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The IMPACT framework and implementation for accessible in
silico clinical phenotyping in the digital era
Andrew Wen 1,2,4, Huan He 1,4, Sunyang Fu1,2, Sijia Liu1, Kurt Miller1, Liwei Wang1,2, Kirk E. Roberts 2, Steven D. Bedrick 3,
William R. Hersh3 and Hongfang Liu1,2✉

Clinical phenotyping is often a foundational requirement for obtaining datasets necessary for the development of digital health
applications. Traditionally done via manual abstraction, this task is often a bottleneck in development due to time and cost
requirements, therefore raising significant interest in accomplishing this task via in-silico means. Nevertheless, current in-silico
phenotyping development tends to be focused on a single phenotyping task resulting in a dearth of reusable tools supporting
cross-task generalizable in-silico phenotyping. In addition, in-silico phenotyping remains largely inaccessible for a substantial
portion of potentially interested users. Here, we highlight the barriers to the usage of in-silico phenotyping and potential solutions
in the form of a framework of several desiderata as observed during our implementation of such tasks. In addition, we introduce an
example implementation of said framework as a software application, with a focus on ease of adoption, cross-task reusability, and
facilitating the clinical phenotyping algorithm development process.
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INTRODUCTION
The rapid proliferation of the Electronic Health Record (EHR) and
the associated availability of voluminous digitized clinical data has
led to tremendous interest in the development of digital health
applications. Crucial to this is the ability to subset patients using
clinical inclusion and exclusion criteria: commonly referred to as
clinical phenotyping, patient screening, or cohort retrieval1,2 (see
Fig. 1). Traditionally conducted manually, there has been great
interest in accelerating phenotyping via in-silico means3,4. Cross-
task generalizable solutions for in-silico phenotyping, however, are
not widespread5.
In this work, we introduce Intelligent Machine for Patient

Accrual and Classification Tasks (IMPACT), a framework and an
example implementation highlighting desiderata for accessible
and re-usable in-silico phenotyping tools as observed through our
efforts in delivering in-silico phenotyping solutions.

The IMPACT framework for accessible in-silico clinical
phenotyping
Variations in task-specific factors such as complexity, required
information, and desired results6 have hindered implementation
of task-generalizable phenotyping solutions7,8. Here, we present
several desiderata for in-silico phenotyping tools, as well as
existing approaches, where applicable.

Desideratum I: Be infrastructure-flexible and scalable
Adapting software products is generally easier than switching
computing infrastructure, necessitating flexibility in data inputs/
outputs and computing infrastructure. This can be accomplished
through built-in support for various popular setups, for both data
repository type (e.g., SQL, Elasticsearch9, MongoDB10, BigQuery11,
Fast Health Interoperability Resources (FHIR)12 datastores) and

model (e.g., Observational Medical Outcomes Partnership (OMOP)13

and PCORnet14 Common Data Models (CDMs)).
In addition, tools must be scalable as it would otherwise be

unfeasible to run phenotyping across largescale datasets without
significant engineering effort/time, particularly when involving
data sources requiring natural language processing (NLP) or image
processing to extract clinical information.

Desideratum II: Support both ranked score and boolean
retrieval schemes
Determining patient classification as a boolean true/false may not
always be ideal. Instead, score-based ranking on closeness of
match may be appropriate15, particularly during algorithm
refinement due to missing evidence (e.g., relevant information
not present in data sources used). Boolean retrieval, where
patients are classified as either fully matching or not matching a
given phenotype, fails to produce results when missing evidence
is present. Conversely, ranked retrieval will surface patients that
may be missing only a subset of the criteria for further review.
Boolean retrieval, however, may still be appropriate once an
algorithm matures (e.g., for large-scale cohort accrual), necessitat-
ing support for both retrieval modes.
Clinical CDMs such as OMOP13 and PCORnet14 possess

boolean retrieval capabilities. Ranked-based retrieval, however,
is relatively less prevalent, and approaches focus on unstructured
text. Examples of such efforts include the Electronic Medical
Record Search Engine (EMERSE)16 and Cohort Retrieval Enhanced
by the Analysis of TExt (CREATE)17 systems, as well as the
adoption of various open-source frameworks such as Apache
Lucene18, Solr19, and Elasticsearch9 for institution-specific
implementations.
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Desideratum III: Support multi-modal retrieval and result
integration
Fully determining whether a patient matches a phenotype may
not always be possible with the information contained within any
single data source, requiring additional data sources, e.g., for
information documented in clinical narratives20–22 as opposed to
within structured EHR data records, or information from radiology
images and associated reports23–25.
In addition, traditional EHR-based data sources are potentially

biased in that underserved/underrepresented populations will be
similarly underrepresented in the data, a significant concern for
data-driven downstream applications26–28. Inclusion of additional
data sources helps ameliorate this issue. For instance, if the site
doing the in-silico phenotyping is a tertiary medical institution, a
substantial amount of history will not be available structurally (e.g.,
only available via scanned images or clinical text). If only a
structured data source is used for phenotyping, the results will be
biased as rural/underrepresented populations may have a
substantial history captured in text or image29 and thus
inaccessible to the phenotyping algorithm.
Multi-modal computation of complex phenotype definitions

consequently complicates in-silico implementation. Manual over-
head is introduced via identification of additional necessary data
sources, query refinement to local data representations, scoring,
and result integration.
These processes should therefore be supported within the tool

itself, rather than being left to manual efforts. While solutions do
exist for multi-server querying in the general domain (e.g., cross-
server joins in SQL), such solutions tend to be difficult to setup, be
limited to a single data type, and have scoring be done on a per-
data source basis, thus leading to retrieval not being truly multi-
modal.

Desideratum IV: Support extensions such that textual
phenotype definitions can be autonomously converted into
local code sets for review
Many phenotype definitions are distributed as textual descrip-
tions30. For in-silico phenotyping, these textual descriptors are
typically manually translated into equivalent institutional data
source-computable representations31,32. Similarly, even for those
phenotypes distributed as computable representations33–35, said
representations will typically also need further refinement prior to
local use, particularly if natural language processing (NLP) is
involved36. Such conversions/refinements (e.g., disease names to
International Classification of Diseases 10 codes, or appropriate
textual variants for NLP-derived data) are typically done over
multiple iterations3, bottlenecking new algorithm implementation.
Collectively predefining valuesets that correspond to a specific

phenotype criterion before distribution of the phenotype defini-
tion has been proposed37. Usage, however, may not always be
feasible for implementing institutions. For instance, while the
Logical Observation Identifiers Names and Codes (LOINC)
vocabulary is used to codify lab tests, some institutions may use
an institution-local code-set without a LOINC mapping. Incorpor-
ating standard vocabularies in CDMs such as the OMOP CDM13

partially addresses this issue, but requiring usage of the CDM
violates Desideratum I, and implementations are non-uniform5. In
addition, the information required for a phenotyping task may not
always be fully representable in the CDM. Explicitly defining such
valuesets, while helpful as an initial reference point, will therefore
often still require additional manual conversion.
To reduce manual burden, increase mapping reusability, and

accelerate the implementation of new phenotype definitions,
tools should therefore provide the capability to autonomously
convert textual descriptions into local representations. An inter-
face should be provided for abstractors to review/refine conver-
sions. In addition, the capability for individual institutions to
implement mappings to local datasets from textual descriptions
should be provided. Existing examples of such autonomous
mapping systems include Eligibility criteria Information Extraction
(EliIE)30 and Criteria2Query38. General clinical NLP systems such as
MedTagger39 and the Clinical Text Analysis Knowledge Extraction
System (cTAKES)40 are also repurposable for this task.

Desideratum V: Maximize reusability and data reproducibility,
minimize technical overhead, and enhance downstream
generalizability
The domain expertize of typical users of phenotyping tools
differs from those that would possess the knowledge to
integrate tools with local data sources, and extract information
from said data sources. Ideally, as the latter setup process tends
to be the bottlenecking step for in-silico phenotyping algorithm
implementation, toolsets should be reusable across multiple
phenotyping tasks.
Beyond toolset reusability, however, individual phenotyping

projects should also be reusable, from both monoinstitutional and
multiinstitutional perspectives. As cohort retrieval is typically only
an intermediate, but bottlenecking, step for other downstream
applications, the ability to easily reuse identified cohorts is highly
desirable to reduce duplicate development/phenotyping
efforts31,41–43.
In addition, given that data reproducibility has been found

critically lacking for datasets44–47, there is substantial benefit in
centralized storage of both in-silico phenotyping algorithms and
retrieved cohorts within a common toolset for later re-use and/or
re-execution.
Finally, while cross-institution sharing of retrieved cohorts is

unlikely due to privacy concerns, a common framework with
sharable definitions will dramatically facilitate multi-institution
phenotyping execution, facilitating development and evaluation
of cross-institutionally generalizable digital health
applications8,32,48.
These considerations are one of the motivations behind clinical

CDMs such as OMOP13 and PCORnet14.

Desideratum VI: Reflect that in-silico phenotyping is an
iterative, human-in-the-loop process
The human interpretation and translation process from textual
definitions to local data source representations can be highly

Fig. 1 An example NLP-based clinical phenotyping task. An example clinical phenotyping task for determining whether a patient has a
history of working night shifts. On the left, we show how such a criterion might be depicted in plain-text. In the center, we show what such a
query might look like for text-based applications. On the right, we show a relevant text fragment from a clinical narrative.
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subjective, leading to inter-abstractor variation both within and
without a clinical institution32,49,50.
Consequently, iterative definition refinement is required. This

may involve manual review by multiple clinical abstractors to
identify missing data elements and adjudicate disagreements in
definition interpretations, repeating until adequate performance is
achieved51.
To support such algorithm development, refinement, and

implementation processes, tools must therefore support: (a)
editing/refining phenotype definitions, (b) surfacing evidence
supporting classification for review, and (c) identifying abstraction
differences for adjudication.
Graphical user frontends supporting querying against the

various clinical common data models (e.g., OHDSI Atlas52) support
accessible editing phenotyping definitions and reviewing returned
results. Such systems, however, typically lack support for
presenting supporting evidence and relevance judgement, lead-
ing to the development of systems such as PRAI53 and CREATE17.

An example IMPACT implementation
Here, we present a full-stack in-silico phenotyping solution
implementing these desiderata consisting of:

A web-based frontend user interface (UI) for phenotyping
criteria definition and execution, as well as result relevance
judgement and adjudication
A middleware component supporting cohort management,
phenotype definition and abstractor judgement retention,
patient evidence retrieval, textual descriptions translation, and
job scheduling.
A backend that performs data source information retrieval and
scoring, FHIR mapping, and writes match status, patient scores,
and associated evidence to a database.

An overview of the system architecture using an example fully
on-premises deployment is provided in Fig. 2. Additional example
diagrams using other infrastructure setups can be found on our
GitHub https://www.github.com/OHNLP/IMPACT. In the ensuing

subsections, we will detail how IMPACT implements our listed
desiderata.

Infrastructurally-agnostic, scalable, ranking-based patient-
phenotype matching
To address scalability while maintaining flexibility across differing
infrastructure setups, we implemented the backend using Apache
Beam54, which is usable both across a wide variety of horizontally
scaling frameworks, as well as on a single machine. For more
details on horizontal scaling and the specific frameworks
supported by the example IMPACT implementation, please refer
to the Supplementary Information.
For ranked scoring, we leverage a modification of BM25+ 55,56

to score patients relative to how well they match the phenotype,
where each patient is treated as a “document” and clinical entities
such as a diagnosis or a lab test are “tokens” within said
“document”. Firstly, leaf criterion (i.e., is not a combinatorial
boolean condition such as “must have all of”, “at least n of”, “none
of”, or similar, but rather a description of a condition, medication,
etc.) are grouped such that they are of the same clinical entity
type, and BM25+ scoring is run separately for each. Specifically,
the base BM25+ score for a given patient P and leaf criterion ci
can be calculated as shown in eq. (1):

BM25þðci; PÞ ¼ In
N � nðciÞ þ 0:5
nðciÞ þ 0:5

þ 1

� �
� f ðci ; PÞ � ðk1 þ 1Þ

f ðci; PÞ þ k1 � 1� bþ b � jPj
avgplen

� �þ δ

0
@

1
A

(1)

where N is the number of patients in the data source, n(ci) is the
number of patients that leaf criterion ci matches, f(ci, P) is the
number of distinct records for which patient matches criterion ci, |
P| is the patient term length (i.e., number of entities of the same
clinical data type (condition, medication, etc) as ci), avgplen is the
average |P| across all patients in the cohort. The BM25+ scores of
leaf criteria are then combined based on the boolean logic as
defined by the phenotype definition. For OR (“must have at least n
of”), the mean of the top scores of child criteria is used. For AND
(“must have all of”), the mean score of all children is used. For NOT
(“must not have”), the maximum of all child scores is multiplied by

Fig. 2 IMPACT System Architecture. A Diagram Showing an On-Premise Deployment of IMPACT. Desideratum I is implemented via the Local
Data Warehouse, Desideratum II is implemented via the Terms Scoring Module, Desideratum III is implemented via the evidence aggregation
module, Desideratum IV is implemented via the query translator, Desideratum V is implemented via the middleware application, and
Desideratum VI is implemented via the web frontend.
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−1. For more details on the BM25+ algorithm, its selection as our
default scoring algorithm, and associated hyperparameters, please
refer to the Supplementary Information. A Java application
programming interface (API) is also provided for implementing
custom scoring algorithms.

Data source flexibility via FHIR conversions, CDM support, and
JSON-based plug and play configuration
For IMPACT, we chose to use HL7 Fast Health Interoperability
Resources (FHIR) R412 data structures as our internal representa-
tion for clinical data. For more details on FHIR and why it was
chosen, please refer to the Supplementary Information.
So long as a mapping function can be written to produce FHIR

resources, any data source can be used in IMPACT. To facilitate
adoption, we supply built-in functions for common use cases. For
SQL/JDBC compatible data sources, a configurable mapping
function is provided that allows users to specify SQL queries
and associated FHIR mappings via JavaScript Object Notation
(JSON) config. For on-demand clinical NLP (i.e., artifacts extracted
at runtime), we build upon our previous work57 to provide a
clinical information extraction mapping function that extracts
clinical entities to text and converts them58,59 to appropriate FHIR
resources. Built-in support and mapping functions for the OMOP13

(including NLP tables) and PCORnet14 CDMs are also provided that
allow for immediate, out-of-the-box, use with minimal additional
configuration. Custom mapping functions can also be included via
implementation of a Java API.
IMPACT supports cross-server data integration by allowing for

an arbitrary number of data sources to be queried on any given
phenotyping task so long as common patient IDs are used (or can
be mapped) and a FHIR mapping function is defined. The data
sources and mappings used for scoring are specified as part of a
JSON configuration and can be customized on a per-project basis
via the frontend GUI. Individual patient scores are computed per-
data source and are then combined using a weighted summation
(please refer to the Supplementary Information section on BM25+
scoring for more details).

Autonomous NLP-based conversion of textual phenotype
definitions
To generate data source-computable representations from textual
definitions, the middleware component contains an integrated
MedTagger39,57 pipeline to perform named entity recognition and
entity linking to Unified Medical Language System (UMLS)60

concept codes (CUIs). For more information on the UMLS, coding
systems, and the necessity of codeset mapping, please refer to the
Supplementary Information. Each leaf criterion (i.e., some clinical
entity that is part of the phenotype definition, as opposed to non-
leaf criterion, which refers to the boolean logics such as “must
have all/one/none of …” that links multiple leaf criterion together)
automatically goes through this pipeline to generate a UMLS CUI
code set if no computable representations are provided. This
process can also be manually triggered by the end user. The UMLS
CUIs are then converted to local data source formats depending
on data source configurations. IMPACT offers built in mapping to
any UMLS source vocabulary, to the OHDSI Athena Vocabulary61,
as well any UMLS subset for the on-demand NLP data source. In
addition, manual mappings from UMLS CUIs can be provided via
configuration. End users may also extend our Java API to
implement their own mapping function.
The generated representations are then grouped by data source

and displayed in the frontend web interface for refinement by
clinical abstractors.

Re-usable infrastructure and phenotype representations and
associated implications on data reproducibility and
downstream algorithm generalizability
Thus far, we have primarily discussed backend components that
must be setup on initial deployment. Once this setup is complete,
the system can be re-used across a large variety of phenotyping
tasks without additional setup/technical expertize required (unless
the addition of more data sources is desired), thus greatly
accelerating implementation of new phenotyping algorithms. In
addition, common re-usable infrastructure greatly accelerates
porting to multiinstitutional settings, facilitating generalizable
algorithm development.
The retention of abstractor curated representations of a

phenotype by the middleware component enables later re-use.
To maximize re-use, users may choose to publicize these
collections of representations within the IMPACT platform and
share with other users at the same institution.
Central storage of the refined algorithms and datasets on the

middleware server also greatly enhances data provenance/
reproducibility. Should the algorithm need to be re-ran (e.g., for
updated data temporally), the original local representations and
associated refinements are retained, as well as a specific record of
which datasets/data sources were queried in the original retrieval.
Similarly, should it be desired to re-use the retrieved patient
cohort itself, the retrieved cohort along with human judgements
and associated query metadata is retained for immediate
download.

Human in the loop evidence review and adjudication
The web frontend offers an interface for phenotype definition
(Fig. 3) and displays a list of patients sorted by match score (Fig. 4),
with the option to switch to boolean filtering. Upon patient
selection, the user is presented with the definition. The abstractor
can view the evidence and judge their correctness for each
definition criterion (Fig. 5). Switching to adjudication mode lists
judgment conflicts between all abstractors.
These capabilities bring several benefits. Firstly, having the

relevant evidence aggregated and presented to the adjudicator by
matching phenotype criterion accelerates determination of
whether a given patient matches the query phenotype. In
addition, to perform iterative refinement and fine-tuning of
phenotyping algorithms, algorithm errors (and evidence asso-
ciated with said errors) must first be identified Having disagree-
ment/adjudication functions built into the interface greatly
facilitates this process. Finally, this interface/human-in-the-loop
approach allows for the inclusion of external contextual informa-
tion that may be absent from or contradict the clinical
documentation itself, which may be helpful for certain use cases,
e.g., “patient was contacted for a clinical trial, indicated that he
had an undocumented positive/disqualifying smoking status”.

DISCUSSION
The desiderata presented here are not comprehensive: they are
the results of our observations while implementing in-silico
phenotyping, but experiences will vary. As such, we anticipate
evolution in the framework as part of our open science efforts as
feedback from users is incorporated. In addition, individual
approaches to the various desiderata exist, but to our knowledge
are spread across disparate toolsets and not integrated into a
common solution. For example, while Atlas does offer phenotyp-
ing query execution, it is limited to using the OMOP CDM and
does not support text retrieval. Similarly, EMERSE offers querying
on text but has limited flexibility for working with multi-modal
queries. Our current implementation is therefore intended to
serve as a baseline that works reasonably and is easy to adopt/
extend, but may not be state-of-the-art. To facilitate customization
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with other approaches, the application allows for modular
component swapping.
A trade-off of infrastructure flexibility is runtime performance.

Specifically, FHIR mapping is done on-demand to obviate

instantiating a new data warehouse. Around 90%, per instrumen-
tation, of runtime is spent on FHIR mapping. For reference, our
observed performance using 128 central processing unit cores
was 6 h for 1.9 million patients (with structured data and NLP).

Fig. 4 IMPACT patient accrual results page. A display of accrued patients that have been found to match a query phenotype definition
(Fig. 3) in ranked order by closeness of match, alongside match status, abstraction/relevance judgement, and abstractor-supplied tags. An
additional button to view matching criteria in more detail (Fig. 5) is also provided.

Fig. 3 IMPACT phenotype definition page. On the left panel, the user-defined phenotype definition is shown. On the top right, textual
definitions can be mapped to datasource-local representations. On the bottom-right, datasource representations for specific criteria that were
previously manually curated and shared can be retrieved and reused.
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While this is still a significant improvement over manual efforts,
pre-mapping/storing FHIR resources into a data store such as
MongoDB or Elasticsearch, obviating on-demand mapping, would
be more efficient.
Finally, while evaluations have previously been done on

individual component implementations, a full evaluation in
aggregate would be helpful. Due to the characteristics inherent
to the phenotyping task, a meaningful systemic evaluation would
require multiinstitutional deployment of the application and gold
standard corpora development for each site across a variety of
phenotyping tasks. For more details on this, please refer to the
Supplementary Information. We have left such efforts to future
work.

CONCLUSIONS
Rapid in-silico clinical phenotyping on large datasets is of critical
importance to accelerate research and development in the digital
health domain. In this article, we have outlined some underlying
complications hindering implementation of in-silico phenotyping
and presented a framework, accompanied by an example
implementation, addressing them.

DATA AVAILABILITY
Data used as part of our use-case testing for the IMPACT implementation is
considered protected health information and would be difficult to share with anyone
not involved in an IRB-approved collaboration with the Mayo Clinic. We do, however,
provide manually generated synthetic data that can be used as a stand-in to evaluate
front-end GUI functionality. Said synthetic data is distributed alongside the IMPACT
software application code.

CODE AVAILABILITY
The IMPACT implementation is open-source, code for which can be found at https://
www.github.com/OHNLP/IMPACT. Please note that this repository is only the parent/
tracking repository, and that IMPACT has several subcomponents each in their own
GitHub repository. Links to the repositories for these subcomponents can be found in
the README of the parent repository.

Received: 19 February 2023; Accepted: 13 July 2023;

REFERENCES
1. Weng, C., Tu, S. W., Sim, I. & Richesson, R. Formal representation of eligibility

criteria: a literature review. J. Biomed. Inf. 43, 451–467 (2010).
2. Richesson, R. L., Horvath, M. M. & Rusincovitch, S. A. Clinical research informatics

and electronic health record data. Yearb. Med. Inf. 9, 215–223 (2014).
3. Thadani, S. R., Weng, C., Bigger, J. T., Ennever, J. F. & Wajngurt, D. Electronic

screening improves efficiency in clinical trial recruitment. J. Am. Med. Inf. Assoc.
16, 869–873 (2009).

4. Pathak, J., Kho, A. N. & Denny, J. C. Electronic health records-driven phenotyping:
challenges, recent advances, and perspectives. J. Am. Med. Inf. Assoc. 20,
e206–e211 (2013).

5. Campion, T. R., Craven, C. K., Dorr, D. A. & Knosp, B. M. Understanding enterprise
data warehouses to support clinical and translational research. J. Am. Med. Inf.
Assoc. 27, 1352–1358 (2020).

6. Ross, J., Tu, S., Carini, S. & Sim, I. Analysis of eligibility criteria complexity in clinical
trials. Summit Transl. Bioinform. 2010, 46–50 (2010).

7. Madigan, D. et al. Evaluating the impact of database heterogeneity on obser-
vational study results. Am. J. Epidemiol. 178, 645–651 (2013).

8. Fu, S. et al. Assessment of Data Quality Variability across Two EHR Systems
through a Case Study of Post-Surgical Complications. AMIA Annu Symp. Proc.
2022, 196–205 (2022).

9. Elasticsearch B.V. Elasticsearch, https://github.com/elasticsearch/elasticsearch
(2015).

Fig. 5 IMPACT evidence display page. A display of matching evidence by specific criteria elements. On the left pane, the query phenotype
definition as a whole and whether a patient has been determined to match a given criterion is displayed. In the center, a listing of specific
facts/evidence supporting a match/not match determination for the actively selected criterion is listed, with details on each individual fact/
evidence item displayed on the right (including highlighted sections of clinical text, for NLP-based facts).

A. Wen et al.

6

npj Digital Medicine (2023)   132 Published in partnership with Seoul National University Bundang Hospital

https://www.github.com/OHNLP/IMPACT
https://www.github.com/OHNLP/IMPACT
https://github.com/elasticsearch/elasticsearch


10. MongoDB Inc. The MongoDB Database, https://github.com/mongodb/mongo
(2009).

11. Google Inc. BigQuery: Enterprise Data Warehouse, https://cloud.google.com/
bigquery (2011).

12. Health Level 7 International. Fast Healthcare Interoperability Resources (FHIR),
https://hl7.org/fhir/R4/ (2019).

13. Overhage, J. M., Ryan, P. B., Reich, C. G., Hartzema, A. G. & Stang, P. E. Validation of
a common data model for active safety surveillance research. J. Am. Med. Inf.
Assoc. 19, 54–60 (2012).

14. Fleurence, R. L. et al. Launching PCORnet, a national patient-centered clinical
research network. J. Am. Med. Inf. Assoc. 21, 578–582 (2014).

15. Yadav, H., Du, Z. & Joachims, T. Policy-Gradient Training of Fair and Unbiased
Ranking Functions. Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM SIGIR 2021, 1044–1053
(2021).

16. Hanauer, D. A. EMERSE: The Electronic Medical Record Search Engine. AMIA Annu.
Symp. Proc. 2006 Annual Symposium of the American Medical Informatics
Association, 941 (2006).

17. Liu, S. et al. Implementation of a Cohort Retrieval System for Clinical Data
Repositories Using the Observational Medical Outcomes Partnership Common
Data Model: Proof-of-Concept System Validation. JMIR Med. Inf. 8, e17376 (2020).

18. Apache Software Foundation. Apache Lucene, https://lucene.apache.org/ (2022).
19. Shahi, D. Apache Solr: A Practical Approach to Enterprise Search. (APress, 2015).
20. Wang, Y. et al. Clinical information extraction applications: A literature review. J.

Biomed. Inform. 77, 34–49 (2018).
21. Fu, S. et al. Ascertainment of Delirium Status Using Natural Language Processing

From Electronic Health Records. J. Gerontol. A Biol. Sci. Med Sci. 77, 524–530
(2022).

22. Sagheb, E. et al. Use of Natural Language Processing Algorithms to Identify
Common Data Elements in Operative Notes for Knee Arthroplasty. J. Arthroplast.
36, 922–926 (2021).

23. Gao, F. et al. SD-CNN: A shallow-deep CNN for improved breast cancer diagnosis.
Comput Med. Imaging Graph. 70, 53–62 (2018).

24. Sun, L. et al. Breast Mass Detection in Mammography Based on Image Template
Matching and CNN. Sensors (Basel) 21 (2021). https://doi.org/10.3390/s21082855

25. Che, H., Brown, L. G., Foran, D. J., Nosher, J. L. & Hacihaliloglu, I. Liver disease
classification from ultrasound using multi-scale CNN. Int J. Comput. Assist Radio.
Surg. 16, 1537–1548 (2021).

26. Juhn, Y. J. et al. Assessing socioeconomic bias in machine learning algorithms in
health care: a case study of the HOUSES index. J. Am. Med. Inf. Assoc. 29,
1142–1151 (2022).

27. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an
algorithm used to manage the health of populations. Science 366, 447–453
(2019).

28. Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G. & Chin, M. H. Ensuring Fairness
in Machine Learning to Advance Health Equity. Ann. Intern. Med. 169, 866–872
(2018).

29. Moon, S. et al. Salience of Medical Concepts of Inside Clinical Texts and Outside
Medical Records for Referred Cardiovascular Patients. J. Health. Inf. Res. 3,
200–219 (2019).

30. Kang, T. et al. EliIE: An open-source information extraction system for clinical trial
eligibility criteria. J. Am. Med. Inf. Assoc. 24, 1062–1071 (2017).

31. Gilbert, E. H., Lowenstein, S. R., Koziol-McLain, J., Barta, D. C. & Steiner, J. Chart
reviews in emergency medicine research: Where are the methods? Ann. Emerg.
Med. 27, 305–308 (1996).

32. Fu, S. et al. Assessment of the impact of EHR heterogeneity for clinical research
through a case study of silent brain infarction. BMC Med Inf. Decis. Mak. 20, 60
(2020).

33. Pagali, S. R., Kumar, R., Fu, S., Sohn, S. & Yousufuddin, M. Natural Language
Processing CAM Algorithm Improves Delirium Detection Compared With Con-
ventional Methods. Am. J. Med. Qual. (2022). https://doi.org/10.1097/
JMQ.0000000000000090

34. Safarova, M. S., Liu, H. & Kullo, I. J. Rapid identification of familial hypercholes-
terolemia from electronic health records: The SEARCH study. J. Clin. Lipido. 10,
1230–1239 (2016).

35. Zeng, Z., Deng, Y., Li, X., Naumann, T. & Luo, Y. Natural Language Processing for
EHR-Based Computational Phenotyping. IEEE/ACM Trans. Comput. Biol. Bioinform.
16, 139–153 (2019).

36. Sohn, S. et al. Clinical documentation variations and NLP system portability: a
case study in asthma birth cohorts across institutions. J. Am. Med. Inf. Assoc. 25,
353–359 (2018).

37. Bodenreider, O. et al. The NLM value set authority center. Stud. Health Technol. Inf.
192, 1224 (2013).

38. Yuan, C. et al. Criteria2Query: a natural language interface to clinical databases for
cohort definition. J. Am. Med. Inf. Assoc. 26, 294–305 (2019).

39. Liu, H. et al. An information extraction framework for cohort identification using
electronic health records. AMIA Jt Summits Transl. Sci. Proc. 2013, 149–153 (2013).

40. Savova, G. K. et al. Mayo clinical Text Analysis and Knowledge Extraction System
(cTAKES): architecture, component evaluation and applications. J. Am. Med. Inf.
Assoc. 17, 507–513 (2010).

41. Vassar, M. & Holzmann, M. The retrospective chart review: important methodo-
logical considerations. J. Educ. Eval. Health Prof. 10, 12 (2013).

42. Grishman, R., Huttunen, S. & Yangarber, R. Information extraction for enhanced
access to disease outbreak reports. J. Biomed. Inf. 35, 236–246 (2002).

43. South, B. R. et al. Developing a manually annotated clinical document corpus to
identify phenotypic information for inflammatory bowel disease. BMC Bioinforma.
10, S12 (2009).

44. Anderson, W. P. Reproducibility: Stamp out shabby research conduct. Nature 519,
158 (2015).

45. Baker, D., Lidster, K., Sottomayor, A. & Amor, S. Reproducibility: Research-
reporting standards fall short. Nature 492, 41 (2012).

46. Begley, C. G., Buchan, A. M. & Dirnagl, U. Robust research: Institutions must do
their part for reproducibility. Nature 525, 25–27 (2015).

47. Kolker, E. et al. Reproducibility: In praise of open research measures. Nature 498,
170 (2013).

48. Chapman, W. W. et al. Overcoming barriers to NLP for clinical text: the role of
shared tasks and the need for additional creative solutions. J. Am. Med. Inf. Assoc.
18, 540–543 (2011).

49. Musen, M. A., Rohn, J. A., Fagan, L. M. & Shortliffe, E. H. Knowledge engineering
for a clinical trial advice system: uncovering errors in protocol specification. Bull.
Cancer 74, 291–296 (1987).

50. Leung, L. Y. et al. Agreement between neuroimages and reports for natural
language processingbased detection of silent brain infarcts and white matter
disease. BMC Neurol. 21, 189 (2021).

51. Fu, S. et al. Clinical concept extraction: A methodology review. J. Biomed. Inf. 109,
103526 (2020).

52. Observational Health Data Sciences and Informatics. OHDSI/Atlas - an Open
Source Software Tool for Researchers to Conduct Scientific Analyses on Standardized
Observational Data, https://github.com/OHDSI/Atlas (2022).

53. Wu, S. et al. in Proceedings of the 10th International Conference on Language
Resources and Evaluation, LREC 2016 3412-3416 (European Language Resources
Association (ELRA), Portoroz, Slovenia, 2016).

54. Apache Software Foundation. Apache Beam, https://beam.apache.org/ (2022).
55. Zaragoza, H. & Robertson, S. The Probabilistic Relevance Framework: BM25 and

Beyond. Found. Trends® Inf. Retr. 3, 333–389 (2009).
56. Lv, Y. & Zhai, C. Lower-bounding term frequency normalization. Proceedings of the

20th ACM international conference on Information and knowledge management.
CIKM '11, 7–16 (2011).

57. Wen, A. et al. Desiderata for delivering NLP to accelerate healthcare AI
advancement and a Mayo Clinic NLP-as-a-service implementation. NPJ Digit. Med.
2, 130 (2019).

58. Hong, N. et al. Integrating Structured and Unstructured EHR Data Using an FHIR-
based Type System: A Case Study with Medication Data. AMIA Jt Summits Transl.
Sci. Proc. 2017, 74–83 (2018).

59. Hong, N. et al. Developing a scalable FHIR-based clinical data normalization
pipeline for standardizing and integrating unstructured and structured electronic
health record data. JAMIA Open 2, 570–579 (2019).

60. Bodenreider, O. The Unified Medical Language System (UMLS): integrating bio-
medical terminology. Nucleic Acids Res. 32, D267–D270 (2004).

61. Observational Health Data Sciences and Informatics. Athena: Observational Health
Data Sciences and Informatics – OHDSI, https://athena.ohdsi.org/ (2022).

ACKNOWLEDGEMENTS
Research reported in this publication was supported by the National Center for
Advancing Translational Science of the National Institutes of Health under award
number U01TR002062 and by the National Library of Medicine under award number
R01LM011934. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health. Use case
testing of the IMPACT framework implementation was approved by the Mayo Clinic
institutional review board (IRB # 20-001137) for human subject research. We
gratefully acknowledge Michael Lin, Carmen Vodislav, Robert Gehrke, Kathryn Cook,
David Strauss, Dania Helgeson, Thomas Kingsley, and Alexander Ryu from the Mayo
Clinic for their constructive feedback during the IMPACT front-end development
process. In addition, we gratefully acknowledge Samuel A McKinven for his editorial
support with this paper.

A. Wen et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)   132 

https://github.com/mongodb/mongo
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://hl7.org/fhir/R4/
https://lucene.apache.org/
https://doi.org/10.3390/s21082855
https://doi.org/10.1097/JMQ.0000000000000090
https://doi.org/10.1097/JMQ.0000000000000090
https://github.com/OHDSI/Atlas
https://beam.apache.org/
https://athena.ohdsi.org/


AUTHOR CONTRIBUTIONS
A.W., H.H.: Equal contribution to this paper. A.W., H.H., S.F., S.L., K.M., H.L.: Designed
and Implemented Framework. A.W., H.H., S.F., L.W.: Use case testing. K.E.R., S.D.B.,
W.R.H., H.L.: Direction on framework design and cohort retrieval approaches. H.L.:
Project leadership. All authors reviewed and contributed expertize to this paper.

COMPETING INTERESTS
Author H.L. is an Editorial Board Member of npj Digital Medicine. They played no role
in the peer review or decision to publish this paper. The authors declare no further
financial or non-financial competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-023-00878-9.

Correspondence and requests for materials should be addressed to Hongfang Liu.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

A. Wen et al.

8

npj Digital Medicine (2023)   132 Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-023-00878-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The IMPACT framework and implementation for accessible in silico clinical phenotyping in the digital era
	Introduction
	The IMPACT framework for accessible in-silico clinical phenotyping
	Desideratum I: Be infrastructure-flexible and scalable
	Desideratum II: Support both ranked score and boolean retrieval schemes
	Desideratum III: Support multi-modal retrieval and result integration
	Desideratum IV: Support extensions such that textual phenotype definitions can be autonomously converted into local code sets for review
	Desideratum V: Maximize reusability and data reproducibility, minimize technical overhead, and enhance downstream generalizability
	Desideratum VI: Reflect that in-silico phenotyping is an iterative, human-in-the-loop process
	An example IMPACT implementation
	Infrastructurally-agnostic, scalable, ranking-based patient-phenotype matching
	Data source flexibility via FHIR conversions, CDM support, and JSON-based plug and play configuration
	Autonomous NLP-based conversion of textual phenotype definitions
	Re-usable infrastructure and phenotype representations and associated implications on data reproducibility and downstream algorithm generalizability
	Human in the loop evidence review and adjudication

	Discussion
	Conclusions
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




