Visits ranked by top-
ranking documents

Text and ICD-9
combined by Boolean
operators

Ron Bt P@10

Text-only — All
Text-only — High

Text AND ICD-9 —

All

Text AND ICD-9 —

High

Text OR ICD-9 —
All

Text OR ICD-9 —
High

Example query (topic #127)

0.3751
0.2894
0.2497
0.1695
0.3657

0.3238

0.5853
0.4824
0.4471
0.3235
0.4618

0.4206

Text: (diabetes mellitus) OR diabetic OR DM OR hypertension

AND (morbid obesity)

03 1

0.2

01 T

| mORAl

ICD-9: 278.01 AND (250.* OR 401.* OR 405.*) '&/
ORFGON ¥
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s - OHSU results — large variation by topic and method
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Conclusions and future directions

e Growing amount of EHR data provides potential
benefit for learning healthcare system

— Many challenges to use of EHR data exist

— One potentially beneficial technique is understanding of
data in clinical narrative text

* TREC Medical Records Track extended IR challenge
evaluation approach to a patient selection triage task

— Initial results show mixed success for different methods —
common with a new IR task

e Future work can hopefully proceed from this and other
data sets — if there is continued access to the test

collection allowed
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