Artificial Intelligence: Implications for Health Professions Education

OHSU Educators' Collaborative - October 18, 2023

William Hersh, MD Professor Department of Medical Informatics & Clinical Epidemiology School of Medicine Oregon Health & Science University Portland, OR, USA <u>https://www.ohsu.edu/informatics</u> Email: <u>hersh@ohsu.edu</u> Web: <u>http://www.billhersh.info/</u> Blog: <u>https://informaticsprofessor.blogspot.com/</u> Twitter: <u>@williamhersh</u>

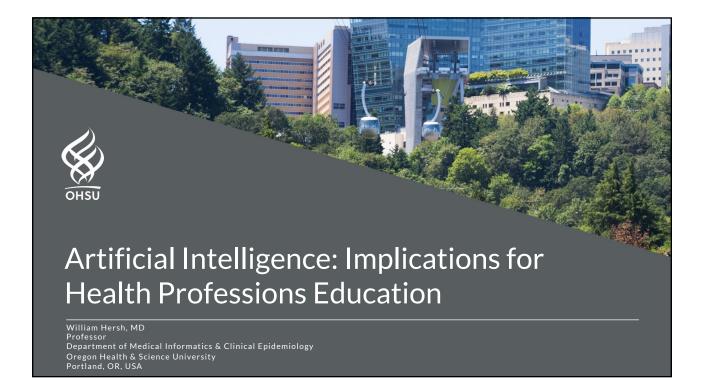
References

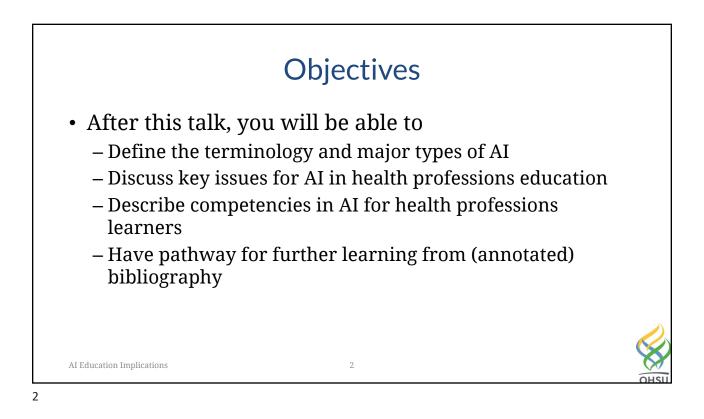
- Ali, S.R., Dobbs, T.D., Hutchings, H.A., Whitaker, I.S., 2023. Using ChatGPT to write patient clinic letters. Lancet Digit Health 5, e179–e181. <u>https://doi.org/10.1016/S2589-7500(23)00048-1</u>
- Al-Zaiti, S.S., Martin-Gill, C., Zègre-Hemsey, J.K., Bouzid, Z., Faramand, Z., Alrawashdeh,
 M.O., Gregg, R.E., Helman, S., Riek, N.T., Kraevsky-Phillips, K., Clermont, G., Akcakaya,
 M., Sereika, S.M., Van Dam, P., Smith, S.W., Birnbaum, Y., Saba, S., Sejdic, E., Callaway,
 C.W., 2023. Machine learning for ECG diagnosis and risk stratification of occlusion
 myocardial infarction. Nat Med. https://doi.org/10.1038/s41591-023-02396-3
- Antaki, F., Touma, S., Milad, D., El-Khoury, J., Duval, R., 2023. Evaluating the Performance of ChatGPT in Ophthalmology: An Analysis of Its Successes and Shortcomings. Ophthalmol Sci 3, 100324. <u>https://doi.org/10.1016/j.xops.2023.100324</u>
- Attia, Z.I., Friedman, P.A., Noseworthy, P.A., Lopez-Jimenez, F., Ladewig, D.J., Satam, G., Pellikka, P.A., Munger, T.M., Asirvatham, S.J., Scott, C.G., Carter, R.E., Kapa, S., 2019. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circ Arrhythm Electrophysiol 12, e007284. <u>https://doi.org/10.1161/CIRCEP.119.007284</u>
- Ayers, J.W., Poliak, A., Dredze, M., Leas, E.C., Zhu, Z., Kelley, J.B., Faix, D.J., Goodman, A.M., Longhurst, C.A., Hogarth, M., Smith, D.M., 2023a. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern Med 183, 589–596. https://doi.org/10.1001/jamainternmed.2023.1838
- Ayers, J.W., Zhu, Z., Poliak, A., Leas, E.C., Dredze, M., Hogarth, M., Smith, D.M., 2023b. Evaluating Artificial Intelligence Responses to Public Health Questions. JAMA Netw Open 6, e2317517. <u>https://doi.org/10.1001/jamanetworkopen.2023.17517</u>
- Bair, H., Djulbegovic, M., Taylor Gonzalez, D., 2023. Opinion | We Use ChatGPT in Medical Practice -- And You Can Too [WWW Document]. URL <u>https://www.medpagetoday.com/opinion/second-opinions/106085</u> (accessed 8.29.23).

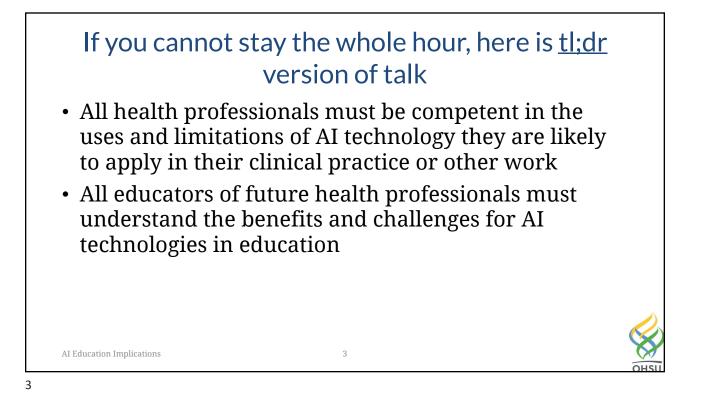
- Baker, M.N., Burruss, C.P., Wilson, C.L., Baker, M.N., Burruss, C.P., M.d, C.L.W., 2023. ChatGPT: A Supplemental Tool for Efficiency and Improved Communication in Rural Dermatology. Cureus 15. <u>https://doi.org/10.7759/cureus.43812</u>
- Barnett, G.O., Cimino, J.J., Hupp, J.A., Hoffer, E.P., 1987. DXplain. An evolving diagnostic decision-support system. JAMA 258, 67–74. <u>https://doi.org/10.1001/jama.258.1.67</u>
- Beam, K., Sharma, P., Kumar, B., Wang, C., Brodsky, D., Martin, C.R., Beam, A., 2023. Performance of a Large Language Model on Practice Questions for the Neonatal Board Examination. JAMA Pediatr e232373. <u>https://doi.org/10.1001/jamapediatrics.2023.2373</u>
- Benoit, J.R.A., 2023. ChatGPT for Clinical Vignette Generation, Revision, and Evaluation. https://doi.org/10.1101/2023.02.04.23285478
- Boscardin, C.K., Gin, B., Golde, P.B., Hauer, K.E., 2023. ChatGPT and Generative Artificial Intelligence for Medical Education: Potential Impact and Opportunity. Acad Med. https://doi.org/10.1097/ACM.00000000005439
- Brin, D., Sorin, V., Vaid, A., Soroush, A., Glicksberg, B.S., Charney, A.W., Nadkarni, G., Klang, E., 2023. Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments. Sci Rep 13, 16492. <u>https://doi.org/10.1038/s41598-023-43436-9</u>
- Chang, W.L., Grady, N., 2019. NIST Big Data Interoperability Framework: Volume 1, Definitions.
- Chen, S., Kann, B.H., Foote, M.B., Aerts, H.J.W.L., Savova, G.K., Mak, R.H., Bitterman, D.S., 2023. Use of Artificial Intelligence Chatbots for Cancer Treatment Information. JAMA Oncol e232954. <u>https://doi.org/10.1001/jamaoncol.2023.2954</u>
- Chung, H.W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S.S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E.H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q.V., Wei, J., 2022. Scaling Instruction-Finetuned Language Models. https://doi.org/10.48550/arXiv.2210.11416
- Clancey, W.J., Shortliffe, E.H., 1984. Readings in medical artificial intelligence: the first decade. Addison-Wesley Longman Publishing Co., Inc., USA.
- Clune, M.W., 2023. AI Means Professors Need to Raise Their Grading Standards [WWW Document]. The Chronicle of Higher Education. URL <u>https://www.chronicle.com/article/ai-means-professors-need-to-raise-their-grading-standards</u> (accessed 9.13.23).
- Cooper, A., Rodman, A., 2023. AI and Medical Education A 21st-Century Pandora's Box. New England Journal of Medicine. <u>https://doi.org/10.1056/NEJMp2304993</u>
- Coyner, A.S., Singh, P., Brown, J.M., Ostmo, S., Chan, R.V.P., Chiang, M.F., Kalpathy-Cramer, J., Campbell, J.P., Imaging and Informatics in Retinopathy of Prematurity Consortium, 2023. Association of Biomarker-Based Artificial Intelligence With Risk of Racial Bias in Retinal Images. JAMA Ophthalmol 141, 543–552. https://doi.org/10.1001/jamaophthalmol.2023.1310
- Davenport, T.H., Harris, J., Abney, D., 2017. Competing on Analytics: The New Science of Winning; With a New Introduction, Revised Edition. ed. Harvard Business Review Press, Boston, Massachusetts.
- DeCamp, M., Lindvall, C., 2023. Mitigating bias in AI at the point of care. Science 381, 150–152. <u>https://doi.org/10.1126/science.adh2713</u>
- Decker, H., Trang, K., Ramirez, J., Colley, A., Pierce, L., Coleman, M., Bongiovanni, T., Melton, G.B., Wick, E., 2023. Large Language Model-Based Chatbot vs Surgeon-

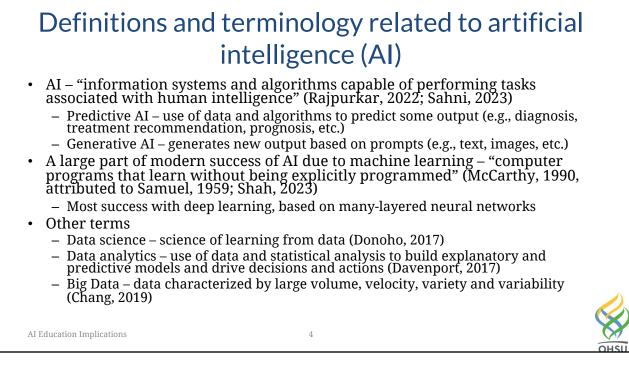
Generated Informed Consent Documentation for Common Procedures. JAMA Netw Open 6, e2336997. <u>https://doi.org/10.1001/jamanetworkopen.2023.36997</u>

- Dell'Acqua, F., McFowland, E., Mollick, E.R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., Krayer, L., Candelon, F., Lakhani, K.R., 2023. Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality. <u>https://doi.org/10.2139/ssrn.4573321</u>
- Donoho, D., 2017. 50 Years of Data Science. Journal of Computational and Graphical Statistics 26, 745–766. <u>https://doi.org/10.1080/10618600.2017.1384734</u>
- Dorr, D.A., Adams, L., Embí, P., 2023. Harnessing the Promise of Artificial Intelligence Responsibly. JAMA 329, 1347–1348. <u>https://doi.org/10.1001/jama.2023.2771</u>
- Gichoya, J.W., Banerjee, I., Bhimireddy, A.R., Burns, J.L., Celi, L.A., Chen, L.-C., Correa, R., Dullerud, N., Ghassemi, M., Huang, S.-C., Kuo, P.-C., Lungren, M.P., Palmer, L.J., Price, B.J., Purkayastha, S., Pyrros, A.T., Oakden-Rayner, L., Okechukwu, C., Seyyed-Kalantari, L., Trivedi, H., Wang, R., Zaiman, Z., Zhang, H., 2022. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health 4, e406–e414. https://doi.org/10.1016/S2589-7500(22)00063-2
- Greenes, R., Del Fiol, G. (Eds.), 2023. Clinical Decision Support and Beyond: Progress and Opportunities in Knowledge-Enhanced Health and Healthcare, 3rd edition. ed. Academic Press.
- Han, C., Kim, D.W., Kim, S., You, S.C., Park, J.Y., Bae, S., Yoon, D., 2023. Evaluation Of GPT-4 for 10-Year Cardiovascular Risk Prediction: Insights from the UK Biobank and KoGES Data. <u>https://doi.org/10.2139/ssrn.4583995</u>
- Han, R., Acosta, J.N., Shakeri, Z., Ioannidis, J., Topol, E., Rajpurkar, P., 2023. Randomized Controlled Trials Evaluating AI in Clinical Practice: A Scoping Evaluation. <u>https://doi.org/10.1101/2023.09.12.23295381</u>
- Heaven, W.D., 2023. ChatGPT is going to change education, not destroy it [WWW Document]. MIT Technology Review. URL <u>https://www.technologyreview.com/2023/04/06/1071059/chatgpt-change-not-destroy-</u> education-openai/ (accessed 7.17.23).
- Hersh, W., 2023. Physician and Medical Student Competence in AI Must Include Broader Competence in Clinical Informatics. Informatics Professor. URL <u>https://informaticsprofessor.blogspot.com/2023/09/physician-and-medical-student.html</u> (accessed 9.15.23).
- Hersh, W., 2020. Information Retrieval: A Biomedical and Health Perspective, 4th ed, Health Informatics. Springer International Publishing.
- Hersh, W., Ehrenfeld, J., 2020. Clinical Informatics, in: Health Systems Science, 2nd Edition. pp. 156–170.
- Hersh, W.R., 2022. Health Informatics: Practical Guide, 8th Edition. Lulu.com.
- Hersh, W.R., Gorman, P.N., Biagioli, F.E., Mohan, V., Gold, J.A., Mejicano, G.C., 2014. Beyond information retrieval and electronic health record use: competencies in clinical informatics for medical education. Adv Med Educ Pract 5, 205–212. <u>https://doi.org/10.2147/AMEP.S63903</u>
- Heston, T.F., Khun, C., 2023. Prompt Engineering in Medical Education. International Medical Education 2, 198–205. <u>https://doi.org/10.3390/ime2030019</u>
- Hinton, G.E., Osindero, S., Teh, Y.-W., 2006. A fast learning algorithm for deep belief nets. Neural Comput 18, 1527–1554. <u>https://doi.org/10.1162/neco.2006.18.7.1527</u>

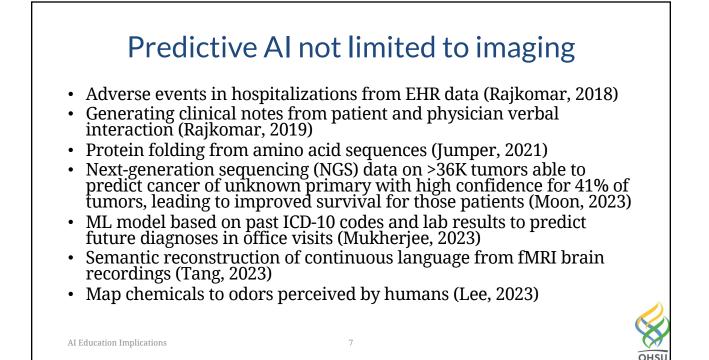

- Holmstrom, L., Christensen, M., Yuan, N., Weston Hughes, J., Theurer, J., Jujjavarapu, M., Fatehi, P., Kwan, A., Sandhu, R.K., Ebinger, J., Cheng, S., Zou, J., Chugh, S.S., Ouyang, D., 2023. Deep learning-based electrocardiographic screening for chronic kidney disease. Commun Med (Lond) 3, 73. <u>https://doi.org/10.1038/s43856-023-00278-w</u>
- Huang, J., Neill, L., Wittbrodt, M., Melnick, D., Klug, M., Thompson, M., Bailitz, J., Loftus, T., Malik, S., Phull, A., Weston, V., Heller, J.A., Etemadi, M., 2023. Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department. JAMA Netw Open 6, e2336100. <u>https://doi.org/10.1001/jamanetworkopen.2023.36100</u>
- Huston, J.C., Kaminski, N., 2023. A Picture Worth a Thousand Words, Created with One Sentence: Using Artificial Intelligence–created Art to Enhance Medical Education. ATS Scholar 4, 145–151. <u>https://doi.org/10.34197/ats-scholar.2022-0141PS</u>
- James, C.A., Wachter, R.M., Woolliscroft, J.O., 2022. Preparing Clinicians for a Clinical World Influenced by Artificial Intelligence. JAMA 327, 1333–1334. https://doi.org/10.1001/jama.2022.3580
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis, D., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583– 589. <u>https://doi.org/10.1038/s41586-021-03819-2</u>
- Kanjee, Z., Crowe, B., Rodman, A., 2023. Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge. JAMA 330, 78–80. <u>https://doi.org/10.1001/jama.2023.8288</u>
- Kumah-Crystal, Y., Mankowitz, S., Embi, P., Lehmann, C.U., 2023. ChatGPT and the clinical informatics board examination: the end of unproctored maintenance of certification? J Am Med Inform Assoc ocad104. <u>https://doi.org/10.1093/jamia/ocad104</u>
- Kung, T.H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., Madriaga, M., Aggabao, R., Diaz-Candido, G., Maningo, J., Tseng, V., 2023. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digit Health 2, e0000198. <u>https://doi.org/10.1371/journal.pdig.0000198</u>
- Langlotz, C.P., 2019. Will Artificial Intelligence Replace Radiologists? Radiol Artif Intell 1, e190058. <u>https://doi.org/10.1148/ryai.2019190058</u>
- Lea, A.S., 2023. Digitizing Diagnosis. Johns Hopkins University Press. https://doi.org/10.56021/9781421446813
- Ledley, R.S., Lusted, L.B., 1959. Reasoning foundations of medical diagnosis; symbolic logic, probability, and value theory aid our understanding of how physicians reason. Science 130, 9–21. <u>https://doi.org/10.1126/science.130.3366.9</u>
- Lee, B.K., Mayhew, E.J., Sanchez-Lengeling, B., Wei, J.N., Qian, W.W., Little, K.A., Andres, M., Nguyen, B.B., Moloy, T., Yasonik, J., Parker, J.K., Gerkin, R.C., Mainland, J.D., Wiltschko, A.B., 2023. A principal odor map unifies diverse tasks in olfactory perception. Science 381, 999–1006. <u>https://doi.org/10.1126/science.ade4401</u>
- Levine, D.M., Tuwani, R., Kompa, B., Varma, A., Finlayson, S.G., Mehrotra, A., Beam, A., 2023. The Diagnostic and Triage Accuracy of the GPT-3 Artificial Intelligence Model. https://doi.org/10.1101/2023.01.30.23285067

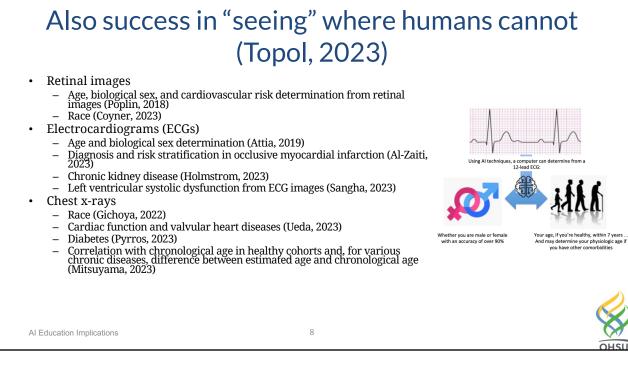

- Levkovich, I., Elyoseph, Z., 2023. Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians. Fam Med Community Health 11, e002391. <u>https://doi.org/10.1136/fmch-2023-002391</u>
- Liang, W., Yuksekgonul, M., Mao, Y., Wu, E., Zou, J., 2023. GPT detectors are biased against non-native English writers. Patterns (N Y) 4, 100779. https://doi.org/10.1016/j.patter.2023.100779
- Liaw, W., Kueper, J.K., Lin, S., Bazemore, A., Kakadiaris, I., 2022. Competencies for the Use of Artificial Intelligence in Primary Care. Ann Fam Med 20, 559–563. <u>https://doi.org/10.1370/afm.2887</u>
- Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G., 2023. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 195:1-195:35. <u>https://doi.org/10.1145/3560815</u>
- McCarthy, J., Feigenbaum, E.A., 1990. In Memoriam: Arthur Samuel: Pioneer in Machine Learning. AIMag 11, 10–10. <u>https://doi.org/10.1609/aimag.v11i3.840</u>
- Meskó, B., 2023. Prompt Engineering as an Important Emerging Skill for Medical Professionals: Tutorial. J Med Internet Res 25, e50638. <u>https://doi.org/10.2196/50638</u>
- Miller, R.A., Pople, H.E., Myers, J.D., 1982. Internist-1, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med 307, 468–476. https://doi.org/10.1056/NEJM198208193070803
- Mitsuyama, Y., Matsumoto, T., Tatekawa, H., Walston, S.L., Kimura, T., Yamamoto, A., Watanabe, T., Miki, Y., Ueda, D., 2023. Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan. The Lancet Healthy Longevity 0. <u>https://doi.org/10.1016/S2666-7568(23)00133-2</u>
- Mollick, E., 2023a. My class required AI. Here's what I've learned so far. [WWW Document]. One Useful Thing. URL <u>https://www.oneusefulthing.org/p/my-class-required-ai-heres-what-ive</u> (accessed 7.17.23).
- Mollick, E., 2023b. The Homework Apocalypse [WWW Document]. One Useful Thing. URL <u>https://www.oneusefulthing.org/p/the-homework-apocalypse</u> (accessed 10.16.23).
- Mollick, E.R., Mollick, L., 2023. Assigning AI: Seven Approaches for Students, with Prompts. https://doi.org/10.2139/ssrn.4475995
- Moon, I., LoPiccolo, J., Baca, S.C., Sholl, L.M., Kehl, K.L., Hassett, M.J., Liu, D., Schrag, D., Gusev, A., 2023. Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary. Nat Med 29, 2057–2067. <u>https://doi.org/10.1038/s41591-023-02482-6</u>
- Moskvichev, A., Odouard, V.V., Mitchell, M., 2023. The ConceptARC Benchmark: Evaluating Understanding and Generalization in the ARC Domain. https://doi.org/10.48550/arXiv.2305.07141
- Mukherjee, P., Humbert-Droz, M., Chen, J.H., Gevaert, O., 2023. SCOPE: predicting future diagnoses in office visits using electronic health records. Sci Rep 13, 11005. https://doi.org/10.1038/s41598-023-38257-9
- Odri, G.-A., Yun Yoon, D.J., 2023. Detecting generative artificial intelligence in scientific articles: evasion techniques and implications for scientific integrity. Orthop Traumatol Surg Res 103706. <u>https://doi.org/10.1016/j.otsr.2023.103706</u>
- Omiye, J.A., Lester, J., Spichak, S., Rotemberg, V., Daneshjou, R., 2023. Beyond the hype: large language models propagate race-based medicine. <u>https://doi.org/10.1101/2023.07.03.23292192</u>

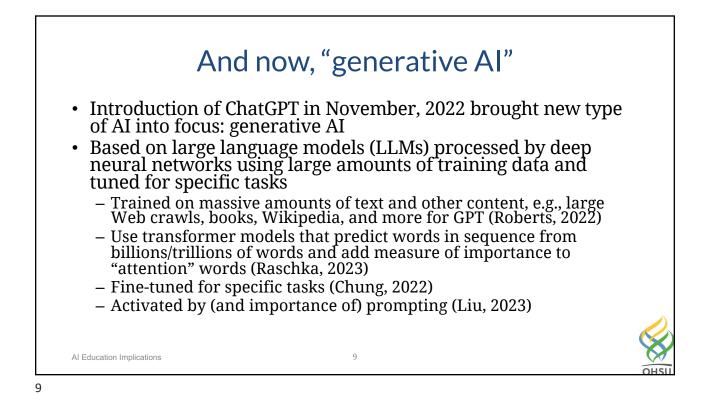

- Plana, D., Shung, D.L., Grimshaw, A.A., Saraf, A., Sung, J.J.Y., Kann, B.H., 2022. Randomized Clinical Trials of Machine Learning Interventions in Health Care: A Systematic Review. JAMA Netw Open 5, e2233946. <u>https://doi.org/10.1001/jamanetworkopen.2022.33946</u>
- Poplin, R., Varadarajan, A.V., Blumer, K., Liu, Y., McConnell, M.V., Corrado, G.S., Peng, L., Webster, D.R., 2018. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2, 158–164. https://doi.org/10.1038/s41551-018-0195-0
- Pyrros, A., Borstelmann, S.M., Mantravadi, R., Zaiman, Z., Thomas, K., Price, B., Greenstein, E., Siddiqui, N., Willis, M., Shulhan, I., Hines-Shah, J., Horowitz, J.M., Nikolaidis, P., Lungren, M.P., Rodríguez-Fernández, J.M., Gichoya, J.W., Koyejo, S., Flanders, A.E., Khandwala, N., Gupta, A., Garrett, J.W., Cohen, J.P., Layden, B.T., Pickhardt, P.J., Galanter, W., 2023. Opportunistic detection of type 2 diabetes using deep learning from frontal chest radiographs. Nat Commun 14, 4039. <u>https://doi.org/10.1038/s41467-023-39631-x</u>
- Rajkomar, A., Kannan, A., Chen, K., Vardoulakis, L., Chou, K., Cui, C., Dean, J., 2019. Automatically Charting Symptoms From Patient-Physician Conversations Using Machine Learning. JAMA Intern Med 179, 836–838. https://doi.org/10.1001/jamainternmed.2018.8558
- Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G.E., Irvine, J., Le, Q., Litsch, K., Mossin, A., Tansuwan, J., Wang, D., Wexler, J., Wilson, J., Ludwig, D., Volchenboum, S.L., Chou, K., Pearson, M., Madabushi, S., Shah, N.H., Butte, A.J., Howell, M.D., Cui, C., Corrado, G.S., Dean, J., 2018. Scalable and accurate deep learning with electronic health records. npj Digital Medicine 1, 1–10. <u>https://doi.org/10.1038/s41746-018-0029-1</u>
- Rajpurkar, P., Chen, E., Banerjee, O., Topol, E.J., 2022. AI in health and medicine. Nat Med 1– 8. <u>https://doi.org/10.1038/s41591-021-01614-0</u>
- Rajpurkar, P., Lungren, M.P., 2023. The Current and Future State of AI Interpretation of Medical Images. N Engl J Med 388, 1981–1990. <u>https://doi.org/10.1056/NEJMra2301725</u>
- Rao, A., Pang, M., Kim, J., Kamineni, M., Lie, W., Prasad, A.K., Landman, A., Dreyer, K., Succi, M.D., 2023. Assessing the Utility of ChatGPT Throughout the Entire Clinical Workflow: Development and Usability Study. J Med Internet Res 25, e48659. <u>https://doi.org/10.2196/48659</u>
- Raschka, S., 2023. Understanding Encoder And Decoder LLMs. Ahead of AI. URL <u>https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder</u> (accessed 9.6.23).
- Ratliff, M., Sya'ban, S.N., Wazir, A., Haidar, S., Keeth, S., 2023. AI and ChatGPT in Health Professions Education [WWW Document]. Lecturio. URL <u>https://www.lecturio.com/pulse/using-chatgpt-in-medical-education-for-virtual-patient-andcases/</u> (accessed 7.26.23).
- Roberts, G., 2022. AI Training Datasets: the Books1+Books2 that Big AI eats for breakfast -Musings of Freedom. Musings of Freedom. URL <u>https://gregoreite.com/drilling-downdetails-on-the-ai-training-datasets/</u> (accessed 9.6.23).
- Robin, C., 2023. The End of the Take-Home Essay? [WWW Document]. The Chronicle of Higher Education. URL <u>https://www.chronicle.com/article/the-end-of-the-take-home-essay</u> (accessed 8.25.23).


- Russell, R.G., Lovett Novak, L., Patel, M., Garvey, K.V., Craig, K.J.T., Jackson, G.P., Moore, D., Miller, B.M., 2023. Competencies for the Use of Artificial Intelligence-Based Tools by Health Care Professionals. Acad Med 98, 348–356. https://doi.org/10.1097/ACM.00000000004963
- Sadasivan, V.S., Kumar, A., Balasubramanian, S., Wang, W., Feizi, S., 2023. Can AI-Generated Text be Reliably Detected? <u>https://doi.org/10.48550/arXiv.2303.11156</u>
- Sahni, N.R., Carrus, B., 2023. Artificial Intelligence in U.S. Health Care Delivery. N Engl J Med 389, 348–358. <u>https://doi.org/10.1056/NEJMra2204673</u>
- Sangha, V., Nargesi, A.A., Dhingra, L.S., Khunte, A., Mortazavi, B.J., Ribeiro, A.H., Banina, E., Adeola, O., Garg, N., Brandt, C.A., Miller, E.J., Ribeiro, A.L.J., Velazquez, E.J., Giatti, L., Barreto, S.M., Foppa, M., Yuan, N., Ouyang, D., Krumholz, H.M., Khera, R., 2023. Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images. Circulation. <u>https://doi.org/10.1161/CIRCULATIONAHA.122.062646</u>
- Sarraju, A., Bruemmer, D., Van Iterson, E., Cho, L., Rodriguez, F., Laffin, L., 2023. Appropriateness of Cardiovascular Disease Prevention Recommendations Obtained From a Popular Online Chat-Based Artificial Intelligence Model. JAMA. <u>https://doi.org/10.1001/jama.2023.1044</u>
- Shah, C., 2022. A Hands-On Introduction to Machine Learning. Cambridge University Press.
- Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.C., Cohen, S.N., 1975. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res 8, 303–320. <u>https://doi.org/10.1016/0010-4809(75)90009-9</u>
- Spitale, G., Biller-Andorno, N., Germani, F., 2023. AI model GPT-3 (dis)informs us better than humans. Sci Adv 9, eadh1850. <u>https://doi.org/10.1126/sciadv.adh1850</u>
- Tang, J., LeBel, A., Jain, S., Huth, A.G., 2023. Semantic reconstruction of continuous language from non-invasive brain recordings. Nat Neurosci 26, 858–866. <u>https://doi.org/10.1038/s41593-023-01304-9</u>
- Terry, O.K., 2023. Opinion | I'm a Student. You Have No Idea How Much We're Using ChatGPT. [WWW Document]. The Chronicle of Higher Education. URL <u>https://www.chronicle.com/article/im-a-student-you-have-no-idea-how-much-were-usingchatgpt</u> (accessed 8.25.23).
- Topol, E., 2019. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again, Illustrated Edition. ed. Basic Books, New York.
- Topol, E.J., 2023. As artificial intelligence goes multimodal, medical applications multiply. Science 381, adk6139. <u>https://doi.org/10.1126/science.adk6139</u>
- Ueda, D., Matsumoto, T., Ehara, S., Yamamoto, A., Walston, S.L., Ito, A., Shimono, T., Shiba, M., Takeshita, T., Fukuda, D., Miki, Y., 2023. Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study. Lancet Digit Health S2589-7500(23)00107–3. <u>https://doi.org/10.1016/S2589-7500(23)00107-3</u>
- Walters, W.H., Wilder, E.I., 2023. Fabrication and errors in the bibliographic citations generated by ChatGPT. Sci Rep 13, 14045. <u>https://doi.org/10.1038/s41598-023-41032-5</u>
- Warner, H.R., Toronto, A.F., Veasey, L.G., Stephenson, R., 1961. A mathematical approach to medical diagnosis. Application to congenital heart disease. JAMA 177, 177–183. <u>https://doi.org/10.1001/jama.1961.03040290005002</u>

- Weller, O., Marone, M., Weir, N., Lawrie, D., Khashabi, D., Van Durme, B., 2023. "According to ..." Prompting Language Models Improves Quoting from Pre-Training Data. <u>https://doi.org/10.48550/arXiv.2305.13252</u>
- Xu, S., Yang, L., Kelly, C., Sieniek, M., Kohlberger, T., Ma, M., Weng, W.-H., Kiraly, A., Kazemzadeh, S., Melamed, Z., Park, J., Strachan, P., Liu, Y., Lau, C., Singh, P., Chen, C., Etemadi, M., Kalidindi, S.R., Matias, Y., Chou, K., Corrado, G.S., Shetty, S., Tse, D., Prabhakara, S., Golden, D., Pilgrim, R., Eswaran, K., Sellergren, A., 2023. ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders [WWW Document]. arXiv.org. URL https://arxiv.org/abs/2308.01317v2 (accessed 9.26.23).
- Zhou, H., 2023. Generative AI, ChatGPT, and Google Bard: Evaluating the Impact and Opportunities for Scholarly Publishing [WWW Document]. The Scholarly Kitchen. URL <u>https://scholarlykitchen.sspnet.org/2023/08/17/generative-ai-chatgpt-and-google-bard-evaluating-the-impact-and-opportunities-for-scholarly-publishing/</u> (accessed 10.4.23).
- Zhou, Q., Chen, Z.-H., Cao, Y.-H., Peng, S., 2021. Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools: a systematic review. NPJ Digit Med 4, 154. <u>https://doi.org/10.1038/s41746-021-00524-2</u>
- Zimmerman, J., 2023. Opinion | Here's my AI policy for students: I don't have one. Washington Post.

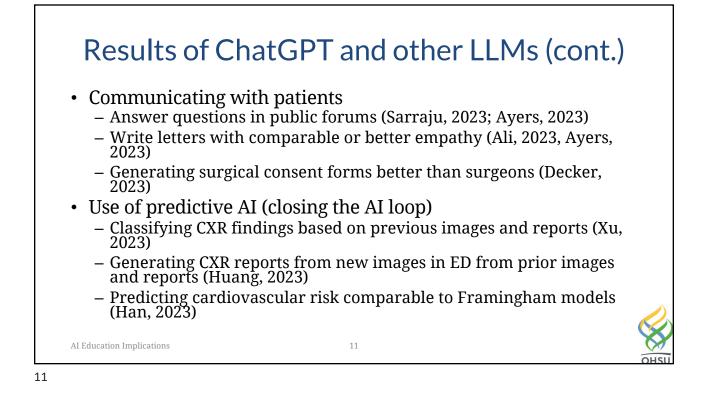


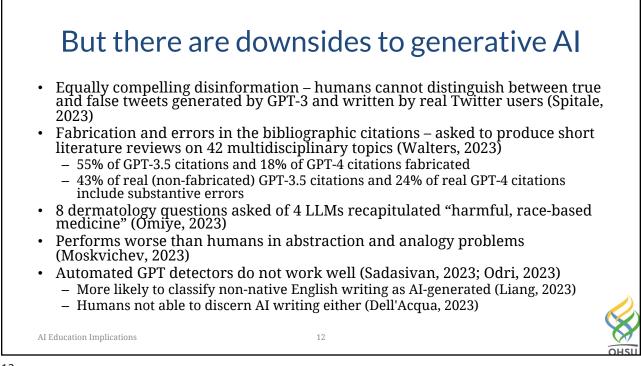


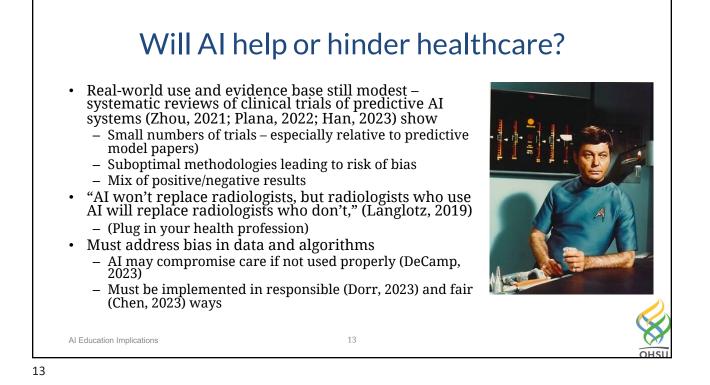

- Earliest paper related to AI and biomedical informatics attributed to Ledley and Lusted (1959) aiming to model physician reasoning through symbolic logic and probability
- Warner (1961) developed mathematical model for diagnosing congenital heart disease
- In 1960s-1970s, emergence of "expert systems" computer programs aiming to mimic human expertise (historical overview Lea, 2023)
 - Rule-based systems PhD dissertation of Shortliffe (1975) and subsequent work (Clancey, 1984)
 - Disease profiles and scoring algorithms INTERNIST-1 (Miller, 1982) and DxPlain (Barnett, 1987)
- Limited by approach of manual construction and maintenance of knowledge
 Not scalable or sustainable
 - Led to "AI winter" between 1990-2010
 - Main remnant is clinical decision support (CDS) for electronic health records (EHRs) that emerged in 1990s for electronic health records (Greenes, 2023)

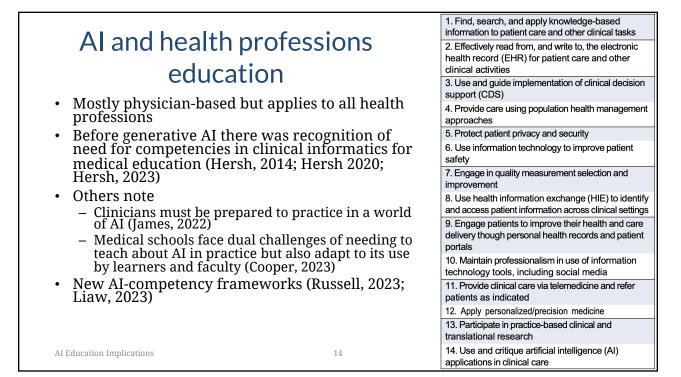
```
AI Education Implications
```

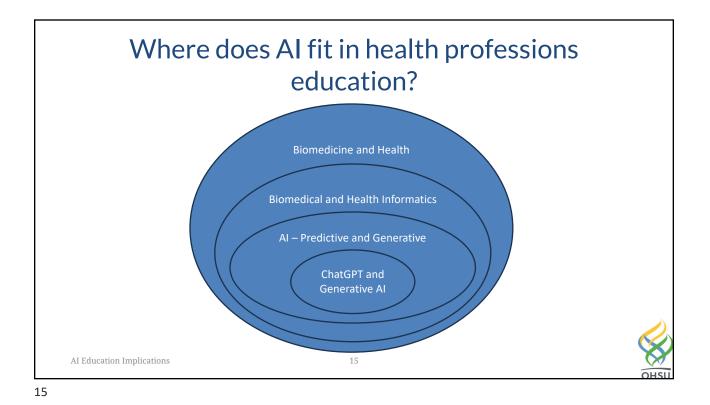
```
Re-emergence of AI in 21<sup>st</sup> century
  "Predictive AI" driven by advances in machine
  learning, increasing availability of data, and more
  powerful computers and networks (Topol, 2019;
  Rajpurkar, 2022)
     Deep learning in imaging breakthroughs by Hinton
     (2006)
  Most success in image interpretation (Rajpurkar,
  2023); examples include
   - Radiology - chest x-rays for diagnosis of pneumonia and
     tuberculosis
     Ophthalmology - retinal images for diagnosis of diabetic
                                                               an and
     retinopathy
                                                           - Dermatology - skin lesions for diagnosis of cancer
   - Pathology - breast cancer slides to predict metastasis
AI Education Implications
                                        6
```

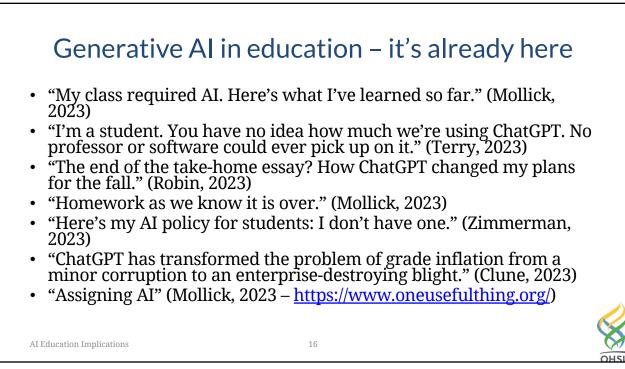


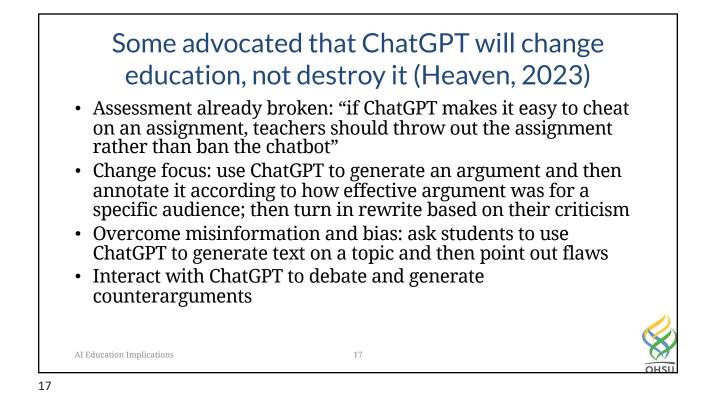


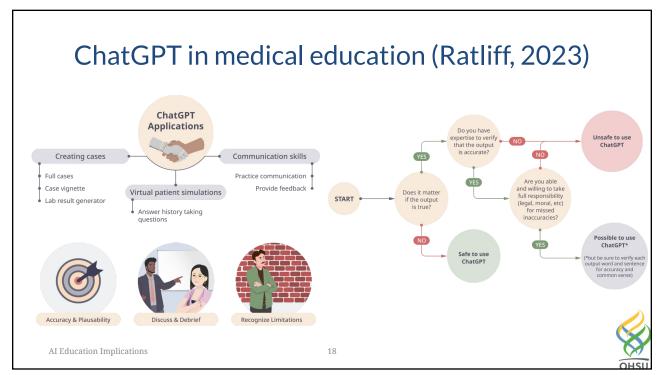



Results of ChatGPT and other LLMs


• Medical board exams
• USMLE "arms race," starting with (Kung, 2023)
• Caimed best - <u>https://www.openevidence.com/blog/openevidence-ai-first-ai-score.</u>
• Osimed best on some board exams (clinical informatics - Kumah-Crystal, 2023; radiology - Bhayana, 2023) but not others (neonatology - Beam, 2023)
• Osimed puestions
• Osimed puestions
• Osimed clinical cases
• Osimed clinical cases
• Osimed clinical coses

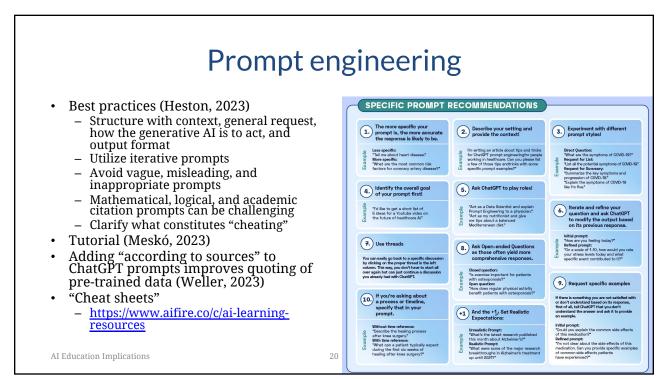






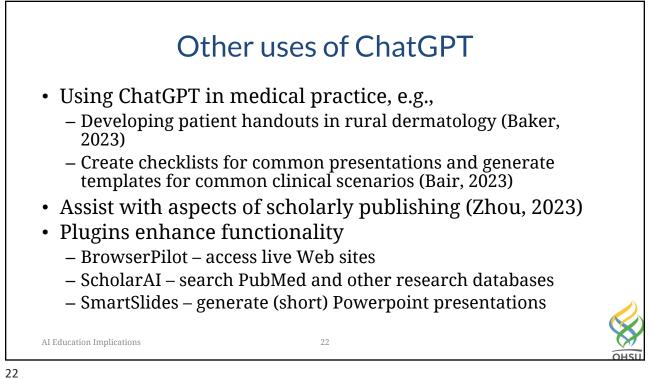
Recommendations for medical faculty and institutions (Boscardin, 2023)

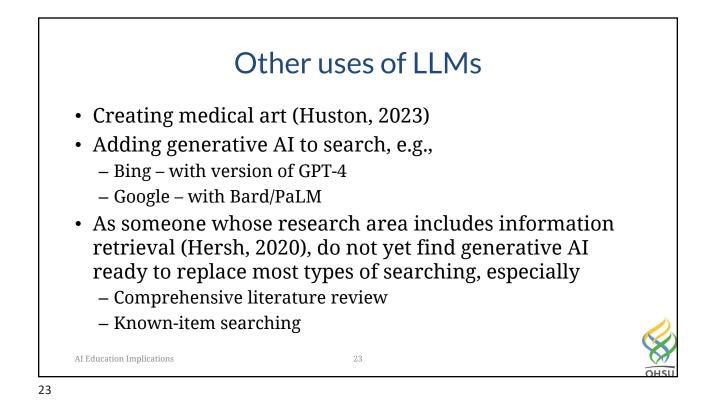
Educators

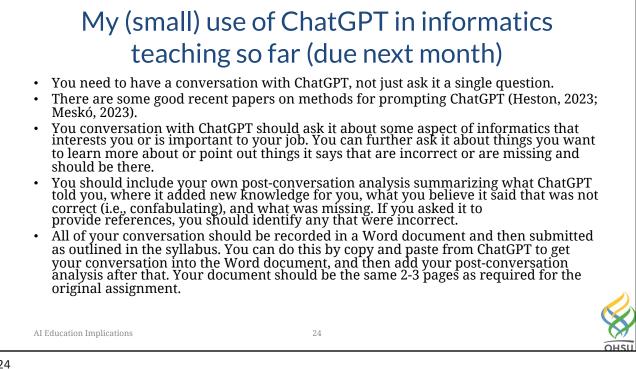

- Increase AI knowledge
- Understand the current landscape of AI use in medical education
- Review strategies for successful AI integration into education
- Become stewards of ethical use
 of AI

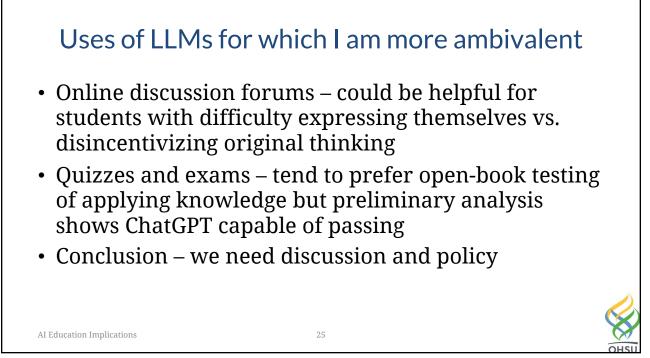
Institutions

- Review and revise school policies (and create new policies as needed) regarding use of generative AI
- Support faculty development about AI and provide resources for teaching
- Offer information-checking tools for originality and plagiarism to faculty

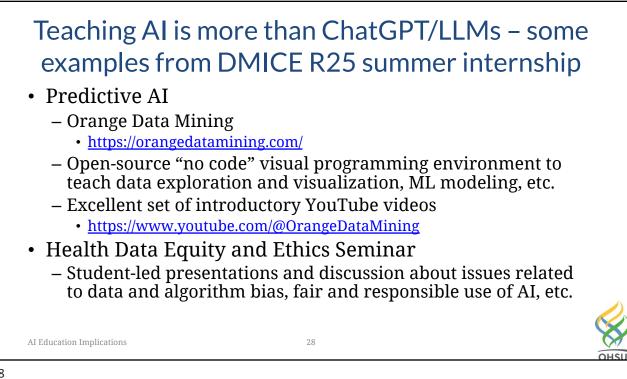

AI Education Implications

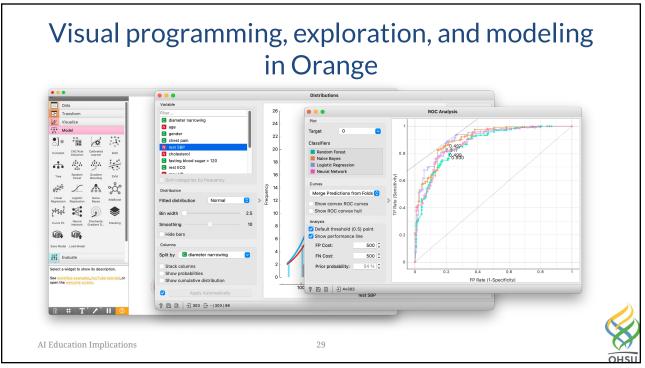

19

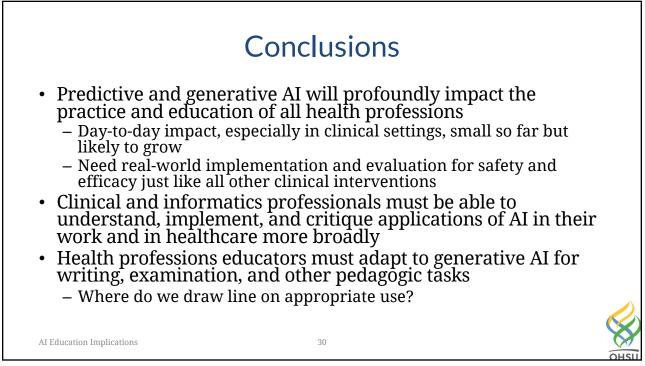



Uses and risks of "assigning AI" (Mollick, 2023)

AI USE	ROLE	PEDAGOGICAL BENEFIT	PEDAGOGICAL RISK	D'-1
MENTOR	Providing feedback	Frequent feedback improves learning outcomes, even if all advice is not taken.	Not critically examining feedback, which may contain errors.	Risks: – Confabulation
TUTOR	Direct instruction	Personalized direct instruction is very effective.	Uneven knowledge base of AI. Serious confabulation risks.	 Bias – from training content Privacy – policies not always clear
COACH	Prompt metacognition	Opportunities for reflection and regulation, which improve learning outcomes.	Tone or style of coaching may not match student. Risks of incorrect advice.	
TEAMMATE	Increase team performance	Provide alternate viewpoints, help learning teams function better.	Confabulation and errors. "Personality" conflicts with other team members.	
STUDENT	Receive explanations	Teaching others is a powerful learning technique.	Confabulation and argumentation may derail the benefits of teaching.	 Instructional – student over-reliance
SIMULATOR	Deliberate practice	Practicing and applying knowledge aids transfer.	Inappropriate fidelity.	
TOOL	Accomplish tasks	Helps students accomplish more within the same time frame.	Outsourcing thinking, rather than work.	
	Y 3' .'		24	
AI Education	1 Implications		21	




Competencies for use of AI-based tools by healthcare professionals (Russell, 2023) main Competency


Domain	Competency		
Basic knowledge of AI	Explain what AI is and describe its healthcare applications		
Social and ethical implications of Al			
Al-enhanced clinical encounters	Carry out AI-enhanced clinical encounters that integrate diverse sources of information in creating patient-centered care plans		
Evidence-based evaluation of AI-based tools	Evaluate the quality, accuracy, safety, contextual appropriateness, and biases of AI-based tools and their underlying datasets in providing care to patients and populations		
Workflow analysis for Al-based tools	Analyze and adapt to changes in teams, roles, responsibilities, and workflows resulting from implementation of AI-based tools		
Practice-based learning and improvement regarding AI-based tools	Participate in continuing professional development and practice-based improvement activities related to use of AI tools in healthcare		
AI Education Implications	26		

Competencies for use of AI in primary care (Liaw, 2023) – applicable to all health professions use

Domain	Bottom Line	Competency
Foundational knowledge	What is this tool?	Clinicians will explain the fundamentals of AI, how AI-based tools are created and evaluated, the critical regulatory and socio-legal issues of the AI-based tools, and the current and emerging roles of AI in health care.
Critical appraisal	Should I use this tool?	Clinicians will appraise the evidence behind Al-based tools and assess their appropriate uses via validated evaluation frameworks for health care AI.
Medical decision making	When should I use this tool?	Clinicians will identify the appropriate indications for and incorporate the outputs of Al- based tools into medical decision making such that effectiveness, value, equity, fairness, and justice are enhanced.
Technical use	How do I use this tool?	Clinicians will execute the tasks needed to operate AI-based tools in a manner that supports efficiency and builds mastery.
Patient communication	How should I communicate with patients regarding the use of the tool?	Clinicians will communicate what the tool is and why it is being used, answer questions about privacy and confidentiality, and engage in shared decision making, in a manner that preserves or augments the clinician-patient relationship.
Unintended consequences (cross-cutting)	What are the "side effects" of this tool?	Clinicians will anticipate and recognize the potential adverse effects of AI-based tools and take appropriate actions to mitigate or address unintended consequences.
AI Education Implications		27

Questions? William Hersh, M.D. Professor Department of Medical Informatics & Clinical Epidemiology Oregon Health & Science University Portland, OR, USA Email: <u>hersh@ohsu.edu</u> Web: http://www.billhersh.info Blog: https://informaticsprofessor.blogspot.com/ Textbook: http://www.informaticsbook.info What is Informatics?: <u>http://informatics.health</u> Also on Twitter – <u>@williamhersh</u> Facebook LinkedIn AI Education Implications 31