Challenge Evaluations in Biomedical Information Retrieval

William Hersh, MD
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
School of Medicine
Oregon Health & Science University
Email: hersh@ohsu.edu

Web: www.billhersh.info
Blog: http://informaticsprofessor.blogspot.com

Twitter: @williamhersh

References

Amini, I, Martinez, D, et al. (2016). Improving patient record search: a meta-data based approach. *Information Processing & Management*. 52: 258-272.

Anonymous (2012). From Screen to Script: The Doctor's Digital Path to Treatment. New York, NY, Manhattan Research; Google. http://www.thinkwithgoogle.com/insights/library/studies/the-doctors-digital-path-to-treatment/

Baker, M (2016). 1,500 scientists lift the lid on reproducibility. Nature. 533: 452-454.

Bastian, H, Glasziou, P, et al. (2010). Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? *PLoS Medicine*. 7(9): e1000326.

http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1000326

Blumenthal, D (2011). Implementation of the federal health information technology initiative. *New England Journal of Medicine*. 365: 2426-2431.

Blumenthal, D (2011). Wiring the health system--origins and provisions of a new federal program. *New England Journal of Medicine*. 365: 2323-2329.

Buckley, C and Voorhees, E (2000). Evaluating evaluation measure stability. *Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, Athens, Greece. ACM Press. 33-40.

Buckley, C and Voorhees, EM (2004). Retrieval evaluation with incomplete information. *Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, Sheffield, England. ACM Press. 25-32.

Demner-Fushman, D, Abhyankar, S, et al. (2012). NLM at TREC 2012 Medical Records Track. *The Twenty-First Text REtrieval Conference Proceedings (TREC 2012)*, Gaithersburg, MD. National Institute for Standards and Technology

http://trec.nist.gov/pubs/trec21/papers/NLM.medical.final.pdf

Demner-Fushman, D, Abhyankar, S, et al. (2011). A knowledge-based approach to medical records retrieval. *The Twentieth Text REtrieval Conference Proceedings (TREC 2011)*, Gaithersburg, MD. National Institute for Standards and Technology

Edinger, T, Cohen, AM, et al. (2012). Barriers to retrieving patient information from electronic health record data: failure analysis from the TREC Medical Records Track. *AMIA 2012 Annual Symposium*, Chicago, IL. 180-188.

Egan, DE, Remde, JR, et al. (1989). Formative design-evaluation of Superbook. *ACM Transactions on Information Systems*. 7: 30-57.

Fidel, R and Soergel, D (1983). Factors affecting online bibliographic retrieval: a conceptual framework for research. *Journal of the American Society for Information Science*. 34: 163-180. Fox, S (2011). Health Topics. Washington, DC, Pew Internet & American Life Project. http://www.pewinternet.org/Reports/2011/HealthTopics.aspx

Harman, DK (2005). The TREC Ad Hoc Experiments. <u>TREC: Experiment and Evaluation in Information Retrieval</u>. E. Voorhees and D. Harman. Cambridge, MA, MIT Press: 79-98.

Hersh, W, Müller, H, et al. (2009). The ImageCLEFmed medical image retrieval task test collection. *Journal of Digital Imaging*. 22: 648-655.

Hersh, W, Turpin, A, et al. (2001). Challenging conventional assumptions of automated information retrieval with real users: Boolean searching and batch retrieval evaluations. *Information Processing and Management*. 37: 383-402.

Hersh, W and Voorhees, E (2009). TREC genomics special issue overview. *Information Retrieval*. 12: 1-15.

Hersh, WR (1994). Relevance and retrieval evaluation: perspectives from medicine. *Journal of the American Society for Information Science*. 45: 201-206.

Hersh, WR (2001). Interactivity at the Text Retrieval Conference (TREC). *Information Processing and Management*. 37: 365-366.

Hersh, WR (2009). <u>Information Retrieval: A Health and Biomedical Perspective (3rd Edition)</u>. New York, NY, Springer.

Hersh, WR, Crabtree, MK, et al. (2002). Factors associated with success for searching MEDLINE and applying evidence to answer clinical questions. *Journal of the American Medical Informatics Association*. 9: 283-293.

Hersh, WR and Greenes, RA (1990). SAPHIRE: an information retrieval environment featuring concept-matching, automatic indexing, and probabilistic retrieval. *Computers and Biomedical Research*. 23: 405-420.

Hersh, WR and Hickam, DH (1995). An evaluation of interactive Boolean and natural language searching with an on-line medical textbook. *Journal of the American Society for Information Science*. 46: 478-489.

Hersh, WR, Hickam, DH, et al. (1994). A performance and failure analysis of SAPHIRE with a MEDLINE test collection. *Journal of the American Medical Informatics Association*. 1: 51-60. Hersh, WR, Müller, H, et al. (2006). Advancing biomedical image retrieval: development and analysis of a test collection. *Journal of the American Medical Informatics Association*. 13: 488-496. Hersh, WR, Pentecost, J, et al. (1996). A task-oriented approach to information retrieval evaluation. *Journal of the American Society for Information Science*. 47: 50-56.

Ide, NC, Loane, RF, et al. (2007). Essie: a concept-based search engine for structured biomedical text. *Journal of the American Medical Informatics Association*. 14: 253-263.

Jarvelin, K and Kekalainen, J (2002). Cumulated gain-based evaluation of IR techniques. *ACM Transactions on Information Systems*. 20: 422-446.

King, B, Wang, L, et al. (2011). Cengage Learning at TREC 2011 Medical Track. *The Twentieth Text REtrieval Conference Proceedings (TREC 2011)*, Gaithersburg, MD. National Institute for Standards and Technology

Martinez, D, Otegi, A, et al. (2014). Improving search over electronic health records using UMLS-based query expansion through random walks. *Journal of Biomedical Informatics*. 51: 100-106. Müller, H, Clough, P, et al., Eds. (2010). <u>ImageCLEF: Experimental Evaluation in Visual Information Retrieval</u>. Heidelberg, Germany, Springer.

Mynatt, BT, Leventhal, LM, et al. (1992). Hypertext or book: which is better for answering questions? *Proceedings of Computer-Human Interface* 92. 19-25.

Roberts, K, Simpson, M, et al. (2016). State-of-the-art in biomedical literature retrieval for clinical cases: a survey of the TREC 2014 CDS track. *Information Retrieval Journal*. 19: 113-148.

Safran, C, Bloomrosen, M, et al. (2007). Toward a national framework for the secondary use of health data: an American Medical Informatics Association white paper. *Journal of the American Medical Informatics Association*. 14: 1-9.

Stead, WW, Searle, JR, et al. (2011). Biomedical informatics: changing what physicians need to know and how they learn. *Academic Medicine*. 86: 429-434.

Tenenbaum, JD, Avillach, P, et al. (2016). An informatics research agenda to support precision medicine: seven key areas. *Journal of the American Medical Informatics Association*: Epub ahead of print.

Voorhees, E and Hersh, W (2012). Overview of the TREC 2012 Medical Records Track. *The Twenty-First Text REtrieval Conference Proceedings (TREC 2012)*, Gaithersburg, MD. National Institute of Standards and Technology http://trec.nist.gov/pubs/trec21/papers/MED120VERVIEW.pdf Voorhees, EM and Harman, DK, Eds. (2005). TREC: Experiment and Evaluation in Information Retrieval. Cambridge, MA, MIT Press.

Yilmaz, E, Kanoulas, E, et al. (2008). A simple and efficient sampling method for estimating AP and NDCG. *Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, Singapore. 603-610.

Challenge Evaluations in Biomedical Information Retrieval

William Hersh
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
Oregon Health & Science University
Portland, OR, USA
Email: hersh@ohsu.edu
Web: www.billhersh.info

Web: www.billhersh.info
Blog: http://informaticsprofessor.blogspot.com
Twitter: @williamhersh

OHS

1

Two talks today

- Primer on information retrieval and challenge evaluations
- TREC challenge evaluations practice talk for TREC 25th anniversary event

Learning objectives

- Define the evaluation measures used in information retrieval system evaluation and how they are used in challenge evaluations
- Describe the biomedical "tracks" in the Text Retrieval Conference (TREC) challenge evaluations
- Discuss the major results and findings of the TREC biomedical tracks

OHSU

3

Information retrieval (IR, aka search)

- Focus on indexing and retrieval of (predominantly) knowledge-based information
- Historically centered on text in knowledge-based documents, but increasingly associated with many types of content
- www.irbook.info

(Hersh, 2009)

Use cases for IR

- Historically, retrieval of knowledge
 - Documents, especially journal articles (originally abstracts)
 - Multimedia images, sounds, video, etc.
 - Hypermedia Web-based content
- Newer foci
 - Clinical data e.g., cohort discovery from electronic health records
 - Data e.g., finding data sets

OHSU OHSU

Evaluation of IR systems has always been important

- System-oriented how well system performs
 - Historically focused on relevance-based measures
 - Recall and precision proportions of relevant documents retrieved
 - When documents ranked, can combine both in a single measure
 - Mean average precision (MAP)
 - Normal discounted cumulative gain (NDCG)
 - Binary preference (Bpref)
- User-oriented how well user performs with system
 - e.g., performing task, user satisfaction, etc.

System-oriented IR evaluation

- Historically assessed with test collections, which consist of
 - Content fixed yet realistic collections of documents, images, etc.
 - Topics statements of information need that can be fashioned into queries entered into retrieval systems
 - Relevance judgments by expert humans for which content items should be retrieved for which topics
- Evaluation consists of runs using a specific IR approach with output for each topic measured and averaged across topics

Recall and precision

Recall

 $R = \frac{\#retrieved \ and \ relevant \ documents}{\#relevant \ documents \ in \ collection}$

- Usually use relative recall when not all relevant documents known, where denominator is number of known relevant documents in collection
- Precision

 $P = \frac{\#retrieved \ and \ relevant \ documents}{\#retrieved \ documents}$

OHSU

9

Some measures can be combined into a single aggregated measure

- *Mean average precision* (MAP) is mean of average precision for each topic (Harman, 2005)
 - Average precision is average of precision at each point of recall (relevant document retrieved)
 - Despite name, emphasizes recall
- *Bpref* accounts for when relevance information is significantly incomplete (Buckley, 2004)
- Normal discounted cumulative gain (NDCG) allows for graded relevance judgments (Jarvelin, 2002)
- MAP and NCDG can be "inferred" when there are incomplete judgments (Yilmaz, 2008)

OHSU

Challenge evaluations

- A common approach in computer science, not limited to IR
- Develop a common task, data set, evaluation metrics, etc., ideally aiming for real-world size and representation for data, tasks, etc.
- In case of IR, this usually means
 - Test collection of content items
 - Topics of items to be retrieved usually want 25-30 for "stability" (Buckley, 2000)
 - Runs from participating groups with retrieval for each topic
 - Relevance judgments of which content items are relevant to which topics – judged items derived from submitted runs

11

Challenge evaluations (cont.)

Typical flow of events in an IR challenge evaluation

Release of document collection to participating groups

Experimental runs and submission of results

Relevance judgments

Analysis of results

- In IR, challenge evaluation results usually show wide variation between topics and between systems
 - Should be viewed as relative, not absolute performance
 - Averages can obscure variations

Some well-known challenge evaluations in IR

- Text Retrieval Conference (TREC, http://trec.nist.gov; Voorhees, 2005) sponsored by National Institute for Standards and Technology (NIST), started in 1992
 - Many "tracks" of interest, such as routing/filtering, Web searching, question-answering, etc.
 - Mostly non-biomedical, but some tracks focused on genomics, EHRs, etc.
- Conferences and Labs of the Evaluation Forum (CLEF, www.clef-initiative.eu)
 - Started as track in TREC in 1996, spun off in 2000 to Cross-Language Evaluation Forum
 - Focus on retrieval across languages, European-based
 - Additional focus on image retrieval, which includes medical image retrieval tasks – <u>www.imageclef.org</u> (Hersh, 2009; Müller, 2010)
- TREC has inspired other challenge evaluations, e.g.,
 - i2b2 NLP Shared Task, https://www.i2b2.org/NLP/
 - bioCADDIE Dataset Retrieval Challenge https://biocaddie.org/biocaddie-2016-dataset-retrieval-challengeregistration

13

IR and text mining in context of biomedical knowledge management All literature Possibly relevant literature (abstracts) Definitely relevant literature (full text)

14

Actionable

knowledge

(Hersh, 2009)

Information extraction,

text mining

The TREC Bio/Medical Tracks

William Hersh
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
Oregon Health & Science University
Portland, OR, USA
Email: hersh@ohsu.edu
Web: www.billhersh.info

Blog: <u>http://informaticsprofessor.blogspot.com</u>
Twitter: <u>@williamhersh</u>

15

OHSII

The TREC Bio/Medical Tracks

- Why is information retrieval (IR) important in biomedicine
- TREC Genomics Track
- ImageCLEFmed
- TREC Medical Records Track
- TREC Clinical Decision Support Track
- TREC Precision Medicine Track
- Beyond system-oriented evaluation

Why is IR important in health and biomedical domain?

- Clinicians cannot keep up average of 75 clinical trials and 11 systematic reviews published each day (Bastian, 2010)
- Data points per clinical decision increasing (Stead, 2011)
- Search for health information by clinicians, researchers, and patients/ consumers is ubiquitous (Fox, 2011; Google/Manhattan Research, 2012)
- Concerns about reproducibility of science (Baker, 2012)
- "Precision medicine" will increase quantity and complexity of data (Tenenbaum, 2016)

OHSU OHSU

17

TREC Genomics Track (Hersh, 2009)

- Motivated by exploding research in genomics and inability to biologists to know all that might impact work
- First TREC track devoted to "domain-specific" retrieval, with focus on IR systems for genomics researchers
 - Supported by NSF Information Technology Research (ITR) grant
- History
 - 2004-2005 focus on ad hoc retrieval and document categorization
 - 2006-2007 focus on passage retrieval and questionanswering as means to improve document retrieval

Lessons learned (Hersh, 2009)

- Ad hoc retrieval
 - Modest benefit for techniques known to work well in general IR, e.g., stop word removal, stemming, weighting
 - Query term expansion, especially domain-specific and/or done by humans, helped most
- QA
 - Most consistent benefit from query expansion and paragraph-length passage retrieval
- For all experiments (and papers describing them), major problems were
 - Lack of detailed description of systems
 - Use of low-performing baselines

19

Image retrieval – ImageCLEF medical image retrieval task

- Biomedical professionals increasingly use images for research, clinical care, and education, yet we know very little about how to best retrieve them
- Developed test collection and exploration of information needs motivating use of image retrieval systems (Hersh, 2006; Hersh, 2009; Müller, 2010)
- Started with ad hoc retrieval and added tasks
 - Modality detection
 - Case finding
- Overall conclusions: text yielded most consistent results with image features providing variable value
- Continues on with highly defined tasks

TREC Medical Records Track (Voorhees, 2012)

- Adapting IR techniques to electronic health records (EHRs)
- Use case somewhat different want to retrieve records and data within them to identify patients who might be candidates for clinical studies
- Motivated by larger desire for "re-use" of clinical data (Safran, 2007)
- Opportunities facilitated by incentives for "meaningful use" of EHRs in the HITECH Act (Blumenthal, 2011; Blumenthal, 2011)

21

Challenges for informatics research with medical records

- Has always been easier with knowledge-based content than patient-specific data due to a variety of reasons
 - Privacy issues
 - Task issues
- Facilitated with development of large-scale, de-identified data set from University of Pittsburgh Medical Center (UPMC)
- Launched in 2011, repeated in 2012

Which approaches did (and did not) work?

- Best results in 2011 and 2012 obtained from NLM group (Demner-Fushman, 2011; Demner-Fushman, 2012)
 - Top results from manually constructed queries using Essie domain-specific search engine (Ide, 2007)
- Many approaches known to work in general IR fared less well, e.g., term expansion, document focusing, etc.
 - Other domain-specific approaches also did not show benefit, e.g., creation of PICO frames, negation
- Some success with
 - Results filtered by age, race, gender, admission status; terms expanded by UMLS Metathesaurus (King, 2011)
 - Expansion by concepts and relationships in UMLS Metathesaurus (Martinez, 2014)
 - Pseudorelevance feedback using ICD-9 codes (Amini, 2016)

25

Failure analysis for 2011 topics (Edinger, 2012)

	Number	Number
Reasons for Incorrect Retrieval	of Visits	of Topics
Visits Judged Not Relevant	•	,
Topic terms mentioned as future possibility	16	9
Topic symptom/condition/procedure done in the past	22	9
All topic criteria present but not in the time/sequence specified by the topic description	19	6
Most, but not all, required topic criteria present	17	8
Topic terms denied or ruled out	19	10
Notes contain very similar term confused with topic term	13	11
Non-relevant reference in record to topic terms	37	18
Topic terms not present—unclear why record was ranked highly	14	8
Topic present—record is relevant—disagree with expert judgment	25	11
Visits Judged Relevant	-	
Topic not present—record is not relevant—disagree with expert judgment	44	21
Topic present in record but overlooked in search	103	27
Visit notes used a synonym or lexical variant for topic terms	22	10
Topic terms not named in notes and must be inferred	3	2
Topic terms present in diagnosis list but not visit notes	5	5

TREC Clinical Decision Support Track (Roberts, 2016)

- www.trec-cds.org
- Ad hoc search of biomedical literature (PubMed Central Open Access Subset – 1.25M articles)
- Topics are patient descriptions in three information need categories
 - Diagnosis
 - Test
 - Treatment
- Currently in third year of operation
- Transitioning to Precision Medicine Track

27

TREC has inspired and guided other challenge evaluations in biomedicine

- i2b2
 - https://www.i2b2.org/NLP
 - Various NLP-related tasks, including extraction and de-identification
- CLEF eHealth
 - https://sites.google.com/site/clefehealth/home
 - Information extraction and patient-centered IR
- bioCADDIE
 - https://biocaddie.org/biocaddie-2016-datasetretrieval-challenge-registration
 - Data set retrieval

System-oriented retrieval is not enough

- My initial focused on concept-based searching (Hersh, 1990)
 - Did not impart value over word indexing and searching (Hersh, JAMIA, 1994)
- Experience of several evaluations led to concern with evaluation focus on recall/precision (Hersh, JASIS, 1994)
 - How much difference is meaningful?
 - How valid is batch evaluation for understand how well user will search?

29

Led to "task-oriented" evaluation approaches

- Motivated by Egan (1989) and Mynatt (1992)
- Major task in medicine: answering questions
- How can we evaluate systems in interactive use for answering questions?
- Undertook parallel approaches in
 - Medicine using
 - Electronic textbook Scientific American Medicine (Hersh, 1995)
 - Bibliographic database MEDLINE (Hersh, 1996)
 - General news TREC Interactive Track (Hersh, 2001)

Factors associated with successful searching (Hersh, 2002)

- Medical and nurse practitioner (NP) students success of using a retrieval system to answer clinical questions
 - Had to provide not only answer but level of evidence supporting it
 - · Yes with good evidence
 - · Indeterminate evidence
 - No with good evidence
- Look at factors associated with success
 - Based on model of factors associated with successful use of retrieval systems (Fidel, 1983) adapted to this setting
 - · Including recall and precision
 - Dependent variable was correctness of answer
- Major results
 - Before searching, correct rate due to chance (~32%)
 - Medical students (~50%) but not NP students (~33%) improved with searching
 - Spatial visualization associated with higher rate of success
 - Recall and precision had no association with success

31

Conclusions

- Importance of IR in biomedicine will not diminish as volume, variety, and velocity of science continue to expand
- Varying benefits for different use cases, but in general, medical vocabulary resources offer most value via query expansion
- While ad hoc IR for general information needs relatively solved, still challenges with
 - Novel types of data, e.g., EHRs and other structured data
 - High-recall tasks, e.g., systematic reviews
- Research confounded by larger issues, e.g.,
 - Private data
 - Proprietary data

