Artificial Intelligence: Implications for Informatics Education

December 14, 2023

William Hersh, MD Professor Department of Medical Informatics & Clinical Epidemiology School of Medicine Oregon Health & Science University Portland, OR, USA <u>https://www.ohsu.edu/informatics</u> Email: <u>hersh@ohsu.edu</u> Web: <u>http://www.billhersh.info/</u> Blog: <u>https://informaticsprofessor.blogspot.com/</u> Twitter: <u>@williamhersh</u>

References

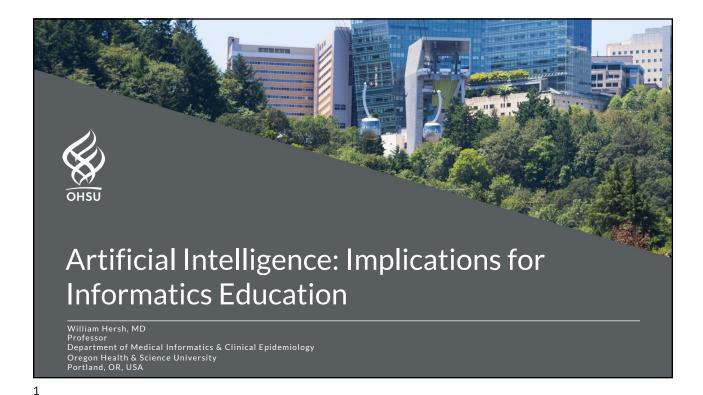
- Ali, S.R., Dobbs, T.D., Hutchings, H.A., Whitaker, I.S., 2023. Using ChatGPT to write patient clinic letters. Lancet Digit Health 5, e179–e181. <u>https://doi.org/10.1016/S2589-7500(23)00048-1</u>
- Al-Zaiti, S.S., Martin-Gill, C., Zègre-Hemsey, J.K., Bouzid, Z., Faramand, Z., Alrawashdeh,
 M.O., Gregg, R.E., Helman, S., Riek, N.T., Kraevsky-Phillips, K., Clermont, G., Akcakaya,
 M., Sereika, S.M., Van Dam, P., Smith, S.W., Birnbaum, Y., Saba, S., Sejdic, E., Callaway,
 C.W., 2023. Machine learning for ECG diagnosis and risk stratification of occlusion
 myocardial infarction. Nat Med. https://doi.org/10.1038/s41591-023-02396-3
- Antaki, F., Touma, S., Milad, D., El-Khoury, J., Duval, R., 2023. Evaluating the Performance of ChatGPT in Ophthalmology: An Analysis of Its Successes and Shortcomings. Ophthalmol Sci 3, 100324. <u>https://doi.org/10.1016/j.xops.2023.100324</u>
- Attia, Z.I., Friedman, P.A., Noseworthy, P.A., Lopez-Jimenez, F., Ladewig, D.J., Satam, G., Pellikka, P.A., Munger, T.M., Asirvatham, S.J., Scott, C.G., Carter, R.E., Kapa, S., 2019. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circ Arrhythm Electrophysiol 12, e007284. <u>https://doi.org/10.1161/CIRCEP.119.007284</u>
- Ayers, J.W., Poliak, A., Dredze, M., Leas, E.C., Zhu, Z., Kelley, J.B., Faix, D.J., Goodman, A.M., Longhurst, C.A., Hogarth, M., Smith, D.M., 2023a. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern Med 183, 589–596. https://doi.org/10.1001/jamainternmed.2023.1838
- Ayers, J.W., Zhu, Z., Poliak, A., Leas, E.C., Dredze, M., Hogarth, M., Smith, D.M., 2023b. Evaluating Artificial Intelligence Responses to Public Health Questions. JAMA Netw Open 6, e2317517. <u>https://doi.org/10.1001/jamanetworkopen.2023.17517</u>
- Ball, P., 2023. Is AI leading to a reproducibility crisis in science? Nature 624, 22–25. https://doi.org/10.1038/d41586-023-03817-6
- Barnett, G.O., Cimino, J.J., Hupp, J.A., Hoffer, E.P., 1987. DXplain. An evolving diagnostic decision-support system. JAMA 258, 67–74. <u>https://doi.org/10.1001/jama.258.1.67</u>

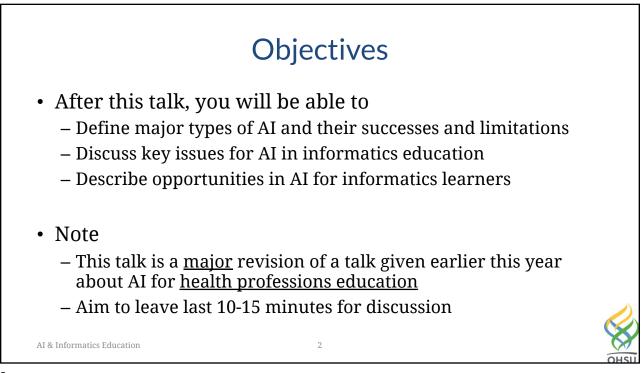
- Beam, K., Sharma, P., Kumar, B., Wang, C., Brodsky, D., Martin, C.R., Beam, A., 2023. Performance of a Large Language Model on Practice Questions for the Neonatal Board Examination. JAMA Pediatr e232373. <u>https://doi.org/10.1001/jamapediatrics.2023.2373</u>
- Benoit, J.R.A., 2023. ChatGPT for Clinical Vignette Generation, Revision, and Evaluation. https://doi.org/10.1101/2023.02.04.23285478
- Brin, D., Sorin, V., Vaid, A., Soroush, A., Glicksberg, B.S., Charney, A.W., Nadkarni, G., Klang, E., 2023. Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments. Sci Rep 13, 16492. <u>https://doi.org/10.1038/s41598-023-43436-9</u>
- Chung, H.W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S.S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E.H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q.V., Wei, J., 2022. Scaling Instruction-Finetuned Language Models. https://doi.org/10.48550/arXiv.2210.11416
- Clancey, W.J., Shortliffe, E.H., 1984. Readings in medical artificial intelligence: the first decade. Addison-Wesley Longman Publishing Co., Inc., USA.
- Clune, M.W., 2023. AI Means Professors Need to Raise Their Grading Standards [WWW Document]. The Chronicle of Higher Education. URL <u>https://www.chronicle.com/article/ai-means-professors-need-to-raise-their-grading-standards</u> (accessed 9.13.23).
- Coyner, A.S., Singh, P., Brown, J.M., Ostmo, S., Chan, R.V.P., Chiang, M.F., Kalpathy-Cramer, J., Campbell, J.P., Imaging and Informatics in Retinopathy of Prematurity Consortium, 2023. Association of Biomarker-Based Artificial Intelligence With Risk of Racial Bias in Retinal Images. JAMA Ophthalmol 141, 543–552. <u>https://doi.org/10.1001/jamaophthalmol.2023.1310</u>
- Decker, H., Trang, K., Ramirez, J., Colley, A., Pierce, L., Coleman, M., Bongiovanni, T., Melton, G.B., Wick, E., 2023. Large Language Model-Based Chatbot vs Surgeon-Generated Informed Consent Documentation for Common Procedures. JAMA Netw Open 6, e2336997. <u>https://doi.org/10.1001/jamanetworkopen.2023.36997</u>
- Dell'Acqua, F., McFowland, E., Mollick, E.R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., Krayer, L., Candelon, F., Lakhani, K.R., 2023. Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality. <u>https://doi.org/10.2139/ssrn.4573321</u>
- Desaire, H., Chua, A.E., Isom, M., Jarosova, R., Hua, D., 2023. Distinguishing academic science writing from humans or ChatGPT with over 99% accuracy using off-the-shelf machine learning tools. Cell Rep Phys Sci 4, 101426. <u>https://doi.org/10.1016/j.xcrp.2023.101426</u>
- Donzé, J., John, G., Genné, D., Mancinetti, M., Gouveia, A., Méan, M., Bütikofer, L., Aujesky, D., Schnipper, J., 2023. Effects of a Multimodal Transitional Care Intervention in Patients at High Risk of Readmission: The TARGET-READ Randomized Clinical Trial. JAMA Intern Med 183, 658–668. <u>https://doi.org/10.1001/jamainternmed.2023.0791</u>
- Dorr, D.A., Adams, L., Embí, P., 2023. Harnessing the Promise of Artificial Intelligence Responsibly. JAMA 329, 1347–1348. <u>https://doi.org/10.1001/jama.2023.2771</u>
- Dratsch, T., Chen, X., Rezazade Mehrizi, M., Kloeckner, R., Mähringer-Kunz, A., Püsken, M., Baeßler, B., Sauer, S., Maintz, D., Pinto Dos Santos, D., 2023. Automation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader Performance. Radiology 307, e222176. <u>https://doi.org/10.1148/radiol.222176</u>

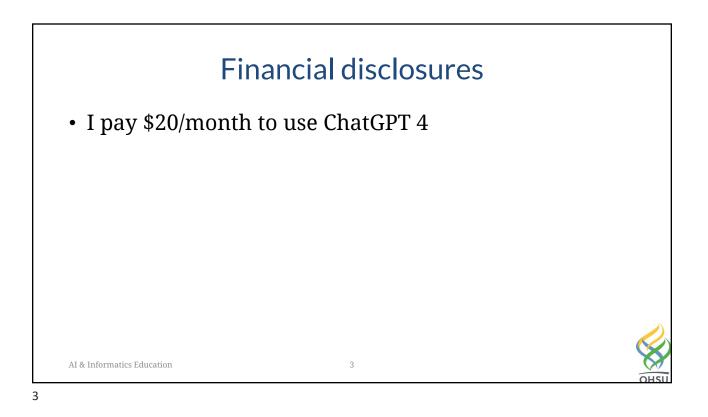
- Gichoya, J.W., Banerjee, I., Bhimireddy, A.R., Burns, J.L., Celi, L.A., Chen, L.-C., Correa, R., Dullerud, N., Ghassemi, M., Huang, S.-C., Kuo, P.-C., Lungren, M.P., Palmer, L.J., Price, B.J., Purkayastha, S., Pyrros, A.T., Oakden-Rayner, L., Okechukwu, C., Seyyed-Kalantari, L., Trivedi, H., Wang, R., Zaiman, Z., Zhang, H., 2022. AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health 4, e406–e414. https://doi.org/10.1016/S2589-7500(22)00063-2
- Greenes, R., Del Fiol, G. (Eds.), 2023. Clinical Decision Support and Beyond: Progress and Opportunities in Knowledge-Enhanced Health and Healthcare, 3rd edition. ed. Academic Press.
- Gregorich, M., Kammer, M., Heinzel, A., Böger, C., Eckardt, K.-U., Heerspink, H.L., Jung, B., Mayer, G., Meiselbach, H., Schmid, M., Schultheiss, U.T., Heinze, G., Oberbauer, R., BEAt-DKD Consortium, 2023. Development and Validation of a Prediction Model for Future Estimated Glomerular Filtration Rate in People With Type 2 Diabetes and Chronic Kidney Disease. JAMA Netw Open 6, e231870. https://doi.org/10.1001/jamanetworkopen.2023.1870
- Han, C., Kim, D.W., Kim, S., You, S.C., Park, J.Y., Bae, S., Yoon, D., 2023. Evaluation Of GPT-4 for 10-Year Cardiovascular Risk Prediction: Insights from the UK Biobank and KoGES Data. <u>https://doi.org/10.2139/ssrn.4583995</u>
- Han, R., Acosta, J.N., Shakeri, Z., Ioannidis, J., Topol, E., Rajpurkar, P., 2023. Randomized Controlled Trials Evaluating AI in Clinical Practice: A Scoping Evaluation. <u>https://doi.org/10.1101/2023.09.12.23295381</u>
- Hassan, C., Spadaccini, M., Mori, Y., Foroutan, F., Facciorusso, A., Gkolfakis, P., Tziatzios, G., Triantafyllou, K., Antonelli, G., Khalaf, K., Rizkala, T., Vandvik, P.O., Fugazza, A., Rondonotti, E., Glissen-Brown, J.R., Kamba, S., Maida, M., Correale, L., Bhandari, P., Jover, R., Sharma, P., Rex, D.K., Repici, A., 2023. Real-Time Computer-Aided Detection of Colorectal Neoplasia During Colonoscopy : A Systematic Review and Meta-analysis. Ann Intern Med. <u>https://doi.org/10.7326/M22-3678</u>
- Heaven, W.D., 2023. ChatGPT is going to change education, not destroy it [WWW Document]. MIT Technology Review. URL <u>https://www.technologyreview.com/2023/04/06/1071059/chatgpt-change-not-destroy-</u> education-openai/ (accessed 7.17.23).
- Hersh, W., 2020. Information Retrieval: A Biomedical and Health Perspective, 4th ed, Health Informatics. Springer International Publishing.
- Hersh, W., Pentecost, J., Hickam, D., 1996. A task-oriented approach to information retrieval evaluation. Journal of the American Society for Information Science 47, 50–56. https://doi.org/10.1002/(SICI)1097-4571(199601)47:1<50::AID-ASI5>3.0.CO;2-1
- Hersh, W.R., Crabtree, M.K., Hickam, D.H., Sacherek, L., Friedman, C.P., Tidmarsh, P., Mosbaek, C., Kraemer, D., 2002. Factors associated with success in searching MEDLINE and applying evidence to answer clinical questions. J Am Med Inform Assoc 9, 283–293. https://doi.org/10.1197/jamia.m0996
- Hinton, G.E., Osindero, S., Teh, Y.-W., 2006. A fast learning algorithm for deep belief nets. Neural Comput 18, 1527–1554. <u>https://doi.org/10.1162/neco.2006.18.7.1527</u>
- Holmstrom, L., Christensen, M., Yuan, N., Weston Hughes, J., Theurer, J., Jujjavarapu, M., Fatehi, P., Kwan, A., Sandhu, R.K., Ebinger, J., Cheng, S., Zou, J., Chugh, S.S., Ouyang, D., 2023. Deep learning-based electrocardiographic screening for chronic kidney disease. Commun Med (Lond) 3, 73. <u>https://doi.org/10.1038/s43856-023-00278-w</u>

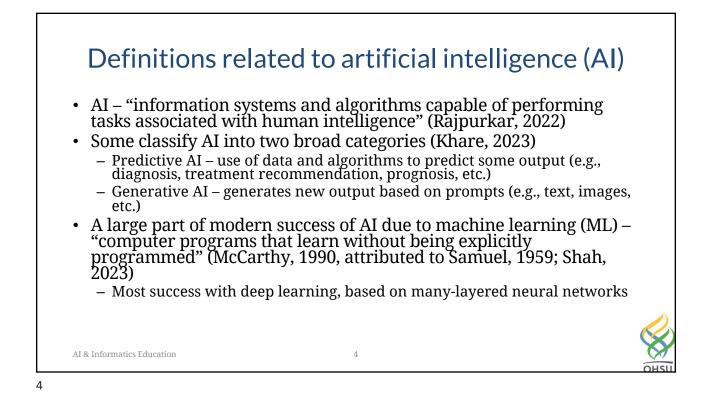
- Huang, J., Neill, L., Wittbrodt, M., Melnick, D., Klug, M., Thompson, M., Bailitz, J., Loftus, T., Malik, S., Phull, A., Weston, V., Heller, J.A., Etemadi, M., 2023. Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department. JAMA Netw Open 6, e2336100. <u>https://doi.org/10.1001/jamanetworkopen.2023.36100</u>
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis, D., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583– 589. <u>https://doi.org/10.1038/s41586-021-03819-2</u>
- Kanjee, Z., Crowe, B., Rodman, A., 2023. Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge. JAMA 330, 78–80. https://doi.org/10.1001/jama.2023.8288
- Kapoor, S., Narayanan, A., 2023. Leakage and the reproducibility crisis in machine-learningbased science. Patterns (N Y) 4, 100804. <u>https://doi.org/10.1016/j.patter.2023.100804</u>
- Kumah-Crystal, Y., Mankowitz, S., Embi, P., Lehmann, C.U., 2023. ChatGPT and the clinical informatics board examination: the end of unproctored maintenance of certification? J Am Med Inform Assoc ocad104. <u>https://doi.org/10.1093/jamia/ocad104</u>
- Kung, T.H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., Madriaga, M., Aggabao, R., Diaz-Candido, G., Maningo, J., Tseng, V., 2023. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digit Health 2, e0000198. <u>https://doi.org/10.1371/journal.pdig.0000198</u>
- Lambert, N., Castricato, L., von Werra, L., Havrilla, A., 2022. Illustrating Reinforcement Learning from Human Feedback (RLHF) [WWW Document]. Hugging Face. URL <u>https://huggingface.co/blog/rlhf</u> (accessed 12.10.23).
- Langlotz, C.P., 2019. Will Artificial Intelligence Replace Radiologists? Radiol Artif Intell 1, e190058. <u>https://doi.org/10.1148/ryai.2019190058</u>
- Lea, A.S., 2023. Digitizing Diagnosis. Johns Hopkins University Press. https://doi.org/10.56021/9781421446813
- Ledley, R.S., Lusted, L.B., 1959. Reasoning foundations of medical diagnosis; symbolic logic, probability, and value theory aid our understanding of how physicians reason. Science 130, 9–21. <u>https://doi.org/10.1126/science.130.3366.9</u>
- Lee, B.K., Mayhew, E.J., Sanchez-Lengeling, B., Wei, J.N., Qian, W.W., Little, K.A., Andres, M., Nguyen, B.B., Moloy, T., Yasonik, J., Parker, J.K., Gerkin, R.C., Mainland, J.D., Wiltschko, A.B., 2023. A principal odor map unifies diverse tasks in olfactory perception. Science 381, 999–1006. <u>https://doi.org/10.1126/science.ade4401</u>
- Levine, D.M., Tuwani, R., Kompa, B., Varma, A., Finlayson, S.G., Mehrotra, A., Beam, A., 2023. The Diagnostic and Triage Accuracy of the GPT-3 Artificial Intelligence Model. https://doi.org/10.1101/2023.01.30.23285067
- Levkovich, I., Elyoseph, Z., 2023. Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians. Fam Med Community Health 11, e002391. <u>https://doi.org/10.1136/fmch-2023-002391</u>
- Lewis, A.E., Weiskopf, N., Abrams, Z.B., Foraker, R., Lai, A.M., Payne, P.R.O., Gupta, A., 2023. Electronic health record data quality assessment and tools: a systematic review. J Am Med Inform Assoc ocad120. <u>https://doi.org/10.1093/jamia/ocad120</u>

- Liang, W., Yuksekgonul, M., Mao, Y., Wu, E., Zou, J., 2023. GPT detectors are biased against non-native English writers. Patterns (N Y) 4, 100779. https://doi.org/10.1016/j.patter.2023.100779
- Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G., 2023. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 195:1-195:35. <u>https://doi.org/10.1145/3560815</u>
- Lou, S., Du, F., Song, W., Xia, Y., Yue, X., Yang, D., Cui, B., Liu, Y., Han, P., 2023. Artificial intelligence for colorectal neoplasia detection during colonoscopy: a systematic review and meta-analysis of randomized clinical trials. eClinicalMedicine 66. <u>https://doi.org/10.1016/j.eclinm.2023.102341</u>
- Mangas-Sanjuan, C., de-Castro, L., Cubiella, J., Díez-Redondo, P., Suárez, A., Pellisé, M., Fernández, N., Zarraquiños, S., Núñez-Rodríguez, H., Álvarez-García, V., Ortiz, O., Sala-Miquel, N., Zapater, P., Jover, R., CADILLAC study investigators*, 2023. Role of Artificial Intelligence in Colonoscopy Detection of Advanced Neoplasias : A Randomized Trial. Ann Intern Med. <u>https://doi.org/10.7326/M22-2619</u>
- McCarthy, J., Feigenbaum, E.A., 1990. In Memoriam: Arthur Samuel: Pioneer in Machine Learning. AIMag 11, 10–10. <u>https://doi.org/10.1609/aimag.v11i3.840</u>
- Meskó, B., 2023. Prompt Engineering as an Important Emerging Skill for Medical Professionals: Tutorial. J Med Internet Res 25, e50638. <u>https://doi.org/10.2196/50638</u>
- Miller, R.A., Pople, H.E., Myers, J.D., 1982. Internist-1, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med 307, 468–476. https://doi.org/10.1056/NEJM198208193070803
- Mitsuyama, Y., Matsumoto, T., Tatekawa, H., Walston, S.L., Kimura, T., Yamamoto, A., Watanabe, T., Miki, Y., Ueda, D., 2023. Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan. The Lancet Healthy Longevity 0. <u>https://doi.org/10.1016/S2666-7568(23)00133-2</u>
- Mollick, E.R., Mollick, L., 2023. Assigning AI: Seven Approaches for Students, with Prompts. https://doi.org/10.2139/ssrn.4475995
- Moon, I., LoPiccolo, J., Baca, S.C., Sholl, L.M., Kehl, K.L., Hassett, M.J., Liu, D., Schrag, D., Gusev, A., 2023. Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary. Nat Med 29, 2057–2067. https://doi.org/10.1038/s41591-023-02482-6
- Mukherjee, P., Humbert-Droz, M., Chen, J.H., Gevaert, O., 2023. SCOPE: predicting future diagnoses in office visits using electronic health records. Sci Rep 13, 11005. https://doi.org/10.1038/s41598-023-38257-9
- Nam, J., 2023. 56% of College Students Have Used AI on Assignments or Exams | BestColleges [WWW Document]. BestColleges.com. URL <u>https://www.bestcolleges.com/research/most-college-students-have-used-ai-survey/</u> (accessed 12.13.23).
- Odri, G.-A., Yun Yoon, D.J., 2023. Detecting generative artificial intelligence in scientific articles: evasion techniques and implications for scientific integrity. Orthop Traumatol Surg Res 103706. <u>https://doi.org/10.1016/j.otsr.2023.103706</u>
- Omiye, J.A., Lester, J.C., Spichak, S., Rotemberg, V., Daneshjou, R., 2023. Large language models propagate race-based medicine. npj Digit. Med. 6, 1–4. https://doi.org/10.1038/s41746-023-00939-z

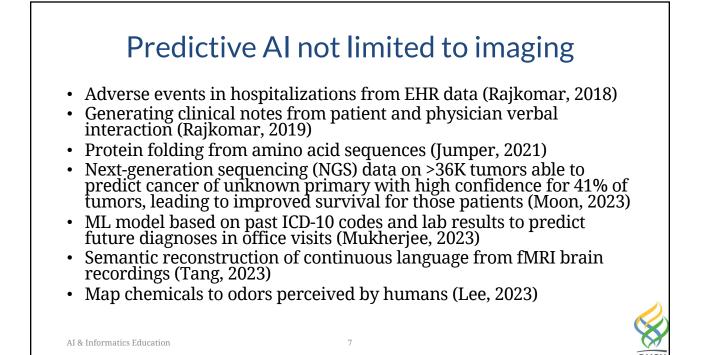

- Palmer, K., 2023. The 'model-eat-model world' of clinical AI: How predictive power becomes a pitfall. STAT. URL <u>https://www.statnews.com/2023/10/10/the-model-eat-model-world-of-clinical-ai-how-predictive-power-becomes-a-pitfall/</u> (accessed 11.28.23).
- Plana, D., Shung, D.L., Grimshaw, A.A., Saraf, A., Sung, J.J.Y., Kann, B.H., 2022. Randomized Clinical Trials of Machine Learning Interventions in Health Care: A Systematic Review. JAMA Netw Open 5, e2233946. <u>https://doi.org/10.1001/jamanetworkopen.2022.33946</u>
- Poplin, R., Varadarajan, A.V., Blumer, K., Liu, Y., McConnell, M.V., Corrado, G.S., Peng, L., Webster, D.R., 2018. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2, 158–164. <u>https://doi.org/10.1038/s41551-018-0195-0</u>
- Pyrros, A., Borstelmann, S.M., Mantravadi, R., Zaiman, Z., Thomas, K., Price, B., Greenstein, E., Siddiqui, N., Willis, M., Shulhan, I., Hines-Shah, J., Horowitz, J.M., Nikolaidis, P., Lungren, M.P., Rodríguez-Fernández, J.M., Gichoya, J.W., Koyejo, S., Flanders, A.E., Khandwala, N., Gupta, A., Garrett, J.W., Cohen, J.P., Layden, B.T., Pickhardt, P.J., Galanter, W., 2023. Opportunistic detection of type 2 diabetes using deep learning from frontal chest radiographs. Nat Commun 14, 4039. <u>https://doi.org/10.1038/s41467-023-39631-x</u>
- Rajkomar, A., Kannan, A., Chen, K., Vardoulakis, L., Chou, K., Cui, C., Dean, J., 2019. Automatically Charting Symptoms From Patient-Physician Conversations Using Machine Learning. JAMA Intern Med 179, 836–838. https://doi.org/10.1001/jamainternmed.2018.8558
- Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G.E., Irvine, J., Le, Q., Litsch, K., Mossin, A., Tansuwan, J., Wang, D., Wexler, J., Wilson, J., Ludwig, D., Volchenboum, S.L., Chou, K., Pearson, M., Madabushi, S., Shah, N.H., Butte, A.J., Howell, M.D., Cui, C., Corrado, G.S., Dean, J., 2018. Scalable and accurate deep learning with electronic health records. npj Digital Medicine 1, 1–10. <u>https://doi.org/10.1038/s41746-018-0029-1</u>
- Rajpurkar, P., Chen, E., Banerjee, O., Topol, E.J., 2022. AI in health and medicine. Nat Med 1– 8. <u>https://doi.org/10.1038/s41591-021-01614-0</u>
- Rajpurkar, P., Lungren, M.P., 2023. The Current and Future State of AI Interpretation of Medical Images. N Engl J Med 388, 1981–1990. <u>https://doi.org/10.1056/NEJMra2301725</u>
- Rao, A., Pang, M., Kim, J., Kamineni, M., Lie, W., Prasad, A.K., Landman, A., Dreyer, K., Succi, M.D., 2023. Assessing the Utility of ChatGPT Throughout the Entire Clinical Workflow: Development and Usability Study. J Med Internet Res 25, e48659. <u>https://doi.org/10.2196/48659</u>
- Raschka, S., 2023. Understanding Encoder And Decoder LLMs. Ahead of AI. URL <u>https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder</u> (accessed 9.6.23).
- Roberts, G., 2022. AI Training Datasets: the Books1+Books2 that Big AI eats for breakfast -Musings of Freedom. Musings of Freedom. URL <u>https://gregoreite.com/drilling-downdetails-on-the-ai-training-datasets/</u> (accessed 9.6.23).
- Sadasivan, V.S., Kumar, A., Balasubramanian, S., Wang, W., Feizi, S., 2023. Can AI-Generated Text be Reliably Detected? <u>https://doi.org/10.48550/arXiv.2303.11156</u>
- Sangha, V., Nargesi, A.A., Dhingra, L.S., Khunte, A., Mortazavi, B.J., Ribeiro, A.H., Banina, E., Adeola, O., Garg, N., Brandt, C.A., Miller, E.J., Ribeiro, A.L.J., Velazquez, E.J., Giatti, L.,

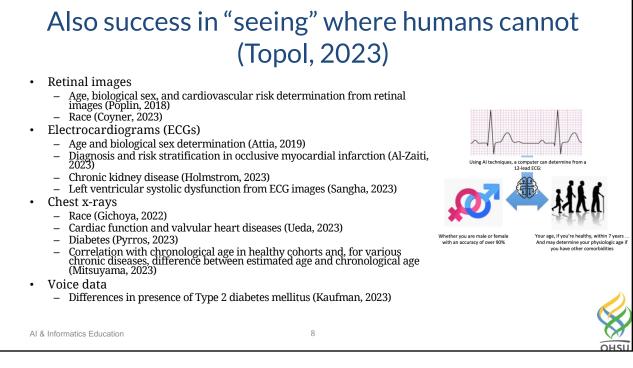

Barreto, S.M., Foppa, M., Yuan, N., Ouyang, D., Krumholz, H.M., Khera, R., 2023. Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images. Circulation. <u>https://doi.org/10.1161/CIRCULATIONAHA.122.062646</u>

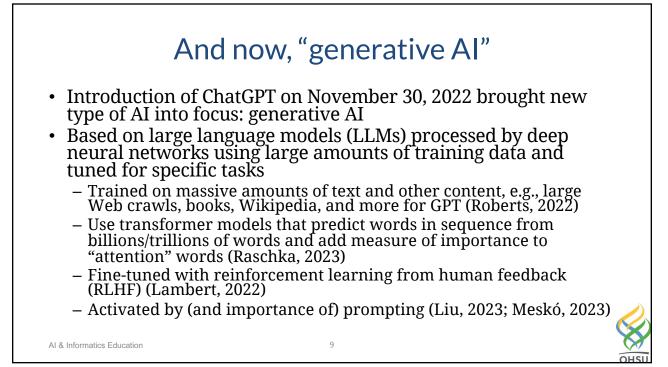

- Sanghavi, S.F., 2023. Modeling Future Estimated Glomerular Filtration Rate in Patients With Diabetes-Are There Risks to Early Risk Stratification? JAMA Netw Open 6, e238652. https://doi.org/10.1001/jamanetworkopen.2023.8652
- Sarraju, A., Bruemmer, D., Van Iterson, E., Cho, L., Rodriguez, F., Laffin, L., 2023. Appropriateness of Cardiovascular Disease Prevention Recommendations Obtained From a Popular Online Chat-Based Artificial Intelligence Model. JAMA. <u>https://doi.org/10.1001/jama.2023.1044</u>
- Shah, C., 2022. A Hands-On Introduction to Machine Learning. Cambridge University Press.
- Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.C., Cohen, S.N., 1975. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res 8, 303–320. <u>https://doi.org/10.1016/0010-4809(75)90009-9</u>
- Shung, D.L., 2023. From Tool to Team Member: A Second Set of Eyes for Polyp Detection. Ann Intern Med. <u>https://doi.org/10.7326/M23-2022</u>
- Spitale, G., Biller-Andorno, N., Germani, F., 2023. AI model GPT-3 (dis)informs us better than humans. Sci Adv 9, eadh1850. <u>https://doi.org/10.1126/sciadv.adh1850</u>
- Tang, J., LeBel, A., Jain, S., Huth, A.G., 2023. Semantic reconstruction of continuous language from non-invasive brain recordings. Nat Neurosci 26, 858–866. <u>https://doi.org/10.1038/s41593-023-01304-9</u>
- Topol, E., 2019. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again, Illustrated Edition. ed. Basic Books, New York.
- Topol, E.J., 2023. As artificial intelligence goes multimodal, medical applications multiply. Science 381, adk6139. <u>https://doi.org/10.1126/science.adk6139</u>
- Ueda, D., Matsumoto, T., Ehara, S., Yamamoto, A., Walston, S.L., Ito, A., Shimono, T., Shiba, M., Takeshita, T., Fukuda, D., Miki, Y., 2023. Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study. Lancet Digit Health S2589-7500(23)00107–3. https://doi.org/10.1016/S2589-7500(23)00107-3
- Vaid, A., Sawant, A., Suarez-Farinas, M., Lee, J., Kaul, S., Kovatch, P., Freeman, R., Jiang, J., Jayaraman, P., Fayad, Z., Argulian, E., Lerakis, S., Charney, A.W., Wang, F., Levin, M., Glicksberg, B., Narula, J., Hofer, I., Singh, K., Nadkarni, G.N., 2023. Implications of the Use of Artificial Intelligence Predictive Models in Health Care Settings : A Simulation Study. Ann Intern Med. <u>https://doi.org/10.7326/M23-0949</u>
- Wachter, R.M., 2023. The Disappointing Impact of Interventions to Prevent Hospital Readmissions. JAMA Intern Med 183, 668–669. https://doi.org/10.1001/jamainternmed.2023.0804
- Walters, W.H., Wilder, E.I., 2023. Fabrication and errors in the bibliographic citations generated by ChatGPT. Sci Rep 13, 14045. <u>https://doi.org/10.1038/s41598-023-41032-5</u>
- Warner, H.R., Toronto, A.F., Veasey, L.G., Stephenson, R., 1961. A mathematical approach to medical diagnosis. Application to congenital heart disease. JAMA 177, 177–183. <u>https://doi.org/10.1001/jama.1961.03040290005002</u>
- Widner, K., Virmani, S., Krause, J., Nayar, J., Tiwari, R., Pedersen, E.R., Jeji, D., Hammel, N., Matias, Y., Corrado, G.S., Liu, Y., Peng, L., Webster, D.R., 2023. Lessons learned from


translating AI from development to deployment in healthcare. Nat Med 29, 1304–1306. https://doi.org/10.1038/s41591-023-02293-9

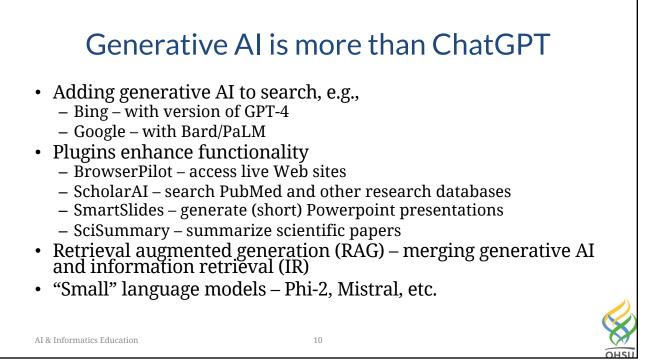
- Xu, S., Yang, L., Kelly, C., Sieniek, M., Kohlberger, T., Ma, M., Weng, W.-H., Kiraly, A., Kazemzadeh, S., Melamed, Z., Park, J., Strachan, P., Liu, Y., Lau, C., Singh, P., Chen, C., Etemadi, M., Kalidindi, S.R., Matias, Y., Chou, K., Corrado, G.S., Shetty, S., Tse, D., Prabhakara, S., Golden, D., Pilgrim, R., Eswaran, K., Sellergren, A., 2023. ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders [WWW Document]. arXiv.org. URL https://arxiv.org/abs/2308.01317v2 (accessed 9.26.23).
- Zhou, Q., Chen, Z.-H., Cao, Y.-H., Peng, S., 2021. Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools: a systematic review. NPJ Digit Med 4, 154. <u>https://doi.org/10.1038/s41746-021-00524-2</u>

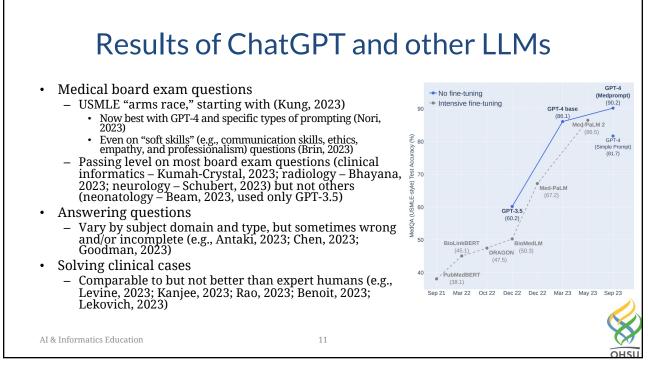

- Earliest paper related to AI and biomedical informatics attributed to Ledley and Lusted (1959) aiming to model physician reasoning through symbolic logic and probability
- Warner (1961) developed mathematical model for diagnosing congenital heart disease
- In 1960s-1970s, emergence of "expert systems" computer programs aiming to mimic human expertise (historical overview Lea, 2023)
 - Rule-based systems PhD dissertation of Shortliffe (1975) and subsequent work (Clancey, 1984)
 - Disease profiles and scoring algorithms INTERNIST-1 (Miller, 1982) and DxPlain (Barnett, 1987)
- Limited by approach of manual construction and maintenance of knowledge

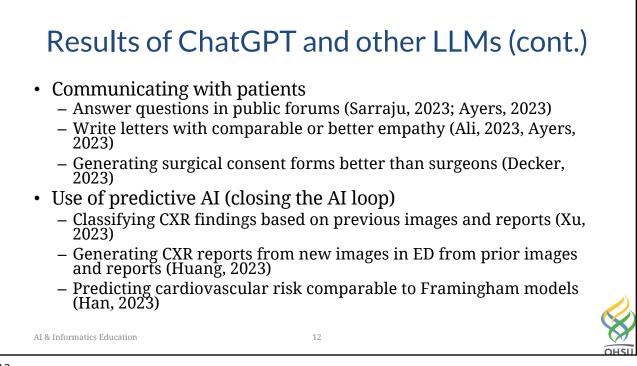

 Not scalable or sustainable
 - Led to "AI winter" between 1990-2010
 - Main remnant is clinical decision support (CDS) for electronic health records (EHRs) that emerged in 1990s for electronic health records (Greenes, 2023)

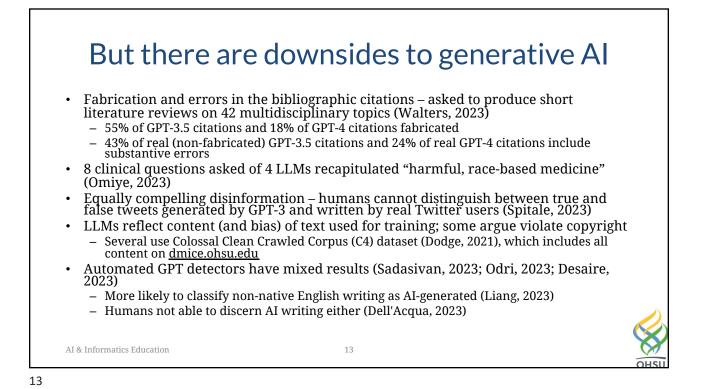

AI & Informatics Education

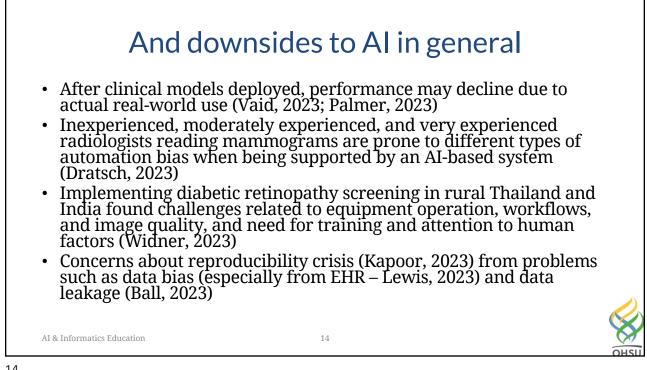
5

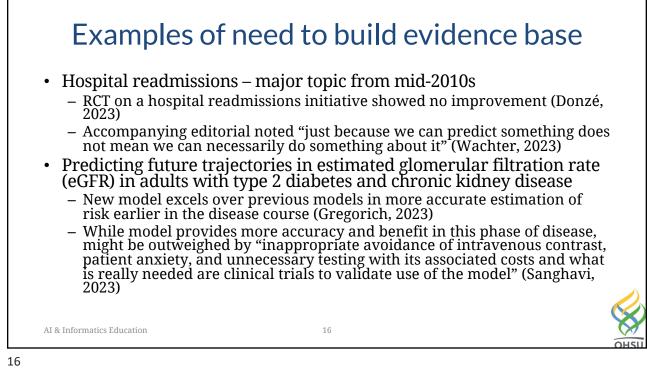

Re-emergence of AI in 21st century "Predictive AI" driven by advances in machine learning, increasing availability of data, and more powerful computers and networks (Topol, 2019; Rajpurkar, 2022) Deep learning in imaging breakthroughs by Hinton (2006)Most success in image interpretation (Rajpurkar, 2023); examples include - Radiology - chest x-rays for diagnosis of pneumonia and tuberculosis Ophthalmology - retinal images for diagnosis of diabetic avera. retinopathy - Dermatology - skin lesions for diagnosis of cancer - Pathology - breast cancer slides to predict metastasis AI & Informatics Education 6

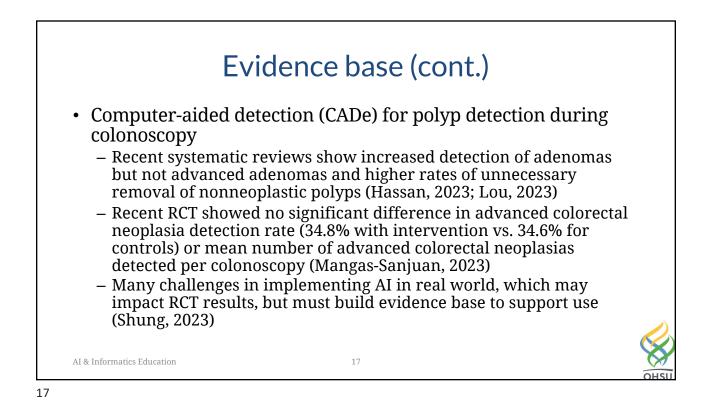


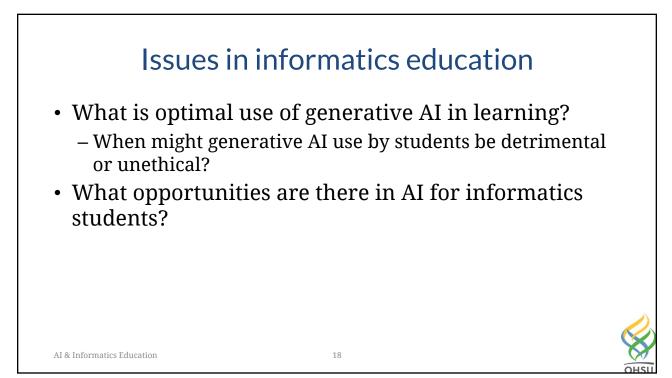


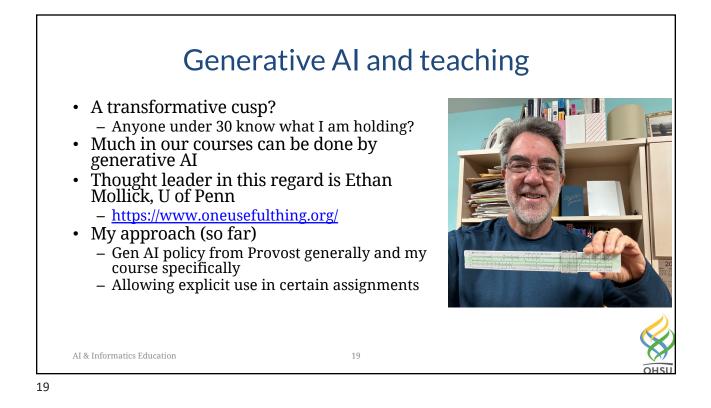


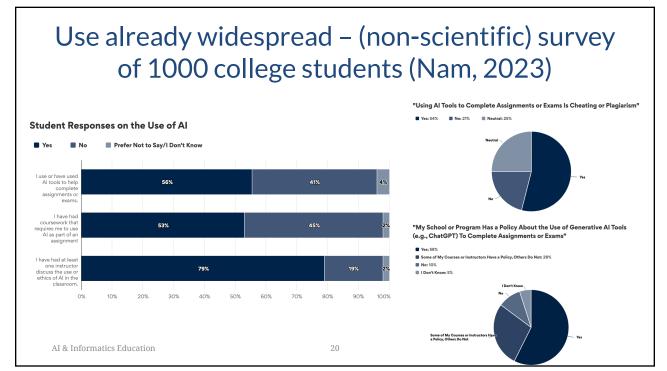


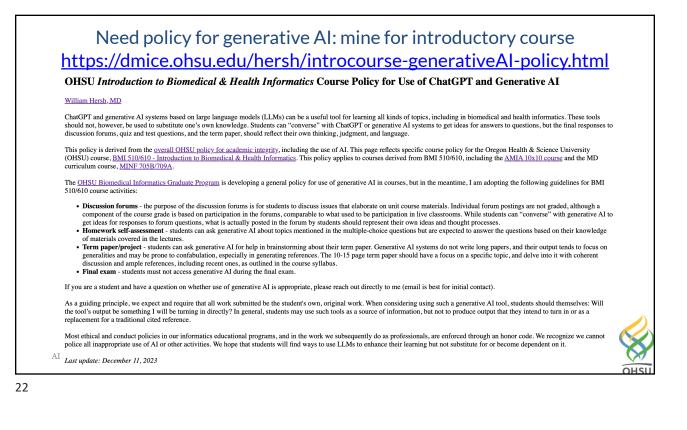


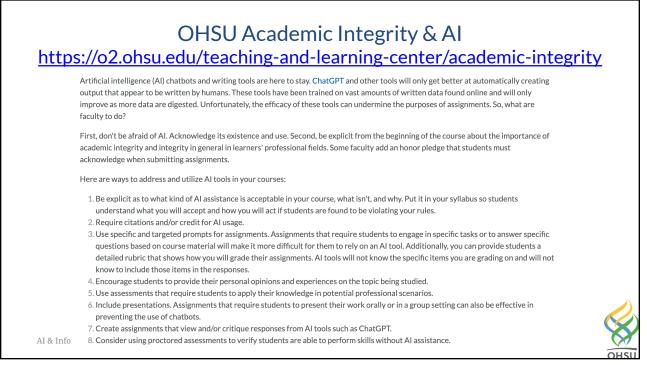


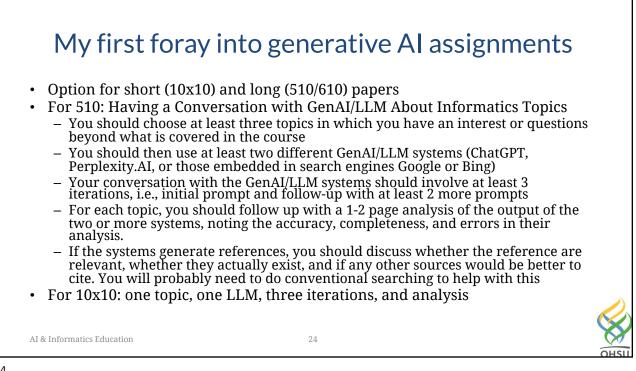




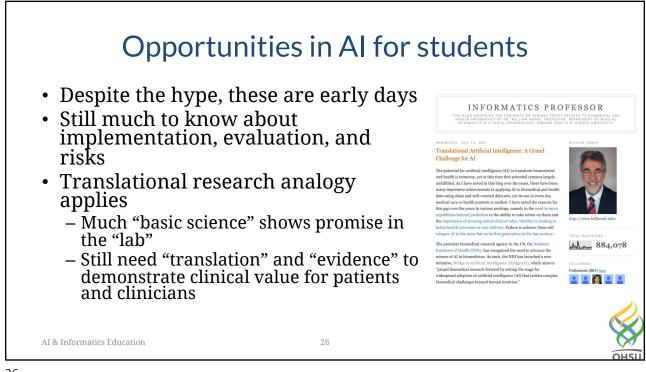


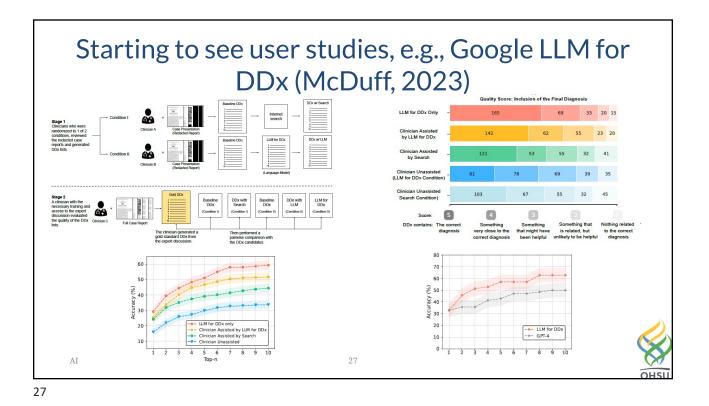


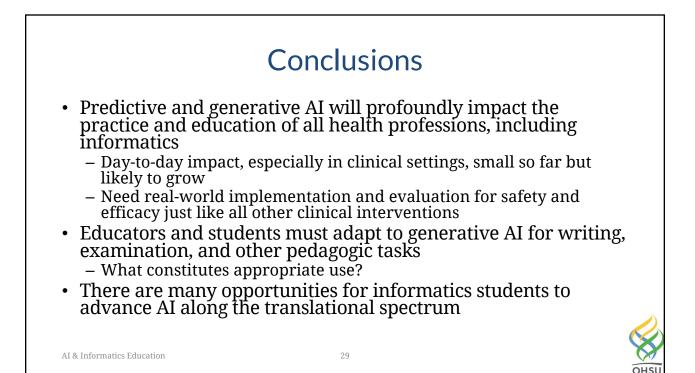


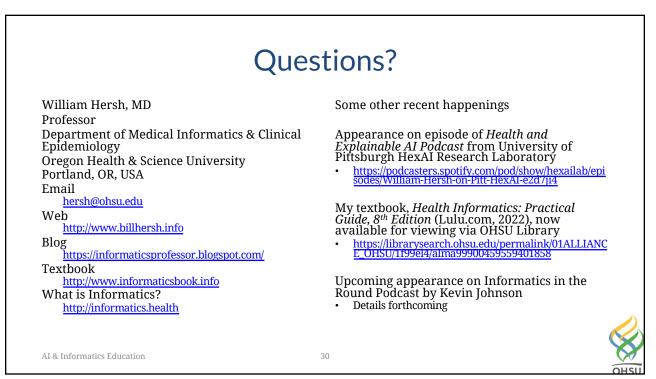

Faculty should be "assigning AI" (Mollick, 2023)


AI USE	ROLE	PEDAGOGICAL BENEFIT	PEDAGOGICAL RISK	ה'-1
MENTOR	Providing feedback	Frequent feedback improves learning outcomes, even if all advice is not taken.	Not critically examining feedback, which may contain errors.	 Risks: Confabulation Bias – from training content Privacy – policies not always clear Instructional – student over-reliance
TUTOR	Direct instruction	Personalized direct instruction is very effective.	Uneven knowledge base of AI. Serious confabulation risks.	
COACH	Prompt metacognition	Opportunities for reflection and regulation, which improve learning outcomes.	Tone or style of coaching may not match student. Risks of incorrect advice.	
TEAMMATE	Increase team performance	Provide alternate viewpoints, help learning teams function better.	Confabulation and errors. "Personality" conflicts with other team members.	
STUDENT	Receive explanations	Teaching others is a powerful learning technique.	Confabulation and argumentation may derail the benefits of teaching.	
SIMULATOR	Deliberate practice	Practicing and applying knowledge aids transfer.	Inappropriate fidelity.	
TOOL	Accomplish tasks	Helps students accomplish more within the same time frame.	Outsourcing thinking, rather than work.	
AI & Informatics Education			21	









Some lessons learned from IR user studies (Hersh, 1996; Hersh, 2002)

- Differences in user metrics (e.g., questions answered) overwhelm system metrics (e.g., recall and precision)
- Just because you show users the correct information does not mean they complete the task correctly
- Sometimes user performance worsens with an information intervention, e.g., they go from a correct to incorrect answer

AI & Informatics Education

