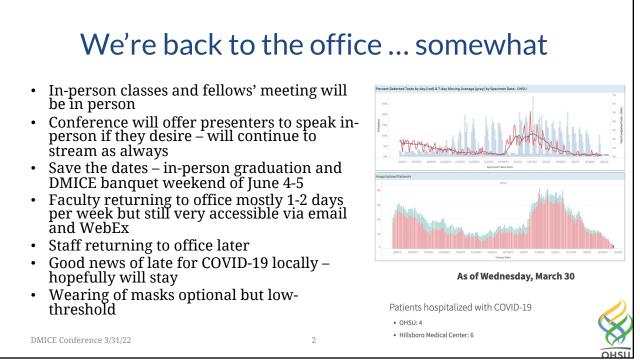
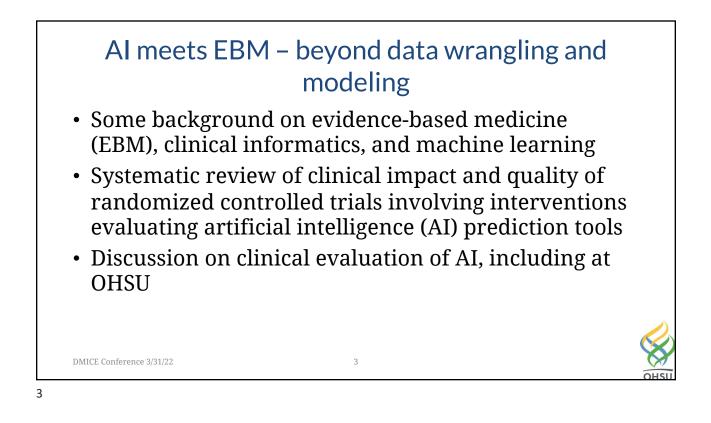
Journal Club: Clinical Impact and Quality of Randomized Controlled Trials Involving Interventions Evaluating Artificial Intelligence Prediction Tools

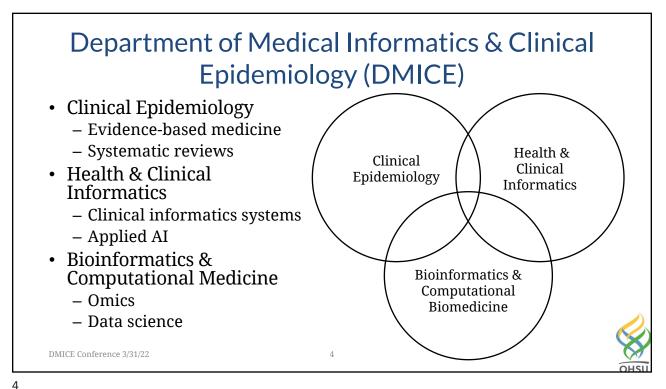
William Hersh, MD Professor and Chair Department of Medical Informatics & Clinical Epidemiology School of Medicine Oregon Health & Science University Portland, OR, USA <u>http://www.ohsu.edu/informatics</u> Email: <u>hersh@ohsu.edu</u> Web: <u>www.billhersh.info</u> Blog: <u>https://informaticsprofessor.blogspot.com/</u> Twitter: <u>@williamhersh</u>

References

- Donoho, D., 2017. 50 Years of Data Science. Journal of Computational and Graphical Statistics 26, 745–766. <u>https://doi.org/10.1080/10618600.2017.1384734</u>
- Hersh, W., 2021. Translational Artificial Intelligence: A Grand Challenge for AI. Informatics Professor. URL <u>https://informaticsprofessor.blogspot.com/2021/07/translational-artificial-intelligence.html</u> (accessed 9.28.21).
- McCarthy, J., Feigenbaum, E.A., 1990. In Memoriam: Arthur Samuel: Pioneer in Machine Learning. AIMag 11, 10–10. <u>https://doi.org/10.1609/aimag.v11i3.840</u>
- Payne, P.R.O., Bernstam, E.V., Starren, J.B., 2018. Biomedical informatics meets data science: current state and future directions for interaction. JAMIA open 1, 136–141. <u>https://doi.org/10.1093/jamiaopen/ooy032</u>
- Rajpurkar, P., Chen, E., Banerjee, O., Topol, E.J., 2022. AI in health and medicine. Nat Med 1– 8. <u>https://doi.org/10.1038/s41591-021-01614-0</u>
- Shortliffe, E.H., 2019. Artificial Intelligence in Medicine: Weighing the Accomplishments, Hype, and Promise. Yearb Med Inform 28, 257–262. <u>https://doi.org/10.1055/s-0039-1677891</u>
- Straus, S.E., Glasziou, P., Richardson, W.S., Haynes, R.B., 2018. Evidence-Based Medicine E-Book: How to Practice and Teach EBM, 5th edition. ed. Elsevier.
- Topol, E., 2019. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again, Illustrated Edition. ed. Basic Books, New York.
- Zhou, Q., Chen, Z.-H., Cao, Y.-H., Peng, S., 2021. Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools: a systematic review. NPJ Digit Med 4, 154. <u>https://doi.org/10.1038/s41746-021-00524-2</u>







This talk will address a topic at the overlap of the three areas of DMICE

- A systematic review
 - Clinical Epidemiology
- Of the clinical predictive AI tools

 Health & Clinical Informatics
- Applying data science and machine learning – Bioinformatics & Computational Medicine

DMICE	Conference	3/31	12.3
DIVITCL	conterence	3/31	144

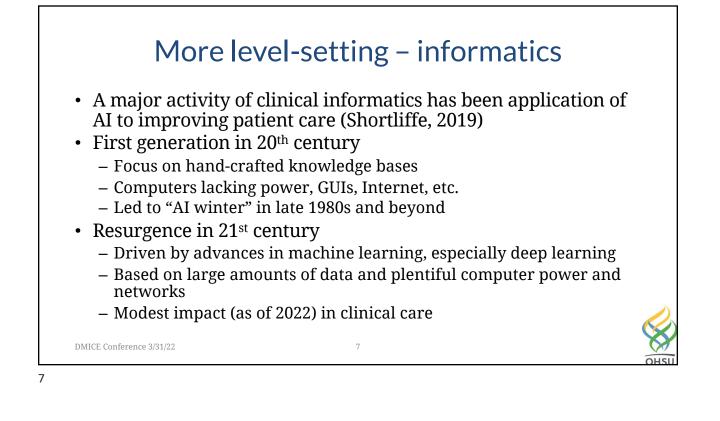
5

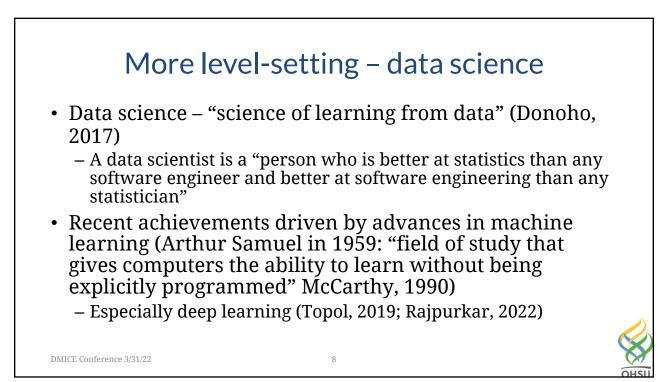
Some level-setting – clinical epidemiology and evidence-based medicine (EBM)

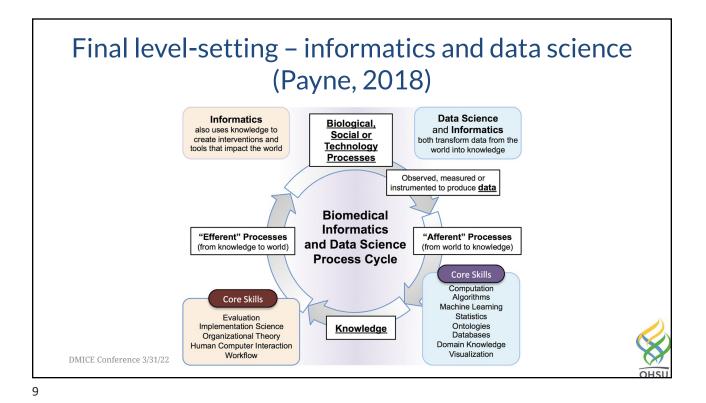
EBM applies the best evidence for making clinical decisions (Straus, 2018)

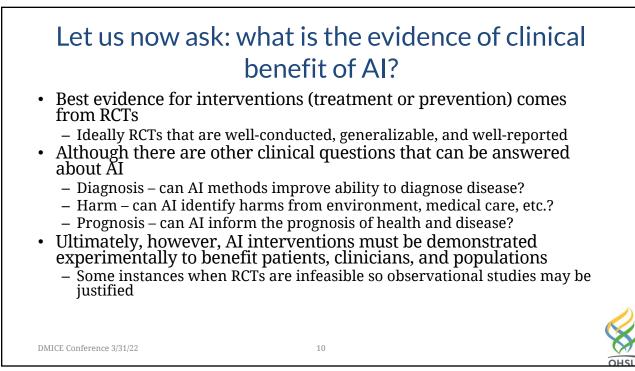
Prefer experimental studies but can use observational studies when appropriate

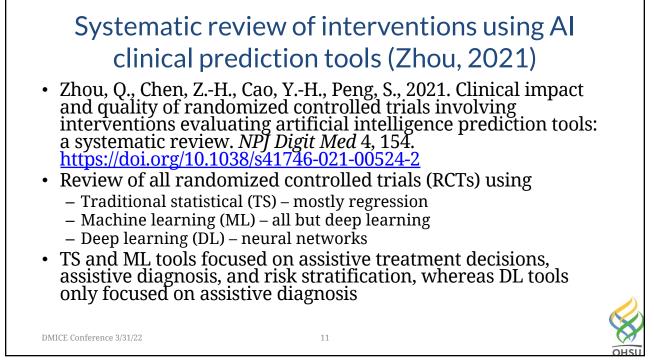
- Most clinical questions fall into four categories, each of which have best study types
 - Treatment randomized controlled trial (RCT)
 - Diagnosis comparison vs. gold standard
 - Harm cohort and case-control studies when RCT not possible
 - Prognosis prospective cohort studies
- For all study types, when sufficient number have been done
 Can carry out a systematic review
 - If data across studies homogeneous, can perform meta-analysis

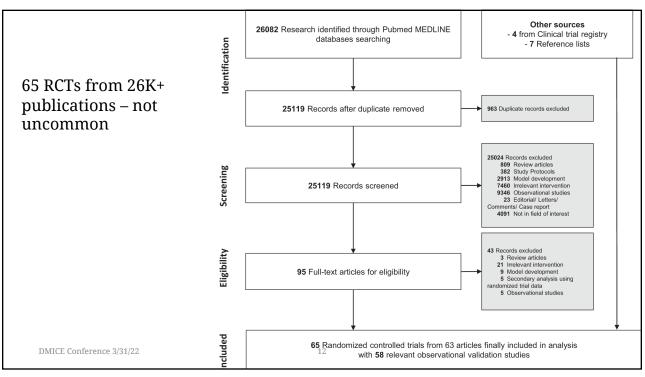












Identified 65 RCTs with following characteristics

- 61.5% positive results ٠
- Variety of disease categories cancer, other chronic disease, acute disease, • and primary care
- Types of algorithms TS > ML > DL Predictive tool function assistive treatment decisions > assistive diagnosis > • risk stratification

Some concerns of bias in studies

- One-third no sample size estimation
- Three-fourths no masking (open-label)
- Majority did not reference CONSORT, use intent-to-treat analysis, or provide • study protocol
- Caveat: number of positive studies does not necessarily indicate general • superiority of methods

DMICE Conference 3/31/22

13

	Variables	Levels	TS (n = 37)	ML (n = 17)	DL (n = 11)	P value
naracteristics by tool type	Duration of study (n = 59, months	17 [8, 32]	7 [4, 19]	6 [4, 9]	0.005	
ried	Sample size (median [IQR])	435 [194, 999]	258 [90, 537]	700 [548, 994]	0.122	
	Clinical settings (%)	Outpatients	19 (51.4)	6 (35.3)	1 (9.1)	0.015
Model input – clinical		Inpatients	17 (45.9)	8 (47.1)	10 (90.9)	
quantitative data for TS/ML,		Home	1 (2.7)	3 (17.6)	0 (0.0)	
images for DL	Publication year (%)	2010–2015	14 (37.8)	7 (41.2)	0 (0.0)	0.041
		2016-2020	23 (62.2)	10 (58.8)	11 (100.0)	
Disease category – varied for	Model input (%)	Clinical quantitative data	36 (97.3)	16 (94.1)	0 (0.0)	<0.001
TS, chronic disease for ML,		Images or videos	1 (2.7)	0 (0.0)	10 (90.9)	
cancer for DL		Natural language	0 (0.0)	1 (5.9)	1 (9.1)	
	Disease category (%)	Cancer	2 (5.4)	0 (0.0)	9 (81.8)	<0.001
Tool function – risk		Chronic disease	4 (10.8)	13 (76.5)	1 (9.1)	
stratification and treatment		Acute disease	16 (43.2)	2 (11.8)	1 (9.1)	
or TS, treatment for ML,		Primary care	9 (24.3)	0 (0.0)	0 (0.0)	
· · · ·		Others	6 (16.2)	2 (11.8)	0 (0.0)	
diagnosis for DL	Prediction tools function (%)	Assistive diagnosis	3 (8.1)	2 (11.8)	11 (100.0)	<0.001
Results – mixed for TS, more		Risk stratification	11 (29.7)	1 (5.9)	0 (0.0)	
		Assistive treatment decision	22 (59.5)	13 (76.5)	0 (0.0)	
positive for ML/DL		Others	1 (2.7)	1 (5.9)	0 (0.0)	
	Results (%)	Negative	18 (48.6)	5 (29.4)	2 (18.2)	0.136
		Positive	19 (51.4)	12 (70.6)	9 (81.8)	0.044 (P for trend

13

DMICE Conference 3/31/22

14

Table 1. G

s of the 6

37 (36.9) 7 (10.8) 21 (32.3) 21 (32.3) 44 (67.7) 48 (73.8) 1 (1.5) 2 (3.1)

7 (10.8) 7 (10.8) 55 (84.6) 10 (15.4) 49 (75.4) 12 (18.5) 4 (6.2) 33 (50.8) 32 (49.2) 11 (16.9) 18 (27.7)

19 (29.2) 9 (13.8) 8 (12.3) 37 (56.9) 17 (26.2) 11 (16.9) 35 (53.8)

6 (24.6) 2 (18.5)

13.8

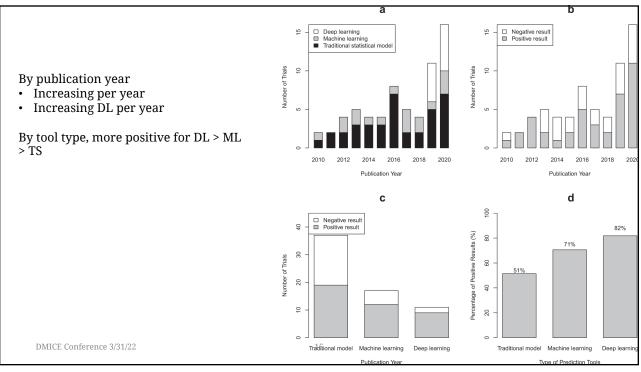
0.78

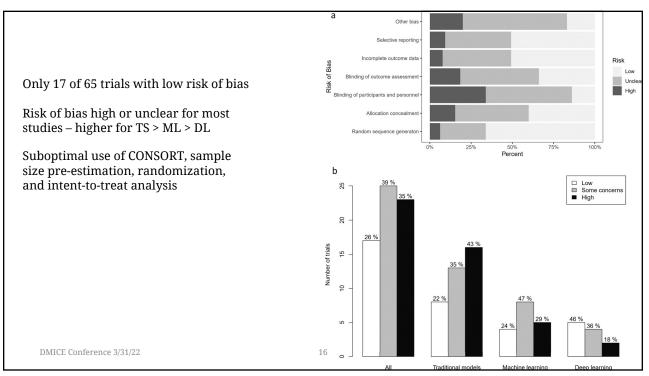
tion (a* - 18, median IIOR

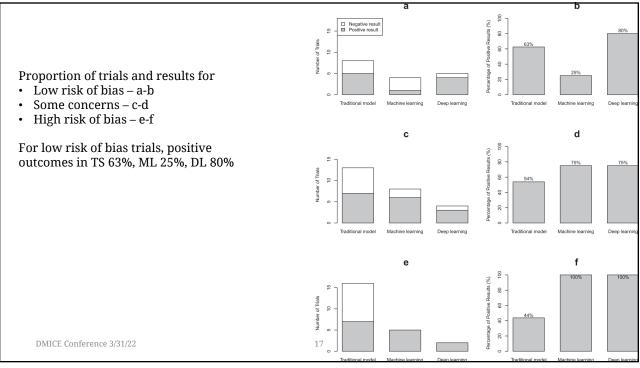
JC in external validation (nº - 20, median JQR rtile range, AUC area under

nbers used for des

KQR interqui istic curve.







- Characteristics of DL trials
 Of 11 RCTs, 9 evaluate assisting endoscopy all positive results
 2 other RCTs have negative results

Reference	Conditions	Sample size	Tools for intervention	Control	Algorithms	Tool function	Tool input	Tool output		Trial outcomes	orimary		Trial findings
Chen 2019	Upper gastrointestinal lesions	437	Routine EGD examination stratified by three types with the assistance of ENDOANGEL AI system	Routine EGD examination stratified	DCNN (VGG-16)	Assistive diagnosis	EGD images	A virtual stomach model monitoring blind spots; timing; scoring and grading	Experts referenced AI output to make EGD examination and monitor blind spots.	Mean blind s	pot rate	Experts	Positive
Lin 2019	Childhood cataracts	700	CC-cruiser web diagnosis platform	Regular ophthalmic diagnosis	DCNN (ImageNet)	Assistive diagnosis	Ocular images from slit-lamp photography	Diagnosis outcome; comprehensive evaluation; treatment recommendation	AI made diagnosis independently, and its results would be comparted with experts and not impact clinical decision making.	Accuracy diagnosis	of	Experts	Negative
Su 2019	Colorectal cancer		Routine colonoscopies with the assistance of an AI automatic quality control system	Routine colonoscopies	DCNN (AlexNet, ZFNet, YOLO V2)	Assistive diagnosis	Colonoscopy images	reminding retest and clean		rate		Pathology	
Wang 2019	Colorectal cancer		Routine colonoscopies with the assistance of an automatic polyp detection system		Deep learning architecture	Assistive diagnosis	Colonoscopy images	Location of polyps; alarming	Endoscopists were required to check every polyp location detected by the system and report of polyps and adenomas.	Adenoma d rate	etection	Pathology	Positive
Wu 2019	Upper gastrointestinal lesions	303	Routine EGD examination with the assistance of WISENSE AI system		DCNN (VGG-16 and DenseNet)	Assistive diagnosis	EGD images	A virtual stomach model monitoring blind spots; timing; scoring and grading; extracting frames with the highest confidence	Experts referenced AI output to make EGD examination and monitor blind spots.	Mean blind s	pot rate	Experts	Positive
Gong 2020	Colorectal cancer	704	ENDOANGEL-assisted routine colonoscopy	Routine colonoscopy	DCNN and perceptual hash algorithms (VGG-16)	Assistive diagnosis	Colonoscopy images		adenomas.	Adenoma c		Pathology	Positive
Liu 2020	Colorectal cancer	1026	Routine colonoscopy with CADe assistance	Routine colonoscopy	DCNN-3D	Assistive diagnosis	Colonoscopy images	lesions alarming	prompted them to view the system monitor to check the location of each polyp detected by the system.	polyps adenomas	and	Pathology	Positive
Luo 2020	Colorectal cancer	157	AI-assisted colonoscopy	Traditional colonoscopy	CNN (YOLO)	Assistive diagnosis	Colonoscopy images	Location of polyps	Endoscopists referenced AI output to make endoscopic examination and report of polyps.	Polyp detect	on rate	Not reported	Positive
Repici 2020	Colorectal cancer	685	High-definition colonoscopies with the AI-based CADe system	Routine colonoscopy	CNN	Assistive diagnosis	Colonoscopy images	Location of polys	Endoscopists referenced AI output to make endoscopic examination and report of polyps and adenomas.	rate		Pathology	Positive
Wang 2020	Colorectal cancer	962	White light colonoscopy with assistance from the CADe system		Deep learning architecture	Assistive diagnosis	Colonoscopy images	Location of polyps; alarming	Endoscopists were required to check every polyp location detected by the system and report of polyps and adenomas.	Adenoma c rate	etection	Pathology	Positive
Blomberg 2021	Out-of-hospital cardiac arrest (OHCA)	5242	Normal protocols with alert	Normal protocols without alert	Speech recognition using deep neural networks	Assistive diagnosis	Emergency calls	OHCA Alert	Dispatchers in the intervention group were alerted when the machine learning model identified out-of- hospital cardiac arrest.		of	Danish Cardiac Arrest Registry	Negative

