Information Retrieval Evaluation in the Ubiquitous Search Era: A View from the Biomedical/Health Domain

William Hersh, MD
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
School of Medicine
Oregon Health & Science University
Email: hersh@ohsu.edu
Web: www.billhersh.info
Blog: http://informaticsprofessor.blogspot.com

References

Hersh, WR, Cimino, JJ, et al. (2013). Recommendations for the use of operational electronic health record data in comparative effectiveness research. *eGEMs (Generating Evidence & Methods to improve patient outcomes)*. 1: 14. http://repository.academyhealth.org/egems/vol1/iss1/14/

Information Retrieval Evaluation in the Ubiquitous Search Era: View from the Biomedical/Health Domain

William Hersh, MD
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
School of Medicine
Oregon Health & Science University
Email: hersh@ohsu.edu
Web: www.billhersh.info
Blog: http://informaticsprofessor.blogspot.com

Overview

• Role of IR in health and biomedicine
• Personal journey: IR evaluation in health and biomedicine
 – Early work
 – Task-oriented evaluation
 – Use case-driven batch evaluation
• Future directions and recommendations
The world of IR has changed

- Evolution of my book
 - In first edition (1996), last chapter devoted to “special topic” of the Internet and Web
- Most people have used a search engine
 - And have strong opinions about them
- Previous concern of access to information (e.g., Gregor Mendel) has given way to information overload, data smog, and information chaos
- 91% of US Internet users (73% of US adults) have used a search engine (Purcell, 2012)

IR and online access firmly planted in health and biomedicine

- Biology is now defined as an “information science” (Insel, 2003)
- Pharmaceutical companies compete for informatics/library talent (Davies, 2006)
- Search for health information by clinicians, researchers, and patients/consumers is ubiquitous (Purcell, 2012; Google/Manhattan Research, 2012)
 - It’s even part of “meaningful use” rule for electronic health record adoption! (Metzger, 2012)
Popular IR-related icons permeate our lives

Models show us that information “retrieval” is more than just searching

- Information universe
- User interaction
- Medical decision-making
- Knowledge management
Information universe (Meadow, 2007)

The user's COMMUNITY

The USER of an IR system

Contribution to state of the world

An IR SYSTEM with content

The WORLD, represented by events and its state

Observations about the world

Written and electronic content

User interaction (Marchionini, 1992)

Select Source

Extract Information

Define Problem

Articulate Problem

Examine Results
Medical decision-making (Mulrow, 1997)

EVIDENCE
- Patient data
- Basic, clinical, and epidemiological research
- Randomized controlled trials
- Systematic reviews

KNOWLEDGE
- Clinical
- Epidemiological research
- Randomized controlled trials
- Systematic reviews

CLINICAL DECISION

PATIENT/CLINICIAN PREFERENCES
- Cultural beliefs
- Personal values
- Experience

GUIDELINES

CONSTRAINTS
- Formal policies and laws
- Community standards
- Time
- Financial

ETHICS

IR in context of biomedical knowledge management (Hersh, 2009)

All literature

Possibly relevant literature (abstracts)

Definitely relevant literature (full text)

Actionable knowledge

Information retrieval

Information extraction, text mining
Personal journey in IR evaluation in health and biomedical domain

• SAPHIRE
• Toward task-oriented evaluation
• Factors association with successful searching
• Domain-specific retrieval evaluation

Concept-based IR using UMLS Metathesaurus (Hersh, 1990)
Set out to evaluate SAPHIRE and IR in biomedicine

- Concept-based approach did not impart value over word indexing and searching (Hersh, JAMIA, 1994)
- Experience of several evaluations led to concern with use of recall/precision (Hersh, JASIS, 1994)
 - How much difference is meaningful?
 - How valid is batch evaluation for understand how well user will search?

Led to “task-oriented” evaluation approaches

- Motivated by Egan (1989) and Mynatt (1992)
- Major task in medicine: answering questions
- How can we evaluate systems in interactive use for answering questions?
- Undertook parallel approaches in
 - Medicine – Using bibliographic databases and electronic textbooks
 - General news – TREC Interactive Track
Medical textbook – Boolean vs. natural language (1995)

• Searching medical textbook (*Scientific American Medicine*) with Boolean and natural language interfaces
 – Medical students answering ten short-answer questions
 – Randomized to one interface or other, asked to search on questions they rated lowest confidence before searching
 – Pre-searching correctness very low (1.7/10)
 – Correctness improved markedly with searching (4.0/5)
 – When incorrect with searching, document with correct answer retrieved two-thirds of time and viewed half of time

MEDLINE – Boolean vs. natural language (1996)

• Searching MEDLINE with Ovid (Boolean) and Knowledge Finder (natural language)
 – Medical students answering yes/no clinical questions
 – 37.5% answered correctly before searching
 – 85.4% answered correctly after searching
 – No difference across systems in time taken, relevant articles retrieved, or user satisfaction
Factors associated with successful searching (Hersh, 2002)

- Medical and nurse practitioner (NP) students success of using a retrieval system to answer clinical questions
 - Had to provide not only answer but level of evidence supporting it
 - Yes with good evidence
 - Indeterminate evidence
 - No with good evidence

- Look at factors associated with success
 - Based on model of factors associated with successful use of retrieval systems (Fidel, 1983) adapted to this setting
 - Dependent variable was correctness of answer

Major categories and some factors in the model

- Associated answering question correctly with independent variables
 - Answers – correct before searching, certainty, time
 - Demographic – age, gender, school
 - Computer experience – general, searching, specific MEDLINE features
 - Cognitive – set of factors shown in past to be associated with successful computer and/or retrieval system use
 - Search mechanics – sets retrieved, references viewed
 - User satisfaction – from Questionnaire for User Interface Satisfaction (QUIS)
 - Retrieval – recall, precision
Results

• 66 participants, 45 medical and 21 NP students
 – NP students all female, medical students evenly divided
 – NP students older, with more computer use but less searching and EBM experience
 – Medical students scored higher on cognitive tests, especially of spatial visualization

• Prior to searching, rate of correctness (32.1%) about equal to chance for both groups
 – Rating of certainly low for both groups

• With searching, medical students increased rate of correctness to 51.6% but NP students remained virtually unchanged at 34.7%
 – NP student difference was likely due to judging evidence

Results (cont.)

<table>
<thead>
<tr>
<th>Pre-Search</th>
<th>Incorrect</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>133 (41%)</td>
<td>87 (27%)</td>
</tr>
<tr>
<td>N</td>
<td>81 (36%)</td>
<td>70 (31%)</td>
</tr>
<tr>
<td></td>
<td>52 (52%)</td>
<td>17 (17%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-Search</th>
<th>Incorrect</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>41 (13%)</td>
<td>63 (19%)</td>
</tr>
<tr>
<td>N</td>
<td>27 (12%)</td>
<td>45 (20%)</td>
</tr>
<tr>
<td></td>
<td>14 (14%)</td>
<td>18 (18%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Incorrect</th>
<th>Correct</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td>18%</td>
<td>18%</td>
<td>.61</td>
</tr>
<tr>
<td>Precision</td>
<td>28%</td>
<td>29%</td>
<td>.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>All</th>
<th>Medical</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td>18%</td>
<td>18%</td>
<td>20%</td>
</tr>
<tr>
<td>Precision</td>
<td>29%</td>
<td>30%</td>
<td>26%</td>
</tr>
</tbody>
</table>
Work followed on by others

- Physicians and nurse consultants searching full-text and MEDLINE resource – both improved with searching (Westbrook, 2005)
- Physicians using self-chosen resource improved minimally (McKibbon, 2006)
- Physician searching improved more with textbook than Google or MEDLINE (Thiele, 2010)
- Physicians had modest improvement with searching, no difference between Pubmed and Clinical Queries (McKibbon, 2013)

Including study of non-clinicians

 - Correct answering 61.2% before searching and 82.0% after
 - Confidence not associated with correctness
- Van Duersen (2012) – older and less educated searchers have lower search skills although younger searchers more likely to use nonrelevant search results and unreliable sources
- Taylor (2012) – same attributes of younger (“millenial generation”) searchers seen in general
Back to batch evaluation: domain-specific IR

- TREC Genomics Track
- ImageCLEFmed
- TREC Medical Records Track

TREC Genomics Track (Hersh, 2009)

- Based on use case of exploding research in genomics and inability to biologists to know all that might impact work
- First TREC track devoted to “domain-specific” retrieval, with focus on IR systems for genomics researchers
- History
 - 2004-2005 – focus on ad hoc retrieval and document categorization
 - 2006-2007 – focus on passage retrieval and question-answering as means to improve document retrieval
Lessons learned (Hersh, 2009)

• Ad hoc retrieval
 – Modest benefit for techniques known to work well in general IR, e.g., stop word removal, stemming, weighting
 – Query term expansion, especially domain-specific and/or done by humans, helped most

• QA
 – Most consistent benefit from query expansion and paragraph-length passage retrieval

• For all experiments, big problem (as always) was lack of detailed description and use of low-performing baselines

Image retrieval – ImageCLEF medical image retrieval task

• Biomedical professionals increasingly use images for research, clinical care, and education, yet we know very little about how they find them

• Developed test collection and exploration of information needs motivating use of image retrieval systems (Hersh, 2006; Hersh, 2009; Müller, 2010)

• Started with ad hoc retrieval and added tasks
 – Modality detection
 – Case finding
TREC Medical Records Track

- Adapting IR techniques to medical records
- Use case somewhat different – want to retrieve records and data within them to identify patients who might be candidates for clinical studies
- Motivated by larger desire for “secondary use” of clinical data (Safran, 2007)
- Opportunities facilitated by growing incentives for “meaningful use” of EHRs in the HITECH Act (Blumenthal, 2011; Blumenthal, 2011), aiming toward the “learning healthcare system” (Friedman, 2010; Smith 2012)

Challenges for secondary use of clinical data

- EHR data does not automatically lead to knowledge (Hersh, 2013; Hersh, 2013)
 - Data quality and accuracy is not a top priority for busy clinicians
 - Patients get care in many places, so record may be incomplete
 - Data provenance often a concern; where does data come from?
 - Best evidence for medical tests and treatments comes from experiments, i.e., evidence-based medicine
Challenges for informatics research with medical records

• Has always been easier with knowledge-based content than patient-specific data due to a variety of reasons
 - Privacy issues
 - Task issues
• Facilitated with development of large-scale, de-identified data set from University of Pittsburgh Medical Center (UPMC)
• Launched in 2011, repeated in 2012 (Voorhees, 2012)

Test collection

Report Extract
200710300S-KyWuGEXXz-488-8562698986

[Courtesy, Ellen Voorhees, NIST]
Some issues for test collection

- De-identified to remove protected health information (PHI), e.g., age number → range
- De-identification precludes linkage of same patient across different visits (encounters)
- UPMC only authorized use for TREC 2011 and TREC 2012 but nothing else, including any other research (unless approved by UPMC)

Easy and hard topics

- Easiest – best median bpref
 - 105: Patients with dementia
 - 132: Patients admitted for surgery of the cervical spine for fusion or disectomy
- Hardest – worst best bpref and worst median bpref
 - 108: Patients treated for vascular claudication surgically
 - 124: Patients who present to the hospital with episodes of acute loss of vision secondary to glaucoma
- Large differences between best and median bpref
 - 125: Patients co-infected with Hepatitis C and HIV
 - 103: Hospitalized patients treated for methicillin-resistant Staphylococcus aureus (MRSA) endocarditis
 - 111: Patients with chronic back pain who receive an intraspinal pain-medicine pump
Failure analysis for 2011 topics (Edinger, 2012)

<table>
<thead>
<tr>
<th>Reasons for Incorrect Retrieval</th>
<th>Number of Visits</th>
<th>Number of Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visits Judged Not Relevant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic terms mentioned as future possibility</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Topic symptoms/condition/procedure done in the past</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>All topic criteria present but not in the time/sequence specified by the topic description</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>Most, but not all, required topic criteria present</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>Topic terms denied or ruled out</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Notes contain very similar term confused with topic term</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Non-relevant reference in record to topic terms</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td>Topic terms not present—unclear why record was ranked highly</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Topic present—record is relevant—disagree with expert judgment</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>Visits Judged Relevant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic not present—record is not relevant—disagree with expert judgment</td>
<td>44</td>
<td>21</td>
</tr>
<tr>
<td>Topic present in record but overlooked in search</td>
<td>103</td>
<td>57</td>
</tr>
<tr>
<td>Visit notes used a synonym or lexical variant for topic terms</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>Topic terms not named in notes and must be inferred</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Topic terms present in diagnosis list but not visit notes</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Results for 2012

<table>
<thead>
<tr>
<th>Run</th>
<th>mNDCG</th>
<th>mAP</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLMMemolP</td>
<td>0.690</td>
<td>0.386</td>
<td>0.749</td>
</tr>
<tr>
<td>udeSUM</td>
<td>0.578</td>
<td>0.286</td>
<td>0.592</td>
</tr>
<tr>
<td>onasum2</td>
<td>0.547</td>
<td>0.275</td>
<td>0.557</td>
</tr>
<tr>
<td>chlumMeaSuma</td>
<td>0.526</td>
<td>0.250</td>
<td>0.611</td>
</tr>
<tr>
<td>atgeol</td>
<td>0.524</td>
<td>0.224</td>
<td>0.519</td>
</tr>
<tr>
<td>UedaMed123</td>
<td>0.517</td>
<td>0.236</td>
<td>0.528</td>
</tr>
<tr>
<td>sogTeMCenQRd</td>
<td>0.509</td>
<td>0.231</td>
<td>0.553</td>
</tr>
<tr>
<td>NICTAUBC4</td>
<td>0.487</td>
<td>0.216</td>
<td>0.517</td>
</tr>
</tbody>
</table>
What approaches did (and did not) work?

• Best results in 2011 and 2012 obtained from NLM group (Demner-Fushman, 2011)
 – Top results from manually constructed queries using Essie domain-specific search engine (Ide, 2007)
 – Other automated processes fared less well, e.g., creation of PICO frames, negation, term expansion, etc.
• Best automated results in 2011 obtained by Cengage (King, 2011)
 – Filtered by age, race, gender, admission status; terms expanded by UMLS Metathesaurus
• Benefits of approaches commonly successful in IR provided small or inconsistent value
 – Document focusing, term expansion, etc.

Another (prominent) approach to question-answering: Watson

• IBM Watson evolved out of PIQUANT system used in TREC QA Track to new system, DeepQA (Ferrucci, 2010)
 – Additional (exhaustive) details in special issues of IBM Journal of Research and Development (Ferrucci, 2012)
• Achieved fame by beating humans at Jeopardy! television game (Markoff, 2011)
• Has turned to other domains, including healthcare
 – Has “graduated” medical school (Cerrato, 2012)
 – First results are in (Ferrucci, 2012)
Watson’s first foray into medicine (Ferrucci, 2012)

- Trained using several resources from internal medicine: ACP Medicine, PIER, Merck Manual, and MKSAP
- Concept adaptation process required
 - Named entity detection – e.g., disambiguation of terms and their senses
 - Measure recognition and interpretation – e.g., age or blood test value
 - Recognition of unary relations – e.g., elevated <test result>
- Trained with 5000 questions from Doctor’s Dilemma, a competition like Jeopardy!, in which medical trainees participate and is run by the ACP each year
 - Sample question is, Familial adenomatous polyposis is caused by mutations of this gene, with the answer being, APC Gene
 - Googling the question gives the correct answer at the top of its ranking to this and two other sample questions listed

Evaluation of Watson on internal medicine questions (Ferrucci, 2012)

- Evaluated on an additional 188 unseen questions
- Primary outcome measure was recall at 10 answers
 - How would Watson compare against other systems, such as Google or Pubmed, or using other measures, such as MRR?
- Future use case for Watson is applying system to data in EHR, ultimately aiming to serve as a clinical decision support system (Cerrato, 2012)
Conclusions and future directions

• Evaluation must focus on real-world
 – Use cases
 – Collections and topics
• Use cases should focus on tasks of clinicians, researchers, and other specific roles
• Collections should reflect type and quantity of information appropriate to use cases