
 
  

ABSTRACT 
The Oregon Health & Science University submission to 
the TREC 2007 Genomics Track approached the entity list 
question answering task using a modular object oriented 
system framework. A system object coordinates a 
collection of processing objects into a pipe that constructs 
a set of queries, retrieves passage, and then processes 
those passages into a final output answer set. Using the 
framework we applied multiple levels of synonym 
expansion and a ranked series of topic queries with a 
range of specificities in order to retrieve all of the likely 
relevant passages with the most likely ranked higher. We 
then applied sentence pruning to the head and tail of each 
passage using both NLP and term-based techniques. 
Overall scores finished around the TREC Genomics mean 
for each of the four measures. Careful passage retrieval, 
including synonym expansion and multiple query 
construction, as well as sentence pruning was essential in 
achieving acceptable performance on this task. 

1 INTRODUCTION 
The 2007 Text Retrieval Conference (TREC) Genomics 
Track consisted of a single question answering task, 
which was scored by four measures. The question 
answering task presented a biological question where the 
expected answer was to include one or more entities of a 
given type. There were 36 separate question topics 
covering 14 different entity types. These topics were 
collected by surveying working biologists who were 
asked to provide questions from their own research. The 
topics were rephrased into questions which asked for a 
specific entity type. The challenge was to extract text 
passages specifically answering each topic question from 
a large corpus of over 160,000 biomedical full text 
articles selected from journals known to publish papers on 
genomics research. The answers for each topic were 
pooled and then evaluated by domain experts to create a 
gold standard. Each submission was scored and averaged 
over all of the topics for document mean average 
precision (MAP), character-based mean passage 
precision, and aspect precision.  

2 BACKGROUND 
With the ever-expanding knowledge base of science 
embedded in the biomedical literature, the importance of 

effective text processing tools to aid biomedical 
researchers continues to increase (Cohen and Hersh, 
2005, Hunter and Cohen, 2006, Roberts, 2006). One way 
that the biomedical literature is used by scientists is to 
determine what is currently known about a subject related 
to their field of research. For automated systems to aid 
scientists with this task, the task must be framed in a 
formal manner amenable to machine processing. One 
formal, yet flexible way to represent these kinds of 
information needs is as list entity type questions. 
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In list entity questions, the answer to the information 
need includes one or more entities (or things) of a given 
type. The type is given as part of the question and can be 
used by the information system to enhance the ability of 
the system to address the question. Since the type of the 
concepts of interests that answer a given question are 
often obvious to the biologist from the question itself, this 
form of information need representation can be both 
useful to the biologist and convenient for the computer. 

For example, suppose a biologist is interested in 
understanding what treatments have been tested for 
Alzheimer’s disease in mouse models. Assuming that the 
treatments are pharmacological agents, the question can 
be represented as “What [DRUGS] have been tested in 
mouse models of Alzheimer's disease?”. The list entity 
type is given in uppercase, surrounded by square brackets. 
This is both easy for the user to input and provides quite a 
bit of information and context for the question answering 
system to work with. 

Useful answers to these types of questions will include 
not just a list of the relevant entities, but also the 
surrounding text passage. The user then reviews the 
passages, determine which provide substantiated entities 
and answers, and understand the meaning and 
relationships present within the answer to the question. A 
good set of results will contain both a high proportion of 
substantiated and correct answers, as well as covering a 
high proportion of the different entities that answer the 
question. For example, if the question is “What 
centrosomal [GENES] are implicated in diseases of brain 
development?” and there are ten genes involved, then ten 
correct passages all about the same gene are less desirable 
than ten passages each about one of the involved genes. 

The TREC 2007 Genomics track task attempted to 
emulate this list entity question-based type of information 
need in a controlled, comparable form, using a specific 



 

full text literature corpus. The literature corpus was the 
same as used in the 2006 Genomics track and consisted of 
162,259 full text HTML articles, published between the 
years 1995 and 2006, and downloaded with the 
permission of the publishers from the Highwire Press web 
site (http://highwire.stanford.edu/). This literature corpus 
includes 49 journals that were known to publish articles 
on genomics subjects. However, the articles in the corpus 
included everything available from the web site, not just 
genomics articles. 

Using the given literature corpus, the task was set up to 
be a extraction-based question answering task with the 
additional requirement that each relevant passage must 
include at least one correct entity of the given type. 
Questions were given in the form as shown above, as 
sentences with the entity type given in square brackets. 
Answers were required to come from contiguous passages 
in the fixed literature corpus. Systems were to submit a 
ranked list of up to 1000 character offset passages for 
each of the 36 topic questions. The character based 
passage specified the PubMed ID (PMID), starting offset 
in characters, and length of passage corresponding to the 
passage within the HTML file being nominated as 
relevant to answering the question.  

Submissions were free to use any size passage they 
desired, whether that be sentences, sentences fragments, 
paragraphs, etc. However, the maximum allowable 
passage was restricted by enforcing the rule that a passage 
could not include any HTML <P> or </P> tags. This was 
the same maximum passage criteria used in the 2006 
Genomics track. This effectively limited submitted 
passages to around one paragraph of text, although entire 
reference sections from the end of papers sometimes were 
included by this rule. A file of the maximum legal spans 
was provided by the track administrators. 

The submission for a system consisted of a ranked list 
of up to 1000 passages for each topic. A character-based 
gold standard set of answers was created from the 
submissions by using pooling, combined with expert 
judging. Submitted answers were mapped to their 
containing maximum legal span, and then were pooled for 
judging by taking the top ranked spans from each entry 
until 1000 spans were collected for each topic. 

Human judges with expertise in biology were then 
asked to rate each pooled span for relevance, and select 
the relevant answer text from a plain text version from the 
pooled HTML span. These plain text selections were then 
mapped back to the original HTML file using a string 
alignment algorithm to create the gold standard set of 
passages. Each gold standard passage also had assigned to 
it by the judges one or more entity terms. The set of entity 
terms were chosen by the judges when reviewing the 
passages for relevance, and then assigned to each relevant 

passage in a second review pass. This ensured consistent 
application of the entities with each topic question.  

Each system was scored four ways, each measure being 
a variation of mean average precision (MAP). The first 
measure was DOCUMENT MAP. This took the highest 
ranked passage for a document as the document rank. The 
document MAP was computed in the standard way from 
this ranked list of PMIDs 

The second and third measures used were character-
based passage MAP scores, which measured the 
cumulative overlap between characters in relevant and 
nominated passages at each point of correct passage 
recall. The PASSAGE measure was the same as used in 
the 2006 Genomics track, and measured the fraction of 
relevant characters averaged over each nominated 
passage. The PASSAGE2 measure was added this year. It 
measures the average fraction of relevant characters 
averaged over each nominated character. In essence, 
every character is a little document, and is relevant or not. 
This measure is somewhat more robust to passage length 
and was intended to replace PASSAGE as the primary 
character measure this year. These measures evaluate the 
proportion of retrieved text that is relevant to answering 
the user’s question. For example, a passage score of 0.50 
would imply that approximately half the characters in the 
retrieved passage was included with a correct answer to 
the topic questions.  

The fourth measure was ASPECT MAP. This took the 
highest rank of a passage with a given assigned entity 
term as the recall rank for that entity term. This measures 
the completeness of the range of coverage of the system 
output. Systems that nominate passages that mention 
more distinct entities higher in the rankings score higher 
than those that nominate passages with little entity 
coverage. Note that since, for some questions, some 
entities may be mentioned very frequently and others 
hardly at all, the ASPECT MAP measures something 
distinct from DOCUMENT and PASSAGE MAPs, but is 
just as important to the user. 

Having all of these separate measures allows a more 
detailed study of what algorithms and approaches are 
helpful in proving the different important qualities 
necessary for a good list entity answer extraction system. 
While good document-based MAP is essential, all by 
itself it does not aid the user much since full text papers 
can be long and time consuming to read. Character-based 
MAP allows users to focus their reading and time on only 
the sections most likely to be helpful. Finally, aspect-
based MAP measures the ability of a system to provide 
broad coverage of a topic. Together these separate 
measures characterize the effectiveness of the various 
systems and techniques that can be applied to list entity-
based for biomedical question answering. 



 

3 SYSTEM AND METHODS 
The Oregon Health & Science University submission to 
the TREC 2007 Genomics Track approached the question 
answer extraction task as an opportunity to create a 
modular, object oriented framework for building question 
answering systems. The system is build as an assemblage 
of modules, implemented as objects using the Python 
programming language, also using that language to 
interface to other systems or libraries as necessary. 

The framework consists of a QASystem object, which 
coordinates the actions of a group of processing modules 
in a pipeline. The QASystem object creates and maintains 
a Blob object that collects and stores all the accumulated 
results of the processing objects as [name: value] pairs, 
where the name is a string and the value can be any 
object. A processing object gets its input data from the 
Blob object and also stores any output in the blob. The 
final results for each application of the information 
extraction system to a topic are also stored in the blob. 

Figure 1. Question answering framework architecture. 

 The first object coordinated by the QASystem is the 
QueryGenerator, which takes as input the topic question 
as given by the TREC Genomics Track topics file, and 
produces a series of one or more queries. The results of 
this are then passed to a PassageRetrieval object, which 
applies the queries and returns a set of retrieved passages. 
The QASystem then applies any number of Filter objects 
which can filter out passages, re-rank the passages, trim 

or edit passages, or in fact, manipulate the output of the 
PassageRetrieval object in any way necessary. The final 
result of the pipeline processing is a nominated set of 
ranked passages. 

The overall architecture of the pipeline framework is 
shown in Figure 1. For the initial implementation of the 
system, there is only one filter module and each of the 
modules does its job in a fairly straightforward manner 
that will be described in the next section. 

3.1 Query Generation 
The goal of the QueryGenerator module is to transform 
the topic question into a Boolean expression for 
processing by PassageRetrieval module later in the 
pipeline. The QueryGenerator used in this version of the 
system actually creates two queries, a more specific 
primary query, and a less specific secondary general 
query. Each query is build off of term groups, where each 
term group is a list of terms generated from a word or 
phrase found in the topic question itself. The primary 
query essentially requires the search to match, at least one 
term from each term group (the term groups are ANDed), 
and the secondary query does not (the term groups are 
ORed). 
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Term groups are generated in several ways. First, a 
greedy search is done from the topic question to an 
indexed version of the MeSH terminology. The MeSH 
Substances database was included as a source of 
synonyms for one version of our system. Matching terms 
are expanded with MeSH synonyms into term groups. 
Second, gene names are matched and expanded using a 
dictionary extracted from Entrez and expanded using an 
orthographic variant generator (Cohen, 2005). Third, each 
entity type has a set of manually compiled associated 
keywords and these are used to generate a term group 
along with orthographic variations. Synonyms that 
included a parenthetical expression were separated as 
separate terms. Two part phrases separated by commas 
were split and put back together in inverted order as 
additional synonyms. Finally, stop words were removed.  

3.2 Passage Retrieval 
The passage retrieval phase was built upon the Python 

implementation of the open-source text retrieval engine 
Lucene (http://lucene.apache.org). The text corpus was 
parsed into maximum legal spans, and then each span was 
separately indexed by Lucene. Once this initial indexing 
was finished, we used a PassageRetrieval module in our 
framework to query the index and retrieve the potentially 
relevant passages. This step used the primary and 
secondary queries that were built by the QueryGenerator 
module. If the primary query did not return the maximum 
allowed 1000 passages per question, the secondary query 
was used as a back-off strategy. Passages returned by the 



 

primary query were ranked in tf*idf order as computed 
and returned by Lucene. The tf*idf of passages returned 
by the secondary query were filter so that there were no 
duplication with the primary query and then scaled by the 
minimum tf*idf score from the primary query and then 
merged into a ranked list. This ensured that the passages 
returned by the primary query ranked higher than those of 
the secondary. Using this method we retrieved the 
maximum number of passages (1000) for each topic. 

3.3 Passage Filtering 
The final processing module trimmed the retrieved 
passages using MMTx Metamap (Aronson, 2001) as 
named entity recognition engine. Similar techniques were 
used by other participants in the 2006 TREC genomics 
track (Demner-Fushman et al., 2006). Each passage 
retrieved by the previous stage was split into sentences, 
and each sentence was scored for matching entities. The 
UMLS semantic types of entities that were scored varied 
based on the entity type given in the initial topic question. 
This list was assembled by hand and represents just an 
initial implementation. Certainly once the TREC results 
are available as training data, each individual semantic 
type could be evaluated as to its usefulness for each entity 
question type. 

MMTx natural language processing is complex and 
runs rather slowly. While the earlier stages of the system 
ran quickly and essentially in real-time, the MMTx based 
filtering slowed down the system dramatically, requiring 
overnight runs. Because of this, the system 
implementation made two approximations when 
performing sentence scoring. First, each passage was 
processed by MMTx and the found entity types and 
phrases returned. Then the passage was split into 
sentences and these sentences were matched against the 
extracted phrases to count how many times entity phrases 
occurred in each sentence. This count was used as the 
sentence score. 

The second approximation was to only process the first 
100 ranked passages. This is because the pooling used by 
TREC would not likely reach below the 30th or 40th 
passage, and therefore there was reduced incentive to 
spend a lot of time processing passages that were less 
likely to be relevant and unlikely to be scored. 

After sentences were scored, the module trimmed the 
passage using the following method. The average count 
over all the sentences was computed and any first or last 
sentence in the current passage that had a count less than 
half the average was trimmed off. This process was 
repeated on the newly trimmed passage until no more 
sentences could be trimmed. 

Trimmed passages were not re-ranked by this phase, 
that is, passages were ranked by their original tf*idf score 
as for the full untrimmed passage. The only exceptions to 
this are for passages that had a total count score of zero, 
these passages were demoted to the end of the ranking. 
The EXCLUSIONS version of our system removed 
passages that appeared to be keyword or abbreviations 
sections. All of our submitted runs were automatic, with 
no manual query generation, and no tuning or 
modifications to the system based on the results or 
retrieval of initial runs on the official topics. We 
performed some basic system debugging and sanity-
checking using the training topics given with the track 
protocol description. 

4 RESULTS 
Performance was determined by the official scoring 
program for the track, trecgen2007_eval. The results of 
our three official runs and several subsequent evaluation 
runs are presented in Table 1. For comparison, the high, 
low, and mean scores for all runs submitted to the track 
are shown for each of the three measures.  

The runs labeled OHSUQA, OHSUQASUB, and 
OHSUQASUBEX are our officially submitted runs. 
These runs were output from the system as described 
above, with a few small variations. The OHSUQASUB 
and OHSUQASUBEX runs include the MeSH substances 
database in the synonym generation step, while the 
OHSUQA run does not. The OHSUQASUBEX run 
includes a few simple pattern matching rules to filter out 
passages labeled “keywords” and “abbreviations”. This 
was found to improve performance a bit on some training 
data we created based on last years Genomics track task. 

Table 1. System performance on all measures averaged across all topics. 

RUN DOC 
MAP 

PASSAGE 
MAP 

PASSAGE2 
MAP 

ASPECT 
MAP 

OHSUQA 0.1719 0.0403 0.0440 0.1075 
OHSUQASUB 0.1684 0.0388 0.0434 0.1080 
OHSUQASUBEX 0.1695 0.0392 0.0439 0.1104 

LuceneOnly 0.1450 0.0263 0.0317 0.1003 
Lucene+Backoff 0.1602 0.0294 0.0354 0.1088 
3StageBackoff 0.1900 0.0364 0.0432 0.1291 
3StageBackoff+TermTrim 0.1897 0.0415 0.0460 0.1286 
TREC MIN 0.0329 0.0029 0.0008 0.0197 
TREC MEDIAN 0.1897 0.0565 0.0377 0.1311 
TREC MEAN 0.1862 0.0560 0.0398 0.1326 
TREC MAX 0.3286 0.0976 0.1148 0.2631 
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 Figure 1. DOCUMENT average precision on each topic for the OHSUQA system, compared to TREC MEDIAN and MAX for automatic 
runs. The x-axis shows both the topic number and the required list entity type for that topic. 
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Figure 2. PASSAGE2 average precision versus DOCUMENT average precision on each topic for the OHSUQA system shown as 
diamonds, and also showing the relationship between document and passage performance, with the mean average PASSAGE2 for all 
submitted runs shown as a bar with a connecting line to the corresponding topic score. 



 
  

In the table, below the official submitted runs, we show 
results for several variations of our system that remove 
specific features and implementation decisions. The row 
labeled LuceneOnly implements a QueryGenerator that 
only produces a primary query, and uses the 
PassageRetrieval module, again with no passage filter 
modules. The row labeled Lucene+Backoff includes the 
QueryGenerator and PassageRetrieval modules 
including the primary and secondary queries, but does not 
include any passage filter modules. For comparison, the 
bottom four rows of the table show overall summary 
results for all runs officially submitted to the TREC 
Genomics track this year. 

Figure 1 shows the Average Precision (AP) for each 
topic comparing the results of the OHSUQA system to the 
TREC MEAN and MAX runs. The x-axis shows both the 
topic number and the required list entity type for that 
topic. In general the document AP performance is 
somewhat less than the best systems, but usually at least 
as good as or better than the median, but with many 
exceptions, such as topics 209, 216 and 220. 

Figure 2 shows the relationship between document and 
passage performance for our OHSUQA system. For the 
most part the per-topic PASSAGE2 average precision of 
our system is better than the average of submitted TREC 
runs. However, for about eight topics the document 
retrieval performance is very poor, and this is directly 
reflected in the passage retrieval score. This is especially 
true for topics 209 and 220, where the average submitted 
PASSAGE2 scores are 0.1430 and 0.1156 respectively, 
but our system failed to retrieve any documents. 

Because of this strong correlation between PASSAGE2 
and DOCUMENT performance, it seemed likely that the 
best way to improve overall performance would be to 
refine our initial passage retrieval strategy. While our 
originally submitted runs used a simple two-stage primary 
query and secondary backoff strategy, it was clear that for 
some topics the primary query was too specific, and the 
secondary too general. Furthermore, by inspecting the 
generated queries for topics such as 200, it was clear that 
sometimes our synonym expansion system did not find 
any synonyms for important topic concepts, especially for 
genes and proteins.  

In our submitted system runs we assumed that we could 
increase precision by limiting the source of gene and 
protein synonyms to a manually selected set of species. 
This assumption turned out to be incorrect, and the system 
failed to generate enough gene and protein synonyms. We 
improved the synonym generation of our system by 
including an expanded synonym dictionary generated 
from all species included in the Entrez gene file. 

We also extended the query generation and passage 
retrieval to use a three stage (instead of two stage) query 
system. The primary query was generated as in our 

submitted system, but a new secondary query was built by 
requiring at least one term from the term group with the 
most members. The tertiary query was identical to the 
secondary query in the previous system. Therefore we 
have three queries with a range of specificity going from 
very specific (requiring at least one synonym from each 
term group), to less specific (requiring at least one 
synonym from the largest term group), to very general (no 
terms required). All passages were ranked by tf*idf score 
as before. 

The results of this extended system are shown in Table 
1 as the run labeled ThreeStageBackoff. The 
DOCUMENT and ASPECT scores are improved over the 
baseline OHSUQA system. The PASSAGE score are 
worse, as would be expected since no passage trimming is 
used in the ThreeStageBackoff system. 

Finally we wanted to determine whether the time 
consuming MMTx-based NLP was worth the cost. To the 
ThreeStageBackoff system we added a simple sentence 
trimmer that works much like the MMTx based trimmer 
above, but instead of counting indentified UMLS 
concepts this system simply counts the number of 
identified query terms in each sentence. Sentences with 
less than half the average number of query terms are 
pruned from the head and tail of the passage as with the 
MMTx-based approach. These results are shown in the 
table as the run labeled “3StageBackoff+TermTrim” This 
system produced PASSAGE scores equal to or better than 
the MMTx-based system. 

5 DISCUSSION 
Several things are made clear from Table 1. A single 

automatically generated specific query was not sufficient 
to retrieve all of the relevant passages. The two-stage 
strategy was better than a single query, and the three-
phase query was better than the two stage. However, these 
staged queries are dependent upon having good synonym 
dictionaries in order to recognize concepts of interest and 
also to require terms for those concepts in the query. Our 
synonym dictionaries were automatically generated from 
MeSH and Entrez with no manual editing except for a 
small stop list of excessively common words (e.g. 
“protein”). For some of the topics, the synonym 
dictionary “misses” resulting in very poor DOCUMENT 
scores, and therefore poor PASSAGE and ASPECT 
scores. Since our indexing using was composed of the 
maximum legal spans, poor DOCUMENT scores are 
approximately equivalent to poor paragraph retrieval in 
our system. Studying the effect of the indexing passage 
size on document performance is an area that needs 
further study. It would be useful to understand how 
performance is affected by single sentence indexing, as 
well as by including leading/trailing paragraphs or MeSH 



 

terms when indexing maximal length spans. Single 
sentence indexing would have the advantage of not 
requiring subsequent passage trimming.. 

The passage trimming does help somewhat, as 
evidenced by the PASSAGE and PASSAGE2 scores for 
the 3StageBackoff+TermTrim system. It is not clear that 
NLP-based passage trimming offers better potential than 
simple synonym term based trimming.  However, the 
configuration and tuning of the NLP-based passage 
trimming is complex, and will require much further work 
to determine which UMLS semantic types are most 
informative about sentence relevance for each entity type. 
The semantic types used in the current system were 
determined entirely by inspection. Leave one-out 
comparisons for each query and each semantic type could 
be used to determine which semantic types are 
appropriate for each entity type. 

Finally, Figure 1 makes it clear that our passage 
retrieval performance is well below the top retrieval for 
all automatic systems. This is an area where there is a 
major opportunity to improve our system. Modifications 
to our approach that could be advantageous include the 
use of MeSH terms when indexing the document corpus 
and performing the queries, as well as a more 
sophisticated means of generating synonyms. The multi-
stage query approach could also incorporate the use of 
hypernyms and hyponyms into the search strategy.  

6 CONCLUSIONS 
The TREC Genomics track list entity question answering 
extraction task was a new one for this year, modified from 
last year by providing the entity type. Like last year, this 
task pushed the envelope of genomics biomedical 
information retrieval, but this year models a real-world 
use case more closely, and covers a broader range of 
question and entity types than ever before. The current 
gold standard collection will now enable further research 
and tuning of genomics list entity question answering 
systems. This will likely result in further system 
performance improvements that will motivate both task 
oriented studies and motivate actual use of these systems 
by biomedical researchers as part of their regular 
workflow.   
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