Training the Health and Biomedical Informatics Workforce: Competencies and Approaches

William Hersh, MD
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
Oregon Health & Science University
Portland, OR, USA
Email: hersh@ohsu.edu
Web: www.billhersh.info

References

Overview of talk

- A bright future for health information technology (HIT)
- The professional practice of biomedical informatics
- What we know and should know
- Towards an informatics profession
- Educational programs – curriculum and experiences

The picture is bright for HIT in the 21st century

- Recognition of its value, especially the electronic health record (EHR) with clinical decision support (CDS) (Bates, 2005)
- Consensus of vision regarding health information exchange (HIE) embodied in the National Health Information Network (NHIN)
- Prominent role for informatics in the National Institutes of Health (NIH) Roadmap and clinical/translational research (CTSA) initiatives (Zerhouni, 2005)

But there are impediments and challenges

- On the clinical side (Hersh, 2004)
 - Cost and financing
 - Synchronization with clinical workflow
 - Interoperability, standards, and terminology
 - Privacy and confidentiality
- On the research side (Crist, 2004)
 - Inadequate infrastructure
 - Lack of secondary reusability of data
- And for both
 - Developing a workforce of professionals and users (Hersh, 2006)

Existing competencies in informatics

- IMIA Working Group on Education (MIM, 2000)
- ACMI – aimed more at researchers (Friedman, 2004)
- UK NHS Information Authority (Christie, 2003)
- Clinical specialties
 - Medical students – AAMC, 1999
 - Nurses – Staggers, 2002
 - Nurse practitioners – Curran, 2003
 - Public Health – O’Carroll, 2002

“Education is the most powerful weapon [that] you can use to change the world.”
Nelson Mandela
Why do we need informatics competence? A case study

- Han (2005) performed retrospective pre (18 months) and post (5 months) analysis of computerized physician order entry (CPOE) in Children’s Hospital of Pittsburgh
 - Mortality rate increased from 2.80% to 6.57%
- Problems with CPOE noted to be
 - Inability to write orders before patient arrival
 - Time-consuming nature of order entry
 - Centralization of medications

Rebuttals to Han study

- Others have not found increased mortality rates
 - University of Washington (Del Baccaro, 2006)
 - Cincinnati Children’s Hospital Medical Center (Jacobs, 2006)
- Implementation was flawed; other explanations for outcome
 - Inadequate wireless network, centralization of pharmacy, non-use of order sets (Phibbs, 2005)
- Success of HIT projects known to be dependent upon variety of “special people” (Ash, 2003)

Lessons learned show need for informatics expertise (Sittig, 2006)

- Roll-out (hospitalwide in six days) too quick
- Order entry is possible before patient arrival – planning should have allowed
- Centralization of pharmacy a confounding factor and not requirement for CPOE
- Variety of communication issues, including keeping nurses and others at bedside
- Adequate network bandwidth essential
- Standardized order sets would have reduced large number of clicks (and time) per order
- Informatics expertise could have been helpful

Categories of biomedical informatics practice

<table>
<thead>
<tr>
<th>Category</th>
<th>Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic</td>
<td>Informatics researcher or teacher</td>
</tr>
<tr>
<td>Professional</td>
<td>CIO, Chief Medical/Nursing Information Officer, Developer, Trainer</td>
</tr>
<tr>
<td>Liaison</td>
<td>Represent clinical or research community in IT initiatives</td>
</tr>
</tbody>
</table>

- Adapted from Covvey et al., Pointing the Way, 2001
- Elaborated in Hersh, JAMIA, Mar/Apr 2006
- “Liaison” a better word than “expert”
- The demarcations are admittedly blurry

Medical informaticians are just part of the larger HIT workforce

- Other professionals in health care IT include
 - Health information management (HIM) professionals
 - IT professionals, often with computer science (CS) or management information systems (MIS) backgrounds
 - Health science librarians
 - Clinicians who gravitate into IT roles with or without formal training

What do we know about the HIT workforce?

- General IT staff (Gabler, 2003)
 - Assessed 85 integrated delivery systems of varying size
 - Employ about one IT staff per 56 non-IT employees
 - Roles: programmer/analyst (51%), support (28%), telecomm (16%)
- Health care CIOs (Monegain, 2004)
 - Survey of 91 found 88% in agreement that understanding of health care environment is essential to IT practice in health care settings
- Health information management (Wing, 2003)
 - Historic role of medical records departments changing
 - Projected by Bureau of Labor Statistics for 49% growth by 2010 (Hecker, 2001)
What do we know about the HIT workforce (cont.)?

- **“Informatics” workforce in the UK (Eardley, 2006)**
 - Estimated 25,000 full-time equivalents
 - Out of 1.3 million workers in NHS, or one IT staff per 52 non-IT workers
 - Distributed in following categories
 - Senior managers – 7%
 - Health records staff – 26%
 - Knowledge management staff – 9%
 - ICT staff – 37%
 - Information management staff – 18%
 - Clinical informatics staff – 3%
 - Other issues
 - Retention problems – attributed to uncompetitive pay
 - Future skills shortages anticipated
 - Strong support for establishment of formal informatics profession

Do we know anything about informaticians?

- **Hoffman and Ash (2001)**
 - Survey of potential employers of informatics graduates
 - Most important skills desired included
 - Knowledge of clinical information
 - Interpersonal skills
 - Change management
 - Relational databases
 - Project management

- **Knaup et al. (2003)**
 - Survey of first 1024 University of Heidelberg and Heilbronn graduates
 - Most important topics of study included
 - Database and information systems
 - Software development/engineering
 - Economics
 - Information systems in health care

Questions we need to answer (Hersh, 2006)

- What, if anything, distinguishes medical informatics from other areas of HIT?
- If there is a difference, where does HIT end and informatics begin?
- What jobs or roles within HIT that require formal training in medical informatics?
- What is optimal organization of the workforce within organizations to best achieve the value of HIT?
- What is the best training for the various individuals who assume those roles in the workforce?
- How can professionalization of this workforce improve implementation of HIT?

Is medical informatics a “profession?”

- According to SWEBOK (www.swebok.org), a profession is characterized by
 - An initial professional education in a curriculum validated through accreditation
 - Registration of fitness to practice via voluntary certification or mandatory licensing
 - Specialized skill development and continuing professional education
 - Communal support via a professional society
 - A commitment to norms of conduct often prescribed in a code of ethics
- Also assessed by Joyub (2004)
- By these definitions, medical informatics is not (yet) a profession

Some answers are emerging

- Summit in Nov., 2005 to address issues of building workforce
- Report published in 2006
- Based on premise that HIT benefits will not accrue without well-trained workforce to implement systems

Major recommendations from workforce report

• Adopt IOM “Quality Chasm” vision
• Create incentives to adopt “systems” that promote quality through use of HIT
• Establish industry-wide advocacy for workforce training and development
• Build awareness of need for workforce development
• Utilize innovative learning environments to train workforce
• Develop formal educational programs and promote their value
• Disseminate tools and best practices for these new professionals to succeed

Categories of informatics education

<table>
<thead>
<tr>
<th>Category</th>
<th>Typical Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic</td>
<td>- PhD</td>
</tr>
<tr>
<td></td>
<td>- Postdoc ± master’s degree</td>
</tr>
<tr>
<td>Professional</td>
<td>- Postdoc ± master’s degree</td>
</tr>
<tr>
<td></td>
<td>- Master’s Degree</td>
</tr>
<tr>
<td></td>
<td>- Graduate Certificate</td>
</tr>
<tr>
<td>Liaison</td>
<td>- 10x10</td>
</tr>
</tbody>
</table>

Education and training in the United States

• Since a highly multi-disciplinary field, no standard curriculum or accreditation
 – Listing of programs on Web site of American Medical Informatics Association (www.amia.org)
 – Description of OHSU program to follow as an example; consult other programs’ Web sites for details on their programs
• Education has historically focused on academics but is evolving to meet the needs of practitioners and users

Biomedical informatics education at OHSU

• Academic
 – Predoc/Postdoc Fellowship funded by NLM and VA
 – PhD in Biomedical Informatics degree
 – Master of Science in Biomedical Informatics degree for postdocs from other fields
• Professional
 – Master of Science and Master of Biomedical Informatics degrees
 – Graduate Certificate Program (distance learning)
• Liaison
 – OHSU-AMIA 10x10 program

Informatics curriculum at OHSU – general principles

• Aims to cover the “full spectrum” of biomedical informatics (Hersh, 2005; Hersh, 2007)
• Curriculum centered around “knowledge base”
 – Core knowledge at master’s level
 – PhD adds advanced courses and research
 – “Building block” approach allows progression to higher levels
• Have established two “tracks”
 – Medical informatics
 – Bioinformatics
 – Could establish others: public health informatics, health information management

“Knowledge base” and its “domains”

- Biomedical Informatics
- Bioinformatics and Computational Biology
- Biomedical Sciences
- Biomedical and Clinical Practice
- Computer Science
- Organizational and management sciences
- Evaluative Sciences
- Electives and graduation requirements
- Medical Informatics Track
- Bioinformatics Track
Building block approach to curriculum

- Masters
 - Knowledge Base
 - Medical Informatics
 - Bioinformatics
 - Thesis or Capstone
- Graduate Certificate
 - Biomedical Informatics
 - Organizational and Management Sciences
- PhD
 - Knowledge Base
 - Advanced Research Methods
 - Biostatistics
 - Cognate
 - Advanced Topics
 - Doctoral Symposium
 - Mentored Teaching
 - Dissertation

Educating the liaisons – 10x10

- Partnership with American Medical Informatics Association (AMIA) to meet Charles Safran’s goal of educating one physician and one nurse from each US hospital in informatics
 - Or, put another way, aim to educate 10,000 health care providers by 2010
- Course consists of introductory on-line course and adding one-day face-to-face session
 - Initial offering well-received (Hersh, 2007)
 - Other partners are also offering courses

Topics of OHSU 10x10 course

- Overview of Discipline and Its History
- Biomedical Computing
- Electronic Health Records and Health Information Exchange
- Decision Support and Health Care Quality
- Standards, Privacy and Security, Costs and Implementation
- Evidence-Based Medicine and Medical Decision-Making
- Information Retrieval and Digital Libraries
- Bioinformatics
- Imaging Informatics and Telemedicine
- Other Informatics: Consumer Health, Public Health, and Nursing
- Organization and Management Issues in Informatics

Educating beyond our site – distance learning

- (Hersh, JAMIA, 2001)
- Initially in Graduate Certificate, now master’s
- Teaching modalities include
 - Voice-over-Powerpoint lectures
 - Threaded discussions
 - Readings, virtual projects, etc.
- Courses are not correspondence courses; interaction is a core component
- Have created a virtual community
 - Meet at AMIA, HIMSS, OHSU, etc.

New models for education can be developed with this technology

- Translation of 10x10 course into Spanish for Latin American audience
- Offered in partnership with Hospital Italiano of Buenos Aires, Argentina
- Over 150 participants from 10 countries have completed course so far

How have OHSU informatics students done?

- General observation: What people do when they graduate often depends on what they did when they entered, e.g.,
 - Physicians, nurses, and other clinicians draw on their clinical background
 - Biomedical researchers draw on their unique background and experience
- Graduates have obtained jobs in a variety of settings, e.g., clinical, academic, and industry
- Some have obtained jobs before finishing the program; a few before starting
Conclusions

- Probably the most important factor for the success of HIT will be the competencies of those who use and implement it
- A skilled and knowledgeable workforce must emerge to implement HIT most effectively
- There are challenges and opportunities for those of us who are passionate about leading the way

For more information

- Bill Hersh
 – http://www.billhersh.info
- OHSU Department of Medical Informatics & Clinical Epidemiology
 – http://www.ohsu.edu/dmice
- OHSU educational programs
 – http://www.ohsu.edu/dmice/education
- American Medical Informatics Association
 – http://www.amia.org
- AMIA 10x10
 – http://www.amia.org/10x10