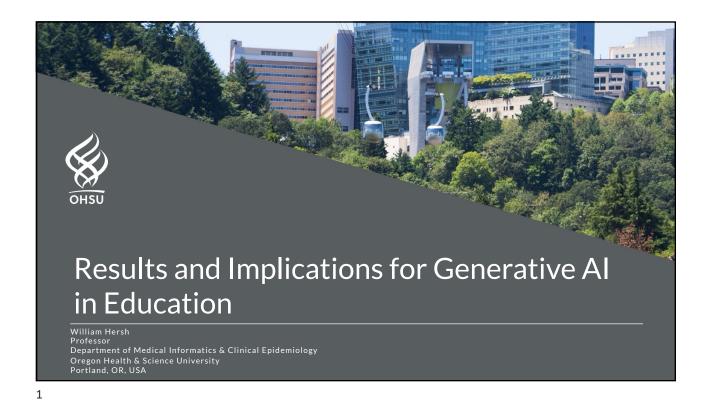
Results and Implications for Generative AI in Education

William Hersh, MD
Professor
Department of Medical Informatics & Clinical Epidemiology
School of Medicine
Oregon Health & Science University
Portland, OR, USA
https://www.ohsu.edu/informatics
Erweith beach @ ah or a dre

Email: hersh@ohsu.edu
Web: http://www.billhersh.info/

Blog: https://informaticsprofessor.blogspot.com/


X/Twitter: <u>@williamhersh</u> BlueSky: <u>@billhersh.bsky.social</u>

References

- Bayer, T., 2024. STORM: AI agents role-play as "Wikipedia editors" and "experts" to create Wikipedia-like articles, a more sophisticated effort than previous auto-generation systems [WWW Document]. Wikimedia Research Newsletter. URL https://meta.wikimedia.org/wiki/Research:Newsletter/2024/July
- Cabral, S., Restrepo, D., Kanjee, Z., Wilson, P., Crowe, B., Abdulnour, R.-E., Rodman, A., 2024. Clinical Reasoning of a Generative Artificial Intelligence Model Compared With Physicians. JAMA Intern Med. https://doi.org/10.1001/jamainternmed.2024.0295
- Chen, A., Chen, D.O., Tian, L., 2023. Benchmarking the symptom-checking capabilities of ChatGPT for a broad range of diseases. J Am Med Inform Assoc ocad245. https://doi.org/10.1093/jamia/ocad245
- Cheng, L., Li, X., Bing, L., 2023. Is GPT-4 a Good Data Analyst?, in: Bouamor, H., Pino, J., Bali, K. (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2023. Presented at the Findings 2023, Association for Computational Linguistics, Singapore, pp. 9496–9514. https://doi.org/10.18653/v1/2023.findings-emnlp.637
- Choi, J.H., Monahan, A., Schwarcz, D., 2023. Lawyering in the Age of Artificial Intelligence. https://doi.org/10.2139/ssrn.4626276
- Cortes-Gomez, S., Patiño, C., Byun, Y., Wu, S., Horvitz, E., Wilder, B., 2024. Decision-Focused Uncertainty Quantification. https://doi.org/10.48550/arXiv.2410.01767
- de Vries, A., 2023. The growing energy footprint of artificial intelligence. Joule 7, 2191–2194. https://doi.org/10.1016/j.joule.2023.09.004
- Denny, P., Prather, J., Becker, B.A., Finnie-Ansley, J., Hellas, A., Leinonen, J., Luxton-Reilly, A., Reeves, B.N., Santos, E.A., Sarsa, S., 2024. Computing Education in the Era of Generative AI. Commun. ACM 67, 56–67. https://doi.org/10.1145/3624720
- Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, Hao, Y., Qian, Y., He, Y., Rait, Z., DeVito, Z., Rosnbrick, Z., Wen, Z., Yang, Z., Zhao, Z., 2024. The Llama 3 Herd of Models. https://doi.org/10.48550/arXiv.2407.21783
- Hersh, W., 2024a. A Quarter-Century of Online Informatics Education: Learners Served and Lessons Learned. J Med Internet Res 26, e59066. https://doi.org/10.2196/59066

- Hersh, W., 2024b. Search still matters: information retrieval in the era of generative AI. J Am Med Inform Assoc 31, 2159–2161. https://doi.org/10.1093/jamia/ocae014
- Hersh, W., 2022. Competencies and Curricula Across the Spectrum of Learners for Biomedical and Health Informatics. Stud Health Technol Inform 300, 93–107. https://doi.org/10.3233/SHTI220944
- Hersh, W., Fultz Hollis, K., 2024. Results and implications for generative AI in a large introductory biomedical and health informatics course. NPJ Digit Med 7, 247. https://doi.org/10.1038/s41746-024-01251-0
- Hersh, W., Williamson, J., 2007. Educating 10,000 informaticians by 2010: the AMIA 10x10 program. Int J Med Inform 76, 377–382. https://doi.org/10.1016/j.ijmedinf.2007.01.003
- Hong, S., Lin, Y., Liu, Bang, Liu, Bangbang, Wu, B., Li, D., Chen, J., Zhang, J., Wang, J.,
 Zhang, Li, Zhang, Lingyao, Yang, M., Zhuge, M., Guo, T., Zhou, T., Tao, W., Wang, W.,
 Tang, X., Lu, X., Zheng, X., Liang, X., Fei, Y., Cheng, Y., Xu, Z., Wu, C., 2024. Data
 Interpreter: An LLM Agent For Data Science. https://doi.org/10.48550/arXiv.2402.18679
- Horvitz, E., Nori, H., Usuyama, N., 2024. Run-time strategies in foundation models: from Medprompt to OpenAI o1-preview. Microsoft Research. URL https://www.microsoft.com/en-us/research/blog/advances-in-run-time-strategies-for-next-generation-foundation-models/ (accessed 12.2.24).
- Johnson, M., 2024. Generative AI and CS Education. Commun. ACM 67, 23–24. https://doi.org/10.1145/3632523
- Jones, N., 2024. 'In awe': scientists impressed by latest ChatGPT model o1. Nature. https://doi.org/10.1038/d41586-024-03169-9
- Kanjee, Z., Crowe, B., Rodman, A., 2023. Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge. JAMA 330, 78–80. https://doi.org/10.1001/jama.2023.8288
- Katz, U., Cohen, E., Shachar, E., Somer, J., Fink, A., Morse, E., Shreiber, B., Wolf, I., 2024. GPT versus Resident Physicians A Benchmark Based on Official Board Scores. NEJM AI 0, AIdbp2300192. https://doi.org/10.1056/AIdbp2300192
- Kim, A., Muhn, M., Nikolaev, V.V., 2024. Financial Statement Analysis with Large Language Models. https://doi.org/10.2139/ssrn.4835311
- Kirkpatrick, K., 2023. The Carbon Footprint of Artificial Intelligence. Commun. ACM 66, 17–19. https://doi.org/10.1145/3603746
- Kung, T.H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., Madriaga, M., Aggabao, R., Diaz-Candido, G., Maningo, J., Tseng, V., 2023. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digit Health 2, e0000198. https://doi.org/10.1371/journal.pdig.0000198
- Learning to Reason with LLMs [WWW Document], 2024. OpenAI. URL https://openai.com/index/learning-to-reason-with-llms/ (accessed 10.7.24).
- Mollick, E., 2024. Post-apocalyptic education [WWW Document]. One Useful Thing. URL https://www.oneusefulthing.org/p/post-apocalyptic-education (accessed 9.4.24).
- Mollick, E., 2023. The Homework Apocalypse [WWW Document]. One Useful Thing. URL https://www.oneusefulthing.org/p/the-homework-apocalypse (accessed 3.20.24).
- Nori, H., Lee, Y.T., Zhang, S., Carignan, D., Edgar, R., Fusi, N., King, N., Larson, J., Li, Y., Liu, W., Luo, R., McKinney, S.M., Ness, R.O., Poon, H., Qin, T., Usuyama, N., White, C., Horvitz, E., 2023. Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine. https://doi.org/10.48550/arXiv.2311.16452

- Nori, H., Usuyama, N., King, N., McKinney, S.M., Fernandes, X., Zhang, S., Horvitz, E., 2024. From Medprompt to o1: Exploration of Run-Time Strategies for Medical Challenge Problems and Beyond. https://doi.org/10.48550/arXiv.2411.03590
- Norlen, N., Barrett, G., 2023. Word of the Year 2023 [WWW Document]. Dictionary.com. URL https://content.dictionary.com/word-of-the-year-2023/ (accessed 10.9.24).
- Poldrack, R.A., Lu, T., Beguš, G., 2023. AI-assisted coding: Experiments with GPT-4. https://doi.org/10.48550/arXiv.2304.13187
- Rao, A., Pang, M., Kim, J., Kamineni, M., Lie, W., Prasad, A.K., Landman, A., Dreyer, K., Succi, M.D., 2023. Assessing the Utility of ChatGPT Throughout the Entire Clinical Workflow: Development and Usability Study. J Med Internet Res 25, e48659. https://doi.org/10.2196/48659
- Saab, K., Tu, T., Weng, W.-H., Tanno, R., Stutz, D., Wulczyn, E., Zhang, F., Strother, T., Park, C., Vedadi, E., Chaves, J.Z., Hu, S.-Y., Schaekermann, M., Kamath, A., Cheng, Y., Barrett, D.G.T., Cheung, C., Mustafa, B., Palepu, A., McDuff, D., Hou, L., Golany, T., Liu, L., Alayrac, J., Houlsby, N., Tomasev, N., Freyberg, J., Lau, C., Kemp, J., Lai, J., Azizi, S., Kanada, K., Man, S., Kulkarni, K., Sun, R., Shakeri, S., He, L., Caine, B., Webson, A., Latysheva, N., Johnson, M., Mansfield, P., Lu, J., Rivlin, E., Anderson, J., Green, B., Wong, R., Krause, J., Shlens, J., Dominowska, E., Eslami, S.M.A., Chou, K., Cui, C., Vinyals, O., Kavukcuoglu, K., Manyika, J., Dean, J., Hassabis, D., Matias, Y., Webster, D., Barral, J., Corrado, G., Semturs, C., Mahdavi, S.S., Gottweis, J., Karthikesalingam, A., Natarajan, V., 2024. Capabilities of Gemini Models in Medicine. https://doi.org/10.48550/arXiv.2404.18416
- Savage, T., Wang, J., Gallo, R., Boukil, A., Patel, V., Safavi-Naini, S.A.A., Soroush, A., Chen, J.H., 2024. Large language model uncertainty proxies: discrimination and calibration for medical diagnosis and treatment. J Am Med Inform Assoc ocae254. https://doi.org/10.1093/jamia/ocae254
- Shaffer, M., Wang, C.C.Y., 2024. Scaling Core Earnings Measurement with Large Language Models.
- Shao, Y., Jiang, Y., Kanell, T.A., Xu, P., Khattab, O., Lam, M.S., 2024. Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models. https://doi.org/10.48550/arXiv.2402.14207
- Stribling, D., Xia, Y., Amer, M.K., Graim, K.S., Mulligan, C.J., Renne, R., 2024. The model student: GPT-4 performance on graduate biomedical science exams. Sci Rep 14, 5670. https://doi.org/10.1038/s41598-024-55568-7
- Tu, T., Palepu, A., Schaekermann, M., Saab, K., Freyberg, J., Tanno, R., Wang, A., Li, B., Amin, M., Tomasev, N., Azizi, S., Singhal, K., Cheng, Y., Hou, L., Webson, A., Kulkarni, K., Mahdavi, S.S., Semturs, C., Gottweis, J., Barral, J., Chou, K., Corrado, G.S., Matias, Y., Karthikesalingam, A., Natarajan, V., 2024. Towards Conversational Diagnostic AI. https://doi.org/10.48550/arXiv.2401.05654

Outline

- Overview generative artificial intelligence (AI) in education and related tasks
- Results of study comparing student vs. large language model (LLM) performance in an introductory biomedical and health informatics course
- Implications and challenges for generative AI in student learning and assessment

OHSU

Generative AI in Education

Overview of results of generative AI in education and related tasks

- LLMs perform well in many different types of knowledge assessments in biomedicine
 - Medical board exams
 - Graduate school bioscience exams
 - Objective structured clinical exams (OSCEs)
 - Answering clinical questions
 - Solving clinical cases
 - Conversational diagnostic dialogue
 - Clinical reasoning

- LLMs perform well in education in many other disciplines
 - High school standardized and AP exams
 - Computer science
 - Data science
 - Business
 - Law
 - PhD-level biology, chemistry, and physics

CHOI ST

Generative AI in Education

3

3

Success of generative AI – medical board exams o1-preview (96.0%) No fine-tuning - Intensive fine-tuning GPT-4 (Medprompt) (90.2%) Med-Gemini 🖁 90 GPT-4 base (86.1%) Med-PaLM 2 MedQA Test Accuracy (%) (86.5%) 80 70 Med-PaLM (67.2%) GPT-3.5 (60.2%) OB/GYN 60 USMLE "arms race" Kung, 2023 50 BioMedLM (50.3%) Nori, 2023 Katz, 2024 Saab, 2024 BioLinkBERT (45.1%) Nori, 2024 PubMedBERT (38.1%) Horvitz, 2024 Sep 21 Mar 22 Oct 22 Dec 22 Dec 22 Mar 23 May 23 Sep 23 Mar 24 Oct 24

Related research – graduate-level examinations in biomedical sciences (Stribling, 2024)

- GPT-4 performance on 9 exams
- Exceeded student average on 7 of 9 exams and all student scores for 4 exams
- · Performed very well on
 - Fill-in-the-blank, short-answer, and essay questions
 - Questions on figures sourced from published manuscripts
- Performed poorly on questions with
 - With figures containing simulated data
 - Requiring hand-drawn answer
- Two answer-sets flagged as plagiarism based on answer similarity
- Some model responses included detailed hallucinations

OHSII

Generative AI in Education

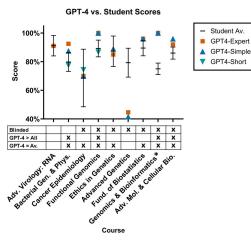
5

5

Prompts and results

GPT4-Simple Prompt Pattern:

Please answer the following questions.


GPT4-Expert Prompt Pattern:

I am going to give you questions from an examination in a graduate course in Cell Biology.
Please act as an expert in the field of Cell Biology.
Please answer each question as correctly as nossible.

Please answer each question as correctly as possible, using technical or advanced language as necessary to answer the question correctly.

GPT4-Short Prompt Pattern (after GPT4-Expert response):

Please shorten the last answer to approximately sixty-five percent of the original length. The shortened answer should be correct, clear, and concise without any numeric lists.

Generative AI in Education

Other successes of LLMs – solving clinical cases

- Comparable to but not better than expert humans (Kanjee, 2023; Rao, 2023; Chen, 2023)
- In simulated (text-based) objective structured clinical exam (OSCE) format, Google's Articulate Medical Intelligence Explorer (AMIE) outperformed primary care physicians in text-based dialogue in history-taking, diagnostic accuracy, management reasoning, communication skills, and empathy (Tu, 2024)
- For 20 clinical cases, GPT-4 performed comparable to attending physicians and residents in diagnostic accuracy, correct clinical reasoning, and cannot-miss diagnosis inclusion (Cabral, 2024)
- In randomized vignette study of diagnostic reasoning, physicians scored comparably with or without GPT-4 (76.3% vs. 73.7%, NS) but GPT-4 alone did better (92.1%, SS) (Goh, 2024)

Generative AI in Education

/

7

Success not limited to biomedicine – LLMs can

- Passing college entrance and AP exams (Dubey, 2024)
- Writing computer programs (Poldrack 2024; Denny, 2024; Johnson, 2024)
- Creating data science pipelines (Cheng, 2024; Hong, 2024)
- Predicting company earnings (Kim, 2024; Shaffer, 2024)
- Writing legal briefs (Choi, 2024)
- Outscoring PhD students on "Google-proof" questions in biology, chemistry, and physics (OpenAI, 2024; Jones, 2024)
- Do we have a "homework apocalypse" (Mollick, 2023)?

Generative AI in Education

Concerns for LLMs

- Prone to hallucinations, confabulations, etc.
 - Dictionary.com 2023 word of year: hallucinate (Norlen, 2023)
- Provide answers but not sources of knowledge (Hersh, 2024)
- Speak with confidence and trustworthiness
 - Less effective at expressing uncertainty in answers (Savage, 2024; Cortes-Gomez, 2024)
- Impact on climate (Kirkpatrick, 2023)
 - One estimate is that electricity consumption of AI request is 10fold more than Google search (de Vries, 2023)

Generative AI in Education

9

Article

9

Goals of study (Hersh and Fultz Hollis, 2024) – working backwards through title

npj | digital medicine

- Large introductory biomedical and health informatics course
 - Same curriculum and (mostly)
 assessments in courses taught to
 graduate students, medical students, and
 continuing education students
- Generative AI
 - Use of large language models (LLMs) in knowledge assessment
- Results and implications
 - How do LLMs fare on student assessments?
 - What does this mean for student assessment in this and other similar courses?

Results and implications for generative Al in a large introductory biomedical and health informatics course

William Hersh ⊠ & Kate Fultz Hollis Ø

Generative artificial intelligence (AI) systems have performed well at many biomedical tasks, but few studies have assessed their performance directly compared to students in higher-education courses. We compared student knowledge-assessment scores with prompting of 6 large-language model. (LMI) systems as they would be used by typical students in a large online introductory course in biomedical and health informatics that is taken by gnduate, continuing education, and medical students. The state-of-the-art LLM systems were prompted to answer multiple-choice questions (MCCa) and final exam questions. We compared the scores for 139 students (30 graduate students, 85 continuing education students, and 24 medical students) to the LLM systems. All of the LLMs scored between the 50° and 75° percentiles of students for MCCa and final exam questions. The performance of LLMs raises questions about student assessment in higher education, especially in courses that are knowledge-based and online.

OHSU

Generative AI in Education

10

About the course

- Introductory overview of biomedical and health informatics (Hersh, 2007; Hersh, 2022)
 - Taught at OHSU for over three decades (Hersh, 2024)
 - Updated annually
- · Taught online using
 - Voice-over-Powerpoint lectures
 - Discussion forums
 - Optional textbook readings
- Assessments include
 - Multiple-choice questions (MCQs) 10 questions in each of 10 units
 - Final exam 33 short-answer questions
 - Term paper not required of medical students, not assessed in this study

Generative AI in Education

11

11

Offered in three versions

- BMI 510/610 graduate-level course required for informatics students and elective for other (e.g., nursing, public health, basic science) students
 - Completed by 1723 students from 1996-2024
- 10x10 ("ten by ten") continuing education course offered in partnership with American Medical Informatics Association (AMIA)
 - Completed by 3326 students from 2005-2024 $\,$
- MINF 705B/709A elective course for medical students offered as two-week block or over academic quarter
 - Completed by 160 students from 2020-2024 (starting with pandemic)

Generative AI in Education

Requirements for different versions

Audience	Unit Assessments – MCQs	Final Exam	Term Paper	Grading
Graduate students	Required	Required	10-15 pages on focused topic	Letter grade
Continuing education students	Required	Optional	2-3 pages application of informatics	Pass-fail
Medical students	Required	Not required	2-3 pages self- reflection on use of informatics	Pass-fail

Generative AI in Education

13

13

Course outline - 2023

- 1. Overview of Field and Problems Motivating It
- 2. Computing Concepts for Biomedical and Health Informatics
- 3. Electronic and Personal Health Records (EHR, PHR)
- 4. Standards and Interoperability
- 5. Data Science and Artificial Intelligence
- 6. Advanced Use of the EHR
- 7. EHR Implementation, Security, and Evaluation
- 8. Information Retrieval (Search)
- 9. Research Informatics
- 10. Other Areas of Informatics

See (Hersh, 2024) for original mid-1990s course outline!

Generative AI in Education

Compared 2023 student performance with six commercial, readily available LLMs

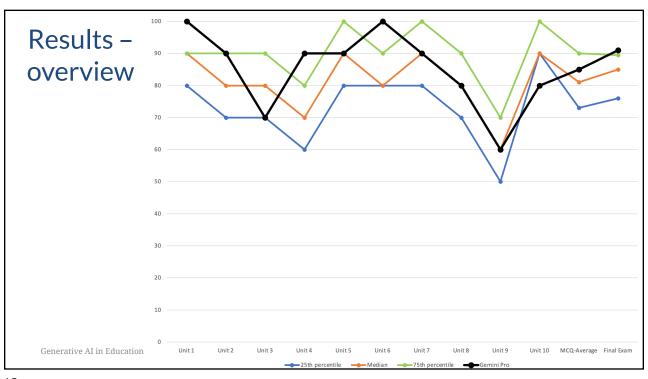
- LLMs prompted in Feb-March 2024
 - ChatGPT-4
 - Microsoft CoPilot/Bing uses GPT-4
 - Google Gemini Pro 1.0
 - Claude 3 Opus
 - Mistral-Large
- Prompted in August 2024
 - Meta Llama 3.1 405B "open-source"
- Prompted via Web interfaces as students would likely do
- · Deemed "non-human research" by IRB

Generative AI in Education

15

15

Prompts


- MCQs
 - Each LLM prompted first with, "You are a graduate student taking an introductory course in biomedical and health informatics. Please provide the best answers to the following multiple-choice questions."
 - Followed by pasting in the MCQs one unit (10 questions) at a time exactly as they appeared in MCQ preview file in LMS
- Final exam
 - Each LLM prompted with, "You are a graduate student taking the final exam in an introductory course in biomedical and health informatics. Answer each of the following questions with a short answer that is one sentence or less."
 - Followed by pasting in exam, which had 33 questions, separated into 8 sections with a one-sentence heading for each section, exactly as it appeared in LMS exam module

Generative AI in Education

The clinical leader of information systems for a healthcare system is most commonly called? a. Chief Medical Information Officer Example b. Clinical Informatics Subspecialist c. Chief Information Officer d. Health Information Manager questions e. Nursing Informatician An image captured from an HD (720p) video having 24-bit color depth takes up how much computer memory? a. 720 bytes b. 2.76 kilobytes c. 2.76 megabytes d. 22.1 megabytes e. 2.76 gigabytes f. 22.1 gigabytes The most frequent type of error in physician speech recognition data entry comes from? a. Words erroneously added b. Words erroneously deleted c. Words misspelled during editing by clinician d. Words mispronounced What would be the best source for drug terminology to use in a SMART on FHIR prescribing app in the United States? a. CPT-4 b. NANDA-I c. NDC d. LOINC e. RxTerms Which of the following is not a defined element of personal health information in the HIPAA Privacy Law? a. Facial image b. First and last name c. Name of hospital where care is obtained d. Personal email address e. Twitter handle A vendor wants your healthcare system to adopt an app that monitors blood sugar levels in patients with diabetes and recommends tailoring their insulin dose based on those values. What would be the best kind of clinical study to answer the question whether patients who use the app have better health outcomes? Generative AI in Education What is the difference between HIPAA and the European General Data Protection Regulation (GDPR) with regards to your

17

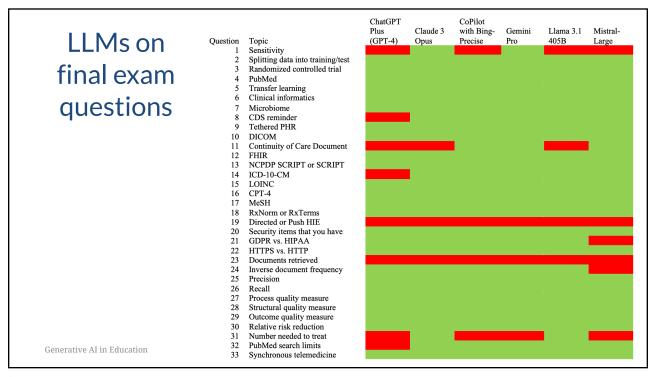
Results - detailed

Students/LLMs	MCQ Unit Average	Final Exam	MCQ+Final Combined
Students – 25 th percentile	73	76	149
Students – 50 th percentile	81	85	166
Students – 75 th percentile	90	90	180
ChatGPT Plus	88	76	164
Claude 3 Opus	81	91	172
CoPilot Bing-Precise	88	85	173
Gemini Pro	85	91	176
Llama 3.1 405B	85	88	173
Mistral-Large	83	82	165

19

Generative AI in Education

Results – clock time (in seconds)


19

LLM	MCQ Average	Final Exam
ChatGPT Plus	59.2	73
Claude 3 Opus	36.3	49
CoPilot Bing-Precise	21.6	80
Gemini Pro	22.8	25
Llama 3.1 405B	18.8	20
Mistral-Large	15.3	38

• Most time taken due to screen writing, so actual processing even faster

Generative AI in Education

21

Arguments with a peer reviewer

- Inferential statistics why no p values?
- Why these LLMs used?
- Why use of Web interfaces and not APIs?
- More demographics on students?

Generative AI in Education

22

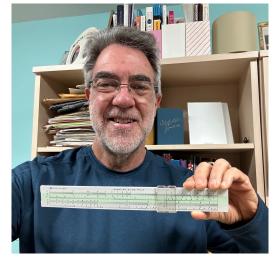
Limitations of study

- · Single course
- Student LLM use before or in course unknown
- Biomedical and health informatics evolves rapidly
- (Major, true of all studies like this) LLMs challenging for reproducibility
 - Controlled by vendors
 - Constantly updated and changing
 - Little access to internals by most users

Generative AI in Education

23

23


Well, at least LLMs cannot write the term paper

- · Not so fast!
- Synthesis of Topic Outlines through Retrieval and Multi-perspective Question Asking (STORM)
 - https://storm.genie.stanford.edu/
- (Shao, 2024; Bayer, 2024)

Generative AI in Education

Now what? Educational cusps in my lifetime

Generative AI in Education

25

First step

25

https://dmice.ohsu.edu/hersh/introcourse-generativeAl-policy.html

OHSU Introduction to Biomedical & Health Informatics Course Policy for Use of ChatGPT and Generative AI

William Hersh. MD
Professor
Department of Medical Informatics & Clinical Epidemiology
School of Medicine
Oregon Health & Science University
Last updated: September 30, 2024

This page reflects course policy for the Oregon Health & Science University (OHSU) course, Introduction to Biomedical & Health Informatics, There are versions of this course in several OHSU programs, including

- Biomedical Informatics Graduate program BML 510/610 _ Introduction to Biomedical & Health Informatics
 AMIA 10x10 ("ten by ten") course OHSU-AMIA 10x10 course
 MD curriculum course, MINE 7058/709A

ChatGPT and generative AI systems based on large language models (LLMs) can be a useful tool for learning all kinds of topics, including in biomedical and health informatics. These tools should not, however, be used to substitute one's own knowledge. Students can "converse" with ChatGPT or generative AI systems to get ideas for answers to questions, but the final responses to discussion forums, quiz and test questions, and the term paper, should reflect their own thinking, judgment, and language.

It is critically important that students not "shortchange" their learning by being overly reliant on generative Al systems. While most scientific fields have long surpassed the amount of knowledge that can be maintained in a human brain, it is important to have a fundamental core of knowledge and understanding in memory to be able to apply critical thinking to problems and analyses. In addition, just as students must attribute use of papers, books, and other sources in their work, they must also artitude use of individual control of the con

This policy is derived from the overall OHSU policy for academic integrity, including the use of Al. The OHSU Biomedical Informatics Graduate Program is developing a general policy for use of generative Al in courses, but in the meantime, I have adopted the following guidelines for course activities:

- Discussion forums the purpose of the discussion forums is for students to discuss issues that elaborate on unit course materials. Individual forum postings are not graded, although a component of the course grade is based on participation in the forums, comparable to what used to be participation in live classrooms. While students can "converse" with generative AI to get ideas for responses to forum questions, what is actually posted in the forum by students should represent their own diesa, language, and thought processes.

 Homework self-assessment students can ask generative AI about topics mentioned in the multiple-choice questions but are expected to answer the questions based on their own knowledge of materials covered in the lectures and not use generative AI with the questions themselves until after they have submitted their answers to the questions.
- Term paper/project students can ask generative AI for help in brainstorming about their term paper/project. Generative AI systems do not write long papers, and their output tends to focus on generalities and may be prone to confabulation, especially in generating references. The 10-15 term paper/project should have a focus on a specific topic, and delve into it with coherent discussion and ample references, including recent ones, as outlined in the
- Final exam students must not access generative AI during the final exam, just as they may not consult other humans during the open-book exams that is given.

If you are a student and have a question on whether use of generative AI is appropriate, please reach out directly to me (email is best for initial contact)

As a guiding principle, we expect and require that all work submitted be the student's own, original work. When considering using such a generative AI tool, students should ask themselves: Will the tool's output be something I will be turning in directly? In general, students may use such tools as a source of information, but not to produce output that they intend to turn in or as a replacement for a traditional cited reference.

Most ethical and conduct policies in our informatics educational programs, and in the work we subsequently do as professionals, are enforced through an honor code. We recognize we cannot police all inappropriate use of Al or other activities. We hope that students will find ways to use LLMs to enhance their learning but not substitute for or become dependent on it.

Next steps?

- What should be policy be for use of AI in our courses?
- How do we assess students in the era of generative AI?
- What is baseline knowledge for different disciplines?
- What else is important for generative AI and education?
- What might "post-apocalyptic education" look like (Mollick, 2024)?

Generative AI in Education

47

27

More information

- Paper
 - Hersh, W., Fultz Hollis, K. Results and implications for generative AI in a large introductory biomedical and health informatics course. *npj Digit Med*. 7, 247 (2024). https://doi.org/10.1038/s41746-024-01251-0
- OHSU News
 - https://news.ohsu.edu/2024/09/16/ohsu-researchers-test-chatgpt-other-ai-models-against-real-world-students
- Nature Research Communities
 - https://go.nature.com/3B1RLyO

Generative AI in Education

Thank you!

William Hersh, M.D.

Professor

Department of Medical Informatics & Clinical Epidemiology Oregon Health & Science University Portland, OR, USA

Email: hersh@ohsu.edu
Web: http://www.billhersh.info

Blog: https://informaticsprofessor.blogspot.com/

Also on

Facebook LinkedIn

X/Twitter – <u>@williamhersh</u> BlueSky – <u>@billhersh.bsky.social</u>

Generative AI in Education

