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Translational AI – outline

• Promise of artificial intelligence (AI) and machine 
learning (ML) in medicine

• Current state of clinical impact of AI
• Research aiming to diagnose rare disease using ML
• Educating clinicians and informaticians
• Future directions
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One-slide history of AI and ML in medicine

• A major activity of clinical informatics has been application of 
AI with aim of improving patient care (Shortliffe, 2019)

• First generation in 1960s-1980s
– Focus on hand-crafted knowledge bases
– Computers lacking data, processing power, GUIs, Internet, etc.
– Led to “AI winter” in late 1980s and beyond

• Resurgence in 21st century
– Driven by advances in ML, especially deep learning
– Based on plentiful data, computer power, and networks
– Overviews – Topol (2019), NAM (2019), Cohen (2022)
– Still modest impact (as of 2023) in clinical settings
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Promise of ML and AI in medicine

• Imaging
• Other applications
• Systematic reviews
• Building the evidence base
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Imaging

• Earliest success for ML and AI
• Diabetic retinopathy (DR) 

(Gulshan, 2016; Ting, 2017)
• Histology of cancer (Bejnordi, 

2017) and metastases (Veta, 2019)
• Tuberculosis (Lakhani, 2017) and 

pneumonia (Rajpurkar, 2018)
• Skin cancer (Esteva, 2017; 

Haenssle, 2018; Tschandi, 2019)
• Systematic review (Liu, 2019)
• State of the art (Esteva, 2021)
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Many, many other application areas

• Wave forms – use of ECGs to determine age and sex 
(Attia, 2019)

• Age and sex determination from retinal images 
(Poplin, 2018)

• Length of stay, mortality, readmission, and diagnosis 
at two large medical centers (Rajkomar, 2018)

• Automatically charting symptoms from patient-
physician conversations (Rajkomar, 2019)

• “Weakly supervised” (using clinical diagnoses) 
interpretation of pathology slides would allow 
pathologists to exclude 65–75% of slides while 
retaining 100% sensitivity (Campanella, 2019)

• AI system helped physicians extract relevant patient 
information from EHR in shorter time while 
maintaining high accuracy (Chi, 2021)
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And now, large language models (LLMs)

• Building large models based on general and/or clinical text
• BERT models have transformed natural language processing 

capabilities, including in medicine, e.g., (Yang, 2022; Lehman, 2023; 
Li, 2023)

• And of course, ChatGPT has captured the public imagination, with 
some early successes in medicine
– Diagnostic and triage accuracy for 45 vignettes comparable to physicians 

(Levine, 2023)
– Answers to 21/25 questions about cardiovascular disease prevention 

deemed acceptable for patient-facing information platform and as AI-
generated draft responses to questions sent by patients (Sarraju, 2023)

– Performed at or near passing for three levels of USMLE (Kung, 2023)
– My own experience (documented in my blog): some correct answers but 

also confabulation and not admitting it does not know
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Current state of impact of AI

• From pubmed.gov
– Tens of thousands of studies applying ML or AI
– Hundreds of systematic reviews of ML and AI studies –

mostly of models applied to clinical topics
• How many studies assessing ML/AI interventions 

using gold standard, RCT?
– Collated in systematic reviews – earlier ones did not assess 

as rigorously, e.g., (Zhou, 2021; Lam, 2022)
–Most recent and rigorous (Plana, 2022)

U of Iowa 9
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Systematic review of RCTs of ML/AI in 
healthcare (Plana, 2022)

• Exhaustive search of literature databases to identify 
RCTs of ML/AI interventions through October, 2021

• Excluded studies of non-RCT design, absence of 
original data, and evaluation of nonclinical 
interventions

• Identified 41 RCTs for further analysis
• Analyzed RCT characteristics, including primary 

intervention, demographics, adherence to CONSORT-
AI reporting guideline, and Cochrane risk of bias

10U of Iowa
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Where, when, who, and what (Plana, 2022)

11U of Iowa
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Adherence to reporting guidelines and risk of 
bias (Plana, 2022)

12U of Iowa

• No assessment of study outcomes, 
unlike Zhou (2021) showing about 
60% positive

• No attempted meta-analysis

12
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Clear need to build evidence base
• As with all evidence-based medicine (EBM), major questions that guide patient care to 

ask about ML/AI include
– Diagnosis – “test” for a “disease”

• Ideally from comparison with ”gold standard”
• Predictive models are type of diagnostic test

– Treatment – therapy or intervention to prevent or treat disease; ideally from randomized 
controlled trial (RCT)

• Studies of both questions can be aggregated into systematic reviews that may (if data 
allow) be combined via meta-analysis

• Appraisal tools being developed for AI studies (Ibrahim, 2021)

13U of Iowa
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My work: applying information retrieval (search) 
to EHR data

• Use cases
– Cohort discovery
– Detection of rare diseases

• Data set
– 100-300K records extracted from OHSU Research 

Data Warehouse (fully identifiable)
• Funded by grants from

– NLM 1R01LM011934
– Alnylam Pharmaceuticals
– PTC Pharmaceuticals

• With help from OHSU collaborators
– Steven Bedrick
– Steven Chamberlin
– Aaron Cohen
– Tom Deloughery

14

(Hersh, 2020)
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Cohort discovery

• Methods (Wu, 2017) and 
results (Chamberlin, 2020) for 
collection of 100K records

• R01 with Mayo and UT 
Houston renewed; updating 
data, systems, and methods
– Standardizing on OMOP to share 

tools and methods across sites
• Major challenges
– Heterogeneous records
– Privacy concerns

15

Adults with IBD 
who haven’t had 
GI surgery

Adults with inflammatory bowel disease 
who haven’t had surgery involving the 
small intestine, colon, rectum, or anus.

Adults with a 
Vitamin D lab 
result

Adults with a lab result for 25-hydroxy 
Vitamin D collected between May 15 and 
October 15.

Postherpetic 
neuralgia treated 
with topical and 
systemic 
medication

Adults with postherpetic neuralgia ever 
treated by concurrent use of topical and 
non-opioid systemic medications.

Children seen in 
ED with oral pain

Children who were seen in the 
emergency department with herpetic 
gingivostomatitis, herpangina or hand, 
foot, and mouth disease, tonsillitis, 
gingivitis, or ulceration (aphthae, 
stomatitis, or mucositis) not due to 
chemotherapy or radiation.

3
rd

trimester 
prenatal visit 
with midwife or 
Ob/Gyn

Women who had a pregnancy with a 3
rd

trimester outpatient prenatal visit with 
an obstetrician and gynecologist or 
midwife.

U of Iowa
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Rare disease detection

• Over 1200 known rare disorders that affect < 1 in 200K patients worldwide, 
many under-diagnosed (https://rarediseases.org/; Haendel, 2020)

• Acute Intermittent Porphyria (AIP, aka Acute Hepatic Porphyria)
– Rare genetic disease of heme biosynthesis – variable penetrance
– Incidence 1 per 100K in population
– Often undiagnosed for long time
– Significant morbidity and effect on quality of life
– “Neurovisceral” symptoms common with other diseases

• Abdominal pain
• Nausea and vomiting
• Psychiatric changes 

– Diagnosed by inexpensive urine porphobilinogen test
– New highly effective (and highly expensive) treatment available – RNA-silencing 

molecule givosiran (Balwani, 2020)

16U of Iowa

16

https://rarediseases.org/


9

Can we detect rare diseases earlier using 
population-based techniques with EHR data?

• Funding from Alnylam Pharmaceuticals
• Expanded EHR data set to 200+ K patients
– Updated base data set to 200K patients

• Including from post-2015 era of ICD-10-CM coding
– Enriched with 5,571 additional patients having “porph” in 

diagnoses, lab tests, and notes
• Preparation for machine learning
– Positive training cases from ICD-10-CM E80.21 (47) with manual 

review to verify (30)
– Negative training cases were the rest

17U of Iowa
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ML approach (Cohen, 2020)

• Parsed EHR record into features – scored by frequency of 
appearance, labeled features by the EHR source document

• Univariate feature analysis – manually choose features not 
directly tied to provider attributes or suspecting patient had 
porphyria
– e.g., “DeLoughery” and “cimetidine” 

• Trained on full dataset, with best performance using support 
vector machine (SVM) with radial basis function (RBF) kernel

• Applied trained model back to full data set – ranked patients by 
margin distance

18U of Iowa
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Aimed to identify patients with symptoms but no 
consideration of diagnosis of AIP

19

Note with natural 
prevalence, would expect 
0.0005 cases out of 100

U of Iowa
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Clinical study (Hersh, 2022)

• Hindered by prolonged IRB process and COVID-19 
pandemic, study was launched in late 2020

• IRB protocol required initial contact with primary 
care physician and, if they approved, offering the 
patient urine porphobilinogen testing

• Aimed to contact and enroll all 22 patients with AIP 
symptomatology but “unrecognized”

20U of Iowa
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Clinician and patient participation

21U of Iowa
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And the results showed…

• All 7 patients who came for testing had normal urine 
porphobilinogen

• Lessons learned
– Clinical validation of machine learning models essential
– Two-step approval required for patients not under our care but 

complicated
– Rare diseases are rare
– For other diseases, testing may be expensive and/or harmful

• Next steps
– Discovery of patients with AADC deficiency (PTC Pharmaceuticals)

22U of Iowa
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Other aspects of translational AI – clinicians 
must understand enough to use in practice

• Another competency in clinical 
informatics (Hersh, 2014; Hersh, 2022)

• Must be prepared for a clinical world 
influenced by AI (James, 2022)

• Medical schools may be “missing the 
mark” on AI (Palmer, 2023)

• AI should be taught as a “fundamental 
toolset of medicine” (Ötleş, 2022)

23U of Iowa
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Informaticians must be able to implement and 
evaluate

• Have implemented “applied” 
machine learning course at 
OHSU for those with modest 
math and programming 
backgrounds

• Role for visual programming 
tools, e.g., Orange?
– (Hoyt, 2022; Hoyt, 2022)
– https://orangedatamining.com/

24U of Iowa
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Also cannot forget concerns about AI

• Data and algorithm bias
– Clinical data may not be complete or accurate (Hersh, 2013)
– Bias of clinicians and others may be “baked in” to data, leading to biased 

algorithms (Obermeyer, 2019; DeCamp, 2020)
• Language bias

– Google searches for “professional” vs. “unprofessional” hair styles reveal racial 
differences (Alexander, 2016)

– Training on large amounts of language “learns” biases inherent in text (Sheng, 
2019; Logé, 2021)

• Privacy
– Google, Apple, and others show large language models trained on public data 

expose personal information (Carlini, 2020; Wiggers, 2020)
– May be compromised by need for data to be used to improve tools, e.g., Dragon 

voice recognition (Ross, 2022) and data re-identification (Ross, 2022)
• “Non-human” authors of scientific papers (Liebrenz, 2023; Flanagin, 2023)

25U of Iowa
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How will ML and AI impact healthcare?

• Physicians (Jha, 2016; Jha, 2018; Shah, 
2019) and ML (Verghese, 2018) must 
adapt

• “AI won’t replace radiologists, but 
radiologists who use AI will replace 
radiologists who don’t,” (Langlotz, 
2019)
– True for all physicians, even Dr. McCoy?

26U of Iowa
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Future directions

• As in all of medicine, results of basic science advances in 
AI must achieve clinical translation

• We must be cognizant of all types of bias and ensure fair 
and trustworthy AI

• As will all informatics, people are more important than 
technology

• Predictive models are important but must implement 
and evaluate in clinical settings

• Great opportunity for informatics research and 
researchers!

27U of Iowa
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Thank you!

William Hersh, MD
Professor
Department of Medical Informatics & Clinical Epidemiology
School of Medicine
Oregon Health & Science University
Portland, OR, USA
http://www.ohsu.edu/informatics

Email: hersh@ohsu.edu
Web: www.billhersh.info
Blog: http://informaticsprofessor.blogspot.com
Twitter: @williamhersh
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