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Objectives and disclosures

• Learning objectives
– Discuss recent research in machine learning 

and data science applied to medicine
– Describe the clinically relevant challenges in 

data interoperability for clinical data systems
– Discuss role of clinical informatics 

professionals, including as a subspecialty of 
all specialties

• Disclosure
– Collaborative research grant from Alnylam

Pharmaceuticals (no products mentioned in 
this presentation)
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Overall goals for this update

• As focus of electronic health records 
(EHRs) and other information systems 
shifts from implementation to 
optimization, how can we use them to 
improve healthcare, health, and research?
– Machine learning can improve diagnosis and 

treatment decisions
– Interoperability can ensure data quality and 

exchange
– Clinical informatics competence can optimize 

value of data and information

3

Machine learning and data science

• Definitions
• Applications
• Results
• Challenges

4
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In the last 7 days…

5

Definitions
• Machine learning – computers programs able to learn without 

being explicitly programmed (McCarthy, 1990)
– Deep learning – machine learning associated with use of neural 

networks containing deep layers requiring substantial processing 
(Alpaydin, 2016)

• Data science – science of learning from data (Kelleher, 2018)
– Data analytics – use of data, statistical and quantitative analysis, 

and predictive models to drive decisions and actions (Hersh, 2018)
• Artificial intelligence - information systems and algorithms 

capable of performing tasks associated with human 
intelligence (Maddox, 2018)

• Big Data – based on 4 Vs (NIST, 2015)
– Volume
– Velocity
– Variety
– Variability

6
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Use cases for data science/analytics 
in healthcare (Bates, 2014)

• High-cost patients – looking for ways to 
intervene early

• Readmissions – preventing
• Triage – appropriate level of care
• Decompensation – when patient’s 

condition worsens
• Adverse events – awareness
• Treatment optimization – especially for 

diseases affecting multiple organ systems
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Recent successes in machine 
learning driven by neural networks
• Anatomy

– Layers
– Nodes and weights –

connected like neurons
• Physiology

– Feedforward – processing 
from input to output
• Convolutional neural 

networks (CNNs) particularly 
effective for image analysis

– Feedback – processing may 
loop backwards
• Sometimes called recurrent 

neural networks (RNNs), not 
as much success as CNNs

(Taylor, 2017)
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Deep learning in medicine

• Most recent success has come from deep 
learning – use of neural networks and 
computational models with many layers 
requiring substantial processing (Alpaydin, 
2016)
– Enabled by growth in computing power and 

quantity of data (JASON, 2017)
• Successes in four major areas (Miotto, 2017)
– Imaging
– EHRs
– Genomics
– Mobile devices

9

Some results from deep learning in 
medicine – imaging

• Retina
– Detecting diabetic retinopathy (Gulshan, 2016; Ting, 2017)
– Predicting cardiovascular risk factors, e.g., age, smoking status, gender, and 

cardiovascular events (Poplin, 2017)
• Radiology – comparable to and faster than radiologists for

– Tuberculosis (Lakhani, 2017)
– Pneumonia (Rajpurkar, 2018)
– Malignant pulmonary nodules (Nam, 2018)

• Pathology
– Classifying breast cancer (Bejnordi, 2017)
– Detecting lymph node metastases (Bejnordi, 2017)
– Predicting non-small cell lung cancer prognosis by microscopic pathology 

images (Yu, 2017)
– Improving Gleason scoring in prostate cancer (Nagpal, 2018)

• Dermatology
– Detecting skin cancer (Esteva, 2017)
– Better than most dermatologists in melanoma (Haenssle, 2018)
– Comparable to expert dermatologists in non-pigmented skin cancer (Tschandl, 

2018)

10



6

Results from deep learning – other

• Outcomes using EHR data
– Deep Patient, using unsupervised learning, to predict 78 diseases 

(Miotto, 2016)
– Improving cardiovascular risk prediction (Weng, 2017; Steele, 

2018)
– Predicting length of stay, mortality, readmission, and diagnosis at 

two large medical centers (Rajkomar, 2018)
• Wave forms

– Cardiac arrhythmia detection comparable to cardiologists 
(Rajpurkar, 2017)

– EKG interpretation better than conventional algorithm (Smith, 
2018)

• Genomics
– Predicting clinical outcomes from cancer genomic profiles 

(Yousefi, 2017)
• Wearables data

– Predicting quality of sleep (Sathyanarayana, 2016)
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Challenges for analytical use of 
clinical data

• Data quality and accuracy is not a top priority 

for busy clinicians (de Lusignan, 2005)

• Large quantities of data – average pediatric 

ICU patient generates 1348 information items 

per 24 hours (Manor-Shulman, 2008)

• Patients get care at different places (Bourgeois, 

2010; Finnell, 2011)

• Informed presence bias (Goldstein, 2016)

• Parts of record may be more difficult to access

– Much data is “locked” in text (Hripcsak, 2013)

12
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Caveats for use of operational EHR 
data (Hersh, 2013)

• Inaccurate
• Incomplete
• Transformed in ways that 

undermine meaning
• Unrecoverable
• Of unknown provenance
• Might not capture from other 

clinical (other hospitals or health 
systems) or non-clinical (OTC 
drugs) settings

• Bias in testing or treatment
• Institutional or personal variation 

in practice or documentation 
styles

• Inconsistent use of coding or 
standards
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Real-world studies show successes 
and limitations

• Autonomous (including CNN) system to detect 
diabetic retinopathy in patients with no 
history at primary care clinics (Abràmoff, 
2018)
– Sensitivity 87.2%, specificity 90.7%, imageability 

rate 96.1%
• Of 193 DM patients in primary care clinic, 17 

judged to have DR of sufficient severity to 
require referral (Kanagasingam, 2018)
– System correctly identified 2 patients with true 

disease and misclassified 15 as having disease; 
most of latter driven by image quality problems

14



8

Real-world studies (cont.)

• Algorithm-assisted pathologists demonstrated higher 
accuracy than either the deep learning algorithm or 
pathologist alone (Steiner, 2018)
– Assistance significantly increased sensitivity of detection for 

micrometastases (91% vs. 83% alone) and reduced time 
compared to pathologist alone for positive (61 vs. 116 sec) 
and negative images (111 vs. 137 sec)

• In colonoscopy, predicted pathology of detected 
diminutive polyps (≤5 mm) on basis of real-time 
comparison with pathologic diagnosis of resected 
specimen (gold standard) to “detect and leave” (Mori, 
2018)
– Negative predictive value over 94% for both narrow-band 

imaging and methylene blue staining

15

Challenges for machine learning in 
medicine

• Systems must be evaluated in context of real-
world clinical practice (Stead, 2018)

• Algorithms may
– Discriminate (“weapons of math destruction,” O’Neil, 

2016)
– Otherwise be mis-used (Rainie, 2017; Brundage, 2018)

• Algorithms may be “alchemy,” being numerical 
associations and not being able to explain their 
outcomes (Huston, 2018)

• Biases may lead to healthcare disparities 
(Gianfrancesco, 2018)

• Best practices for ensuring fairness to advance 
health equity (Rajkomar, 2018)
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How will machine learning impact 
clinical practice?

• Best practices for 
implementation and 
use (Xavier, 2018)

• Physicians (Jha, 2016; 
Jha, 2018) and machine 
learning (Verghese, 
2018; Israni, 2018) must 
adapt 

• Will artificial 
intelligence replace 
physicians?

17

Interoperability – why do we need 
it?

• IEEE original definition, widely cited 
(1990)
– “The ability of two or more systems or 

components to exchange information 
and to use the information that has been 
exchanged.”

• In recognition of inadequate 
interoperability, 21st Century Cures 
Act specified definition for healthcare 
(HMISS 2016; Lye, 2018)
– Enables the secure exchange of 

electronic health information with, and 
use of electronic health information 
from, other health information 
technology without special effort on the 
part of the user

– Allows for complete access, exchange, 
and use of all electronically accessible 
health information for authorized use 
under applicable State or Federal law

18
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Interoperability facilitated by 
adherence to standards

• Messaging standards (Benson, 2016)
– Major standard in place is HL7 Version 2, 

which is dated
– Emerging candidate for its replacement is 

Fast Healthcare Interoperability Resources 
(FHIR)

• Terminology standards (Haendel, 2018)
– Normalizing meaning and its expression in 

computers
– Clinical language is inherently vague, which is 

at odds with the precision of computers

19

Fast Healthcare Interoperability 
Resources (FHIR)

• http://hl7.org/fhir/ – (Hay, 2016; Shaver, 
2018)

• Based on “Resources” that define 
standard elements of healthcare and 
their data

• Makes use of modern network-based 
application programming interfaces 
(APIs)

• Increasing adoption by EHR vendors

20
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Growing number of Resources

21

From patient story to FHIR 
Resources (Hay, 2016)

22
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Substitutable Medical Apps, 
reusable technologies (SMART)

• Criticism of current EHRs is that they 

are large monolithic software 

applications and not flexible platforms

– SMART based on paradigm of “apps” 

accessing a data store (Mandl, 2015)

• Initial uptake modest but took off when 

combined with FHIR (Mandel, 2016)

– http://smarthealthit.org/

• Also uses security standard – OAuth2

23

Apps can run within or separate 
from EHR

https://gallery.smarthealthit.org/

24
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Example app: VaxApp (Steve 
Kassakian)

• Recommended 
vaccinations for a 
patient

• Draws data from
– Epic EHR
– Centers for 

Disease Control 
and Prevention 
(CDC) vaccination 
guidelines

25

Toward the future – Government 
regulation and industry innovation

26
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Another requirement for success is 
competence in clinical informatics
• Clinical informatics is a core 

competency of medical education and 
practice (Hersh, 2014)

• Physicians and other professionals 
essential for success of IT in healthcare

• Growing opportunities for training and 
careers in clinical informatics
– OHSU a national leader
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Clinical informatics subspecialty for 
physicians

• Clinical informatics is the subspecialty of all 
medical specialties that transforms health care by 
analyzing, designing, implementing, and evaluating 
information and communication systems to 
improve patient care, enhance access to care, 
advance individual and population health 
outcomes, and strengthen the clinician-patient 
relationship.
– Accreditation Council for Graduate Medical Education 

(ACGME)
• Subspecialty is open to physicians of all primary 

specialties
– But not those without a specialty or whose specialty 

certification has lapsed

28
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History of clinical informatics 
subspecialty

• 2009 – American Medical Informatics Association (AMIA) 
develops and publishes plans for
– Curriculum (Gardner, 2009)
– Training requirements (Safran, 2009)

• 2011 – American Board of Medical Specialties (ABMS) 
approves; American Board of Preventive Medicine 
(ABPM) becomes administrative home

• 2013 – First certification exam offered via grandfathering 
pathway
– 456 physicians pass exam (92% pass rate), including 7 from 

OHSU
• 2014 – ACGME fellowship accreditation rules released
• 2015 – OHSU among first four fellowships launched
• 2018 – now 1690 board-certified and 30+ fellowships

29

Clinical informatics subspecialty

• Following usual path of “grandfathering” of 
training requirements to take certification 
exam before formal fellowships required 
starting in 2023

• Two paths to eligibility for exam in first five 
years

– Practice pathway – practicing 25% time for at 
least three years within last five years (education 

counts at half time of practice)

– Non-traditional fellowships – qualifying 
educational or training experience, e.g., NLM 

fellowship, or educational program (master’s 

degree)

30
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What do clinical informatics 
subspecialists do?

• Chief Medical/Health Informatics Officer 
(CMIO/CHIO) – e.g., Cort Garrison, Steve 
Kassakian, Blake Lesselroth, Erik Geissal

• Data analytics and reporting for quality, care 
coordination, safety, etc. – e.g., David Dorr

• Research and education – e.g., Bill Hersh, 
Vishnu Mohan

• Specialty-specific informatics roles – e.g., Eilis 
Boudreau (Neurology), Michael Chiang 
(Ophthalmology), Ben Orwoll (Pediatric ICU)

31

Competencies of clinical informatics 
(Safran, 2009)

• Search and appraise the literature relevant to clinical informatics
• Demonstrate fundamental programming, database design, and user interface design 

skills
• Develop and evaluate evidence-based clinical guidelines and represent them in an 

actionable way
• Identify changes needed in organizational processes and clinician practices to 

optimize health system operational effectiveness
• Analyze patient care workflow and processes to identify information system 

features that would support improved quality, efficiency, effectiveness, and safety of 
clinical services

• Assess user needs for a clinical information or telecommunication system or 
application and produce a requirements specification document

• Design or develop a clinical or telecommunication application or system
• Evaluate vendor proposals from the perspectives of meeting clinical needs and the 

costs of the proposed information solutions
• Develop an implementation plan that addresses the sociotechnical components of 

system adoption for a clinical or telecommunication system or application
• Evaluate the impact of information system implementation and use on patient care 

and users
• Develop, analyze, and report effectively (verbally and in writing) about key 

informatics processes

32
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Bringing it all together

• Machine learning and data science will greatly impact 
medicine but physicians still required

• Interoperability of data will enhance use and exchange of 
data for improved care, research, and innovation

• Clinical informatics expertise essential for optimal use
• For more information

– hersh@ohsu.edu
– http://www.ohsu.edu/informatics
– http://www.billhersh.info
– http://informaticsprofessor.blogspot.com
– @OHSUInformatics
– @williamhersh
– Hoyt, RE and Hersh, WR, Eds. (2018). Health Informatics: 

Practical Guide, Seventh Edition. Pensacola, FL, Lulu.com
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