

ABSTRACT
The Oregon Health & Science University submission to
the TREC 2007 Genomics Track approached the entity list
question answering task using a modular object oriented
system framework. A system object coordinates a
collection of processing objects into a pipe that constructs
a set of queries, retrieves passage, and then processes
those passages into a final output answer set. Using the
framework we applied multiple levels of synonym
expansion and a ranked series of topic queries with a
range of specificities in order to retrieve all of the likely
relevant passages with the most likely ranked higher. We
then applied sentence pruning to the head and tail of each
passage using both NLP and term-based techniques.
Overall scores finished around the TREC Genomics mean
for each of the four measures. Careful passage retrieval,
including synonym expansion and multiple query
construction, as well as sentence pruning was essential in
achieving acceptable performance on this task.

1 INTRODUCTION
The 2007 Text Retrieval Conference (TREC) Genomics
Track consisted of a single question answering task,
which was scored by four measures. The question
answering task presented a biological question where the
expected answer was to include one or more entities of a
given type. There were 36 separate question topics
covering 14 different entity types. These topics were
collected by surveying working biologists who were
asked to provide questions from their own research. The
topics were rephrased into questions which asked for a
specific entity type. The challenge was to extract text
passages specifically answering each topic question from
a large corpus of over 160,000 biomedical full text
articles selected from journals known to publish papers on
genomics research. The answers for each topic were
pooled and then evaluated by domain experts to create a
gold standard. Each submission was scored and averaged
over all of the topics for document mean average
precision (MAP), character-based mean passage
precision, and aspect precision.

2 BACKGROUND
With the ever-expanding knowledge base of science
embedded in the biomedical literature, the importance of

effective text processing tools to aid biomedical
researchers continues to increase (Cohen and Hersh,
2005, Hunter and Cohen, 2006, Roberts, 2006). One way
that the biomedical literature is used by scientists is to
determine what is currently known about a subject related
to their field of research. For automated systems to aid
scientists with this task, the task must be framed in a
formal manner amenable to machine processing. One
formal, yet flexible way to represent these kinds of
information needs is as list entity type questions.

The OHSU Biomedical Question Answering System Framework
A. M. Cohen1, J. Yang1, S. Fisher2, B. Roark2, and W.R. Hersh1

Department of Medical Informatics and Clinical Epidemiology1,

Department of Computer Science and Electrical Engineering, OGI School of Science and Engineering2

Oregon Health & Science University, Portland, OR, USA

In list entity questions, the answer to the information
need includes one or more entities (or things) of a given
type. The type is given as part of the question and can be
used by the information system to enhance the ability of
the system to address the question. Since the type of the
concepts of interests that answer a given question are
often obvious to the biologist from the question itself, this
form of information need representation can be both
useful to the biologist and convenient for the computer.

For example, suppose a biologist is interested in
understanding what treatments have been tested for
Alzheimer’s disease in mouse models. Assuming that the
treatments are pharmacological agents, the question can
be represented as “What [DRUGS] have been tested in
mouse models of Alzheimer's disease?”. The list entity
type is given in uppercase, surrounded by square brackets.
This is both easy for the user to input and provides quite a
bit of information and context for the question answering
system to work with.

Useful answers to these types of questions will include
not just a list of the relevant entities, but also the
surrounding text passage. The user then reviews the
passages, determine which provide substantiated entities
and answers, and understand the meaning and
relationships present within the answer to the question. A
good set of results will contain both a high proportion of
substantiated and correct answers, as well as covering a
high proportion of the different entities that answer the
question. For example, if the question is “What
centrosomal [GENES] are implicated in diseases of brain
development?” and there are ten genes involved, then ten
correct passages all about the same gene are less desirable
than ten passages each about one of the involved genes.

The TREC 2007 Genomics track task attempted to
emulate this list entity question-based type of information
need in a controlled, comparable form, using a specific

full text literature corpus. The literature corpus was the
same as used in the 2006 Genomics track and consisted of
162,259 full text HTML articles, published between the
years 1995 and 2006, and downloaded with the
permission of the publishers from the Highwire Press web
site (http://highwire.stanford.edu/). This literature corpus
includes 49 journals that were known to publish articles
on genomics subjects. However, the articles in the corpus
included everything available from the web site, not just
genomics articles.

Using the given literature corpus, the task was set up to
be a extraction-based question answering task with the
additional requirement that each relevant passage must
include at least one correct entity of the given type.
Questions were given in the form as shown above, as
sentences with the entity type given in square brackets.
Answers were required to come from contiguous passages
in the fixed literature corpus. Systems were to submit a
ranked list of up to 1000 character offset passages for
each of the 36 topic questions. The character based
passage specified the PubMed ID (PMID), starting offset
in characters, and length of passage corresponding to the
passage within the HTML file being nominated as
relevant to answering the question.

Submissions were free to use any size passage they
desired, whether that be sentences, sentences fragments,
paragraphs, etc. However, the maximum allowable
passage was restricted by enforcing the rule that a passage
could not include any HTML <P> or </P> tags. This was
the same maximum passage criteria used in the 2006
Genomics track. This effectively limited submitted
passages to around one paragraph of text, although entire
reference sections from the end of papers sometimes were
included by this rule. A file of the maximum legal spans
was provided by the track administrators.

The submission for a system consisted of a ranked list
of up to 1000 passages for each topic. A character-based
gold standard set of answers was created from the
submissions by using pooling, combined with expert
judging. Submitted answers were mapped to their
containing maximum legal span, and then were pooled for
judging by taking the top ranked spans from each entry
until 1000 spans were collected for each topic.

Human judges with expertise in biology were then
asked to rate each pooled span for relevance, and select
the relevant answer text from a plain text version from the
pooled HTML span. These plain text selections were then
mapped back to the original HTML file using a string
alignment algorithm to create the gold standard set of
passages. Each gold standard passage also had assigned to
it by the judges one or more entity terms. The set of entity
terms were chosen by the judges when reviewing the
passages for relevance, and then assigned to each relevant

passage in a second review pass. This ensured consistent
application of the entities with each topic question.

Each system was scored four ways, each measure being
a variation of mean average precision (MAP). The first
measure was DOCUMENT MAP. This took the highest
ranked passage for a document as the document rank. The
document MAP was computed in the standard way from
this ranked list of PMIDs

The second and third measures used were character-
based passage MAP scores, which measured the
cumulative overlap between characters in relevant and
nominated passages at each point of correct passage
recall. The PASSAGE measure was the same as used in
the 2006 Genomics track, and measured the fraction of
relevant characters averaged over each nominated
passage. The PASSAGE2 measure was added this year. It
measures the average fraction of relevant characters
averaged over each nominated character. In essence,
every character is a little document, and is relevant or not.
This measure is somewhat more robust to passage length
and was intended to replace PASSAGE as the primary
character measure this year. These measures evaluate the
proportion of retrieved text that is relevant to answering
the user’s question. For example, a passage score of 0.50
would imply that approximately half the characters in the
retrieved passage was included with a correct answer to
the topic questions.

The fourth measure was ASPECT MAP. This took the
highest rank of a passage with a given assigned entity
term as the recall rank for that entity term. This measures
the completeness of the range of coverage of the system
output. Systems that nominate passages that mention
more distinct entities higher in the rankings score higher
than those that nominate passages with little entity
coverage. Note that since, for some questions, some
entities may be mentioned very frequently and others
hardly at all, the ASPECT MAP measures something
distinct from DOCUMENT and PASSAGE MAPs, but is
just as important to the user.

Having all of these separate measures allows a more
detailed study of what algorithms and approaches are
helpful in proving the different important qualities
necessary for a good list entity answer extraction system.
While good document-based MAP is essential, all by
itself it does not aid the user much since full text papers
can be long and time consuming to read. Character-based
MAP allows users to focus their reading and time on only
the sections most likely to be helpful. Finally, aspect-
based MAP measures the ability of a system to provide
broad coverage of a topic. Together these separate
measures characterize the effectiveness of the various
systems and techniques that can be applied to list entity-
based for biomedical question answering.

3 SYSTEM AND METHODS
The Oregon Health & Science University submission to
the TREC 2007 Genomics Track approached the question
answer extraction task as an opportunity to create a
modular, object oriented framework for building question
answering systems. The system is build as an assemblage
of modules, implemented as objects using the Python
programming language, also using that language to
interface to other systems or libraries as necessary.

The framework consists of a QASystem object, which
coordinates the actions of a group of processing modules
in a pipeline. The QASystem object creates and maintains
a Blob object that collects and stores all the accumulated
results of the processing objects as [name: value] pairs,
where the name is a string and the value can be any
object. A processing object gets its input data from the
Blob object and also stores any output in the blob. The
final results for each application of the information
extraction system to a topic are also stored in the blob.

Figure 1. Question answering framework architecture.

 The first object coordinated by the QASystem is the
QueryGenerator, which takes as input the topic question
as given by the TREC Genomics Track topics file, and
produces a series of one or more queries. The results of
this are then passed to a PassageRetrieval object, which
applies the queries and returns a set of retrieved passages.
The QASystem then applies any number of Filter objects
which can filter out passages, re-rank the passages, trim

or edit passages, or in fact, manipulate the output of the
PassageRetrieval object in any way necessary. The final
result of the pipeline processing is a nominated set of
ranked passages.

The overall architecture of the pipeline framework is
shown in Figure 1. For the initial implementation of the
system, there is only one filter module and each of the
modules does its job in a fairly straightforward manner
that will be described in the next section.

3.1 Query Generation
The goal of the QueryGenerator module is to transform
the topic question into a Boolean expression for
processing by PassageRetrieval module later in the
pipeline. The QueryGenerator used in this version of the
system actually creates two queries, a more specific
primary query, and a less specific secondary general
query. Each query is build off of term groups, where each
term group is a list of terms generated from a word or
phrase found in the topic question itself. The primary
query essentially requires the search to match, at least one
term from each term group (the term groups are ANDed),
and the secondary query does not (the term groups are
ORed).

QASystem

TopicsTopics

Ranked
Passages
Ranked

Passages

QueryGenerator

PassageRetrieval

Filter
Filter

Filter

Filter
Filter

Filter

BlobBlob

BlobBlob

Term groups are generated in several ways. First, a
greedy search is done from the topic question to an
indexed version of the MeSH terminology. The MeSH
Substances database was included as a source of
synonyms for one version of our system. Matching terms
are expanded with MeSH synonyms into term groups.
Second, gene names are matched and expanded using a
dictionary extracted from Entrez and expanded using an
orthographic variant generator (Cohen, 2005). Third, each
entity type has a set of manually compiled associated
keywords and these are used to generate a term group
along with orthographic variations. Synonyms that
included a parenthetical expression were separated as
separate terms. Two part phrases separated by commas
were split and put back together in inverted order as
additional synonyms. Finally, stop words were removed.

3.2 Passage Retrieval
The passage retrieval phase was built upon the Python

implementation of the open-source text retrieval engine
Lucene (http://lucene.apache.org). The text corpus was
parsed into maximum legal spans, and then each span was
separately indexed by Lucene. Once this initial indexing
was finished, we used a PassageRetrieval module in our
framework to query the index and retrieve the potentially
relevant passages. This step used the primary and
secondary queries that were built by the QueryGenerator
module. If the primary query did not return the maximum
allowed 1000 passages per question, the secondary query
was used as a back-off strategy. Passages returned by the

primary query were ranked in tf*idf order as computed
and returned by Lucene. The tf*idf of passages returned
by the secondary query were filter so that there were no
duplication with the primary query and then scaled by the
minimum tf*idf score from the primary query and then
merged into a ranked list. This ensured that the passages
returned by the primary query ranked higher than those of
the secondary. Using this method we retrieved the
maximum number of passages (1000) for each topic.

3.3 Passage Filtering
The final processing module trimmed the retrieved
passages using MMTx Metamap (Aronson, 2001) as
named entity recognition engine. Similar techniques were
used by other participants in the 2006 TREC genomics
track (Demner-Fushman et al., 2006). Each passage
retrieved by the previous stage was split into sentences,
and each sentence was scored for matching entities. The
UMLS semantic types of entities that were scored varied
based on the entity type given in the initial topic question.
This list was assembled by hand and represents just an
initial implementation. Certainly once the TREC results
are available as training data, each individual semantic
type could be evaluated as to its usefulness for each entity
question type.

MMTx natural language processing is complex and
runs rather slowly. While the earlier stages of the system
ran quickly and essentially in real-time, the MMTx based
filtering slowed down the system dramatically, requiring
overnight runs. Because of this, the system
implementation made two approximations when
performing sentence scoring. First, each passage was
processed by MMTx and the found entity types and
phrases returned. Then the passage was split into
sentences and these sentences were matched against the
extracted phrases to count how many times entity phrases
occurred in each sentence. This count was used as the
sentence score.

The second approximation was to only process the first
100 ranked passages. This is because the pooling used by
TREC would not likely reach below the 30th or 40th
passage, and therefore there was reduced incentive to
spend a lot of time processing passages that were less
likely to be relevant and unlikely to be scored.

After sentences were scored, the module trimmed the
passage using the following method. The average count
over all the sentences was computed and any first or last
sentence in the current passage that had a count less than
half the average was trimmed off. This process was
repeated on the newly trimmed passage until no more
sentences could be trimmed.

Trimmed passages were not re-ranked by this phase,
that is, passages were ranked by their original tf*idf score
as for the full untrimmed passage. The only exceptions to
this are for passages that had a total count score of zero,
these passages were demoted to the end of the ranking.
The EXCLUSIONS version of our system removed
passages that appeared to be keyword or abbreviations
sections. All of our submitted runs were automatic, with
no manual query generation, and no tuning or
modifications to the system based on the results or
retrieval of initial runs on the official topics. We
performed some basic system debugging and sanity-
checking using the training topics given with the track
protocol description.

4 RESULTS
Performance was determined by the official scoring
program for the track, trecgen2007_eval. The results of
our three official runs and several subsequent evaluation
runs are presented in Table 1. For comparison, the high,
low, and mean scores for all runs submitted to the track
are shown for each of the three measures.

The runs labeled OHSUQA, OHSUQASUB, and
OHSUQASUBEX are our officially submitted runs.
These runs were output from the system as described
above, with a few small variations. The OHSUQASUB
and OHSUQASUBEX runs include the MeSH substances
database in the synonym generation step, while the
OHSUQA run does not. The OHSUQASUBEX run
includes a few simple pattern matching rules to filter out
passages labeled “keywords” and “abbreviations”. This
was found to improve performance a bit on some training
data we created based on last years Genomics track task.

Table 1. System performance on all measures averaged across all topics.

RUN DOC
MAP

PASSAGE
MAP

PASSAGE2
MAP

ASPECT
MAP

OHSUQA 0.1719 0.0403 0.0440 0.1075
OHSUQASUB 0.1684 0.0388 0.0434 0.1080
OHSUQASUBEX 0.1695 0.0392 0.0439 0.1104

LuceneOnly 0.1450 0.0263 0.0317 0.1003
Lucene+Backoff 0.1602 0.0294 0.0354 0.1088
3StageBackoff 0.1900 0.0364 0.0432 0.1291
3StageBackoff+TermTrim 0.1897 0.0415 0.0460 0.1286
TREC MIN 0.0329 0.0029 0.0008 0.0197
TREC MEDIAN 0.1897 0.0565 0.0377 0.1311
TREC MEAN 0.1862 0.0560 0.0398 0.1326
TREC MAX 0.3286 0.0976 0.1148 0.2631

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20
0-

P
R

O
TE

IN
S

20
1-

M
U

TA
TI

O
N

S

20
2-

D
R

U
G

S

20
3-

C
E

LL
 O

R
 T

IS
S

U
E

 T
Y

P
E

S

20
4-

C
E

LL
 O

R
 T

IS
S

U
E

 T
Y

P
E

S

20
5-

S
IG

N
S

 O
R

 S
Y

M
P

TO
M

S

20
6-

TO
X

IC
IT

IE
S

20
7-

TO
X

IC
IT

IE
S

20
8-

B
IO

LO
G

IC
A

L
S

U
B

S
TA

N
C

E
S

20
9-

B
IO

LO
G

IC
A

L
S

U
B

S
TA

N
C

E
S

21
0-

M
O

LE
C

U
LA

R
 F

U
N

C
TI

O
N

S

21
1-

A
N

TI
B

O
D

IE
S

21
2-

G
E

N
E

S

21
3-

G
E

N
E

S

21
4-

G
E

N
E

S

21
5-

P
R

O
TE

IN
S

21
6-

G
E

N
E

S

21
7-

P
R

O
TE

IN
S

21
8-

G
E

N
E

S

21
9-

D
IS

E
A

S
E

S

22
0-

P
R

O
TE

IN
S

22
1-

P
A

TH
W

A
Y

S

22
2-

M
O

LE
C

U
LA

R
 F

U
N

C
TI

O
N

S

22
3-

S
TR

A
IN

S

22
4-

G
E

N
E

S

22
5-

B
IO

LO
G

IC
A

L
S

U
B

S
TA

N
C

E
S

22
6-

P
R

O
TE

IN
S

22
7-

G
E

N
E

S

22
8-

G
E

N
E

S

22
9-

S
IG

N
S

 O
R

 S
Y

M
P

TO
M

S

23
0-

P
A

TH
W

A
Y

S

23
1-

TU
M

O
R

 T
Y

P
E

S

23
2-

D
R

U
G

S

23
3-

G
E

N
E

S

23
4-

G
E

N
E

S

23
5-

G
E

N
E

S

TOPIC

D
O

C
U

M
EN

T
A

P

OHSUQA TRECMEDIAN TRECMAX

 Figure 1. DOCUMENT average precision on each topic for the OHSUQA system, compared to TREC MEDIAN and MAX for automatic
runs. The x-axis shows both the topic number and the required list entity type for that topic.

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
DOCUMENT AP

PA
SS

A
G

E2
 A

P

Figure 2. PASSAGE2 average precision versus DOCUMENT average precision on each topic for the OHSUQA system shown as
diamonds, and also showing the relationship between document and passage performance, with the mean average PASSAGE2 for all
submitted runs shown as a bar with a connecting line to the corresponding topic score.

In the table, below the official submitted runs, we show
results for several variations of our system that remove
specific features and implementation decisions. The row
labeled LuceneOnly implements a QueryGenerator that
only produces a primary query, and uses the
PassageRetrieval module, again with no passage filter
modules. The row labeled Lucene+Backoff includes the
QueryGenerator and PassageRetrieval modules
including the primary and secondary queries, but does not
include any passage filter modules. For comparison, the
bottom four rows of the table show overall summary
results for all runs officially submitted to the TREC
Genomics track this year.

Figure 1 shows the Average Precision (AP) for each
topic comparing the results of the OHSUQA system to the
TREC MEAN and MAX runs. The x-axis shows both the
topic number and the required list entity type for that
topic. In general the document AP performance is
somewhat less than the best systems, but usually at least
as good as or better than the median, but with many
exceptions, such as topics 209, 216 and 220.

Figure 2 shows the relationship between document and
passage performance for our OHSUQA system. For the
most part the per-topic PASSAGE2 average precision of
our system is better than the average of submitted TREC
runs. However, for about eight topics the document
retrieval performance is very poor, and this is directly
reflected in the passage retrieval score. This is especially
true for topics 209 and 220, where the average submitted
PASSAGE2 scores are 0.1430 and 0.1156 respectively,
but our system failed to retrieve any documents.

Because of this strong correlation between PASSAGE2
and DOCUMENT performance, it seemed likely that the
best way to improve overall performance would be to
refine our initial passage retrieval strategy. While our
originally submitted runs used a simple two-stage primary
query and secondary backoff strategy, it was clear that for
some topics the primary query was too specific, and the
secondary too general. Furthermore, by inspecting the
generated queries for topics such as 200, it was clear that
sometimes our synonym expansion system did not find
any synonyms for important topic concepts, especially for
genes and proteins.

In our submitted system runs we assumed that we could
increase precision by limiting the source of gene and
protein synonyms to a manually selected set of species.
This assumption turned out to be incorrect, and the system
failed to generate enough gene and protein synonyms. We
improved the synonym generation of our system by
including an expanded synonym dictionary generated
from all species included in the Entrez gene file.

We also extended the query generation and passage
retrieval to use a three stage (instead of two stage) query
system. The primary query was generated as in our

submitted system, but a new secondary query was built by
requiring at least one term from the term group with the
most members. The tertiary query was identical to the
secondary query in the previous system. Therefore we
have three queries with a range of specificity going from
very specific (requiring at least one synonym from each
term group), to less specific (requiring at least one
synonym from the largest term group), to very general (no
terms required). All passages were ranked by tf*idf score
as before.

The results of this extended system are shown in Table
1 as the run labeled ThreeStageBackoff. The
DOCUMENT and ASPECT scores are improved over the
baseline OHSUQA system. The PASSAGE score are
worse, as would be expected since no passage trimming is
used in the ThreeStageBackoff system.

Finally we wanted to determine whether the time
consuming MMTx-based NLP was worth the cost. To the
ThreeStageBackoff system we added a simple sentence
trimmer that works much like the MMTx based trimmer
above, but instead of counting indentified UMLS
concepts this system simply counts the number of
identified query terms in each sentence. Sentences with
less than half the average number of query terms are
pruned from the head and tail of the passage as with the
MMTx-based approach. These results are shown in the
table as the run labeled “3StageBackoff+TermTrim” This
system produced PASSAGE scores equal to or better than
the MMTx-based system.

5 DISCUSSION
Several things are made clear from Table 1. A single

automatically generated specific query was not sufficient
to retrieve all of the relevant passages. The two-stage
strategy was better than a single query, and the three-
phase query was better than the two stage. However, these
staged queries are dependent upon having good synonym
dictionaries in order to recognize concepts of interest and
also to require terms for those concepts in the query. Our
synonym dictionaries were automatically generated from
MeSH and Entrez with no manual editing except for a
small stop list of excessively common words (e.g.
“protein”). For some of the topics, the synonym
dictionary “misses” resulting in very poor DOCUMENT
scores, and therefore poor PASSAGE and ASPECT
scores. Since our indexing using was composed of the
maximum legal spans, poor DOCUMENT scores are
approximately equivalent to poor paragraph retrieval in
our system. Studying the effect of the indexing passage
size on document performance is an area that needs
further study. It would be useful to understand how
performance is affected by single sentence indexing, as
well as by including leading/trailing paragraphs or MeSH

terms when indexing maximal length spans. Single
sentence indexing would have the advantage of not
requiring subsequent passage trimming..

The passage trimming does help somewhat, as
evidenced by the PASSAGE and PASSAGE2 scores for
the 3StageBackoff+TermTrim system. It is not clear that
NLP-based passage trimming offers better potential than
simple synonym term based trimming. However, the
configuration and tuning of the NLP-based passage
trimming is complex, and will require much further work
to determine which UMLS semantic types are most
informative about sentence relevance for each entity type.
The semantic types used in the current system were
determined entirely by inspection. Leave one-out
comparisons for each query and each semantic type could
be used to determine which semantic types are
appropriate for each entity type.

Finally, Figure 1 makes it clear that our passage
retrieval performance is well below the top retrieval for
all automatic systems. This is an area where there is a
major opportunity to improve our system. Modifications
to our approach that could be advantageous include the
use of MeSH terms when indexing the document corpus
and performing the queries, as well as a more
sophisticated means of generating synonyms. The multi-
stage query approach could also incorporate the use of
hypernyms and hyponyms into the search strategy.

6 CONCLUSIONS
The TREC Genomics track list entity question answering
extraction task was a new one for this year, modified from
last year by providing the entity type. Like last year, this
task pushed the envelope of genomics biomedical
information retrieval, but this year models a real-world
use case more closely, and covers a broader range of
question and entity types than ever before. The current
gold standard collection will now enable further research
and tuning of genomics list entity question answering
systems. This will likely result in further system
performance improvements that will motivate both task
oriented studies and motivate actual use of these systems
by biomedical researchers as part of their regular
workflow.

ACKNOWLEDGEMENTS
This work was supported in part by Grant ITR-0325160
from the National Science Foundation.

REFERENCES
Aronson, A. R. (2001) Effective mapping of

biomedical text to the UMLS Metathesaurus: the
MetaMap program. Proc AMIA Symp, 17-21.

Cohen, A. M. (2005) Unsupervised gene/protein
entity normalization using automatically extracted
dictionaries. In Linking Biological Literature, Ontologies
and Databases: Mining Biological Semantics,
Proceedings of the BioLINK2005 Workshop.

Cohen, A. M. and Hersh, W. (2005) A survey of
current work in biomedical text mining. Briefings in
Bioinformatics, 6, 57-71.

Demner-Fushman, D., Humphrey, S. M., Ide, N. C.,
Loane, R. F., Ruch, P., Ruiz, M. E., Smith, L. H., Tanabe,
L. K., Wilbur, W. J. and Aronson, A. R. (2006)
LHNCBC-2006-072 Finding Relevant Passages in
Scientific Articles: Fusion of Automatic Approaches vs.
an Interactive Team Effort. Proc TREC, 569, 76.

Hunter, L. and Cohen, K. B. (2006) Biomedical
language processing: what's beyond PubMed. Mol Cell,
21, 589-94.

Roberts, P. M. (2006) Mining literature for systems
biology. Briefings in Bioinformatics, 7, 399.

	1 INTRODUCTION
	2 BACKGROUND
	3 SYSTEM AND METHODS
	3.1 Query Generation
	3.2 Passage Retrieval
	3.3 Passage Filtering

	4 RESULTS
	5 DISCUSSION
	6 CONCLUSIONS

