Caveats and Recommendations for Use of Operational Electronic Health Record Data for Research and Quality Measurement

William Hersh, MD, FACP, FACMI
Diplomate, Clinical Informatics, American Board of Preventive Medicine
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
Oregon Health & Science University
Portland, OR, USA
Email: hersh@ohsu.edu
Web: www.billhersh.info
Blog: http://informaticsprofessor.blogspot.com

References

http://www.bmj.com/content/344/bmj.e2432
http://www.biomedcentral.com/1472-6947/11/50

Hersh, WR, Cimino, JJ, et al. (2013). Recommendations for the use of operational electronic health record data in comparative effectiveness research. *eGEMs (Generating Evidence & Methods to improve patient outcomes).* 1: 14. http://repository.academyhealth.org/egems/vol1/iss1/14/

Caveats and Recommendations for Use of Operational Electronic Health Record Data for Research and Quality Measurement

William Hersh, MD, FACP, FACMI
Diplomate, Clinical Informatics, ABPM
Professor and Chair
Department of Medical Informatics & Clinical Epidemiology
Oregon Health & Science University
Portland, OR, USA
Email: hersh@ohsu.edu
Web: www.billhersh.info
Blog: http://informaticsprofessor.blogspot.com

Disclosures

• William Hersh, MD
 – Has no financial relationships to disclose
 – Will not be discussing off-label/investigative use(s) of commercial devices

• Planning committee members have nothing to disclose: Vitaly Herasevich, MD, PhD; Christopher Chute, MD; Brian Pickering, MD; and Ms. Robin Williams
Outline

• Our dysfunctional healthcare system and information-driven solutions for improving it
• Opportunities for secondary use or re-use of clinical data for research and other purposes
• Caveats of using operational clinical data
• Recommendations for using operational clinical data

Our healthcare system is broken in many ways and needs fixin’

• Action must be taken to address (Smith, 2012)
 – $750B in waste (out of $2.5T system)
 – 75,000 premature deaths
• Sources of waste – from Berwick (2012)
 – Unnecessary services provided
 – Services inefficiently delivered
 – Prices too high relative to costs
 – Excess administrative costs
 – Missed opportunities for prevention
 – Fraud
• One vision for repair is the IOM’s “learning healthcare system” (Smith, 2012)

US has made substantial investment in health information technology (HIT)

“To improve the quality of our health care while lowering its cost, we will make the immediate investments necessary to ensure that within five years, all of America’s medical records are computerized ... It just won’t save billions of dollars and thousands of jobs — it will save lives by reducing the deadly but preventable medical errors that pervade our health care system.”
January 5, 2009

Health Information Technology for Economic and Clinical Health (HITECH) Act of the American Recovery and Reinvestment Act (ARRA) (Blumenthal, 2011)
- Incentives for electronic health record (EHR) adoption by physicians and hospitals (up to $27B)
- Direct grants administered by federal agencies ($2B, including $118M for workforce development)
Which has led to significant EHR adoption in the US

(Charles, 2014)

Providing opportunities for “secondary use” or “re-use” of clinical data

• (Safran, 2007; SHARPn, Rea, 2012)
• Using data to improve care delivery – predictive analytics
• Healthcare quality measurement and improvement
• Clinical and translational research – generating hypotheses and facilitating research
• Public health surveillance – including for emerging threats
• Implementing the learning health system
Using data to improve healthcare

• With shift of payment from “volume to value,” healthcare organizations will need to manage information better to provide better care (Diamond, 2009; Horner, 2012)

• Predictive analytics is use of data to anticipate poor outcomes or increased resource use – applied by many to problem of early hospital re-admission (e.g., Gildersleeve, 2013; Amarasingham, 2013; Herbert, 2014)

• A requirement for “precision medicine” (Mirnezami, 2012) and “personalized medicine” (Altman, 2012)

Quality measurement and improvement

• Quality measures increasingly used in US and elsewhere to make care more “accountable”
 – Used more for process than outcome measures (Lee, 2011), e.g., Stage 1 meaningful use

• In UK, pay for performance schemes achieved early value but fewer further gains (Serumaga, 2011)

• In US, some quality measures found to lead to improved patient outcomes (e.g., Wang, 2011), others not (e.g., Jha, 2012)

• Desire is to derive automatically from EHR data, but this has proven challenging with current systems (Parsons, 2012; Pathak, 2013; Barkhuysen, 2014)
Clinical and translational research

• Led in part by activities of NIH Clinical and Translational Science Award (CTSA) Program (Mackenzie, 2012)

• One of largest and most productive efforts has been eMERGE Network – connecting genotype-phenotype (Gottesman, 2013; Newton, 2013)
 – http://emerge.mc.vanderbilt.edu
 – Has used EHR data to identify genomic variants associated with atrioventricular conduction abnormalities (Denny, 2010), red blood cell traits (Kullo, 2010), white blood cell count abnormalities (Crosslin, 2012), thyroid disorders (Denny, 2011), etc.

Clinical and translational research (cont.)

• Other successes include replication of clinical studies, e.g.,
 – Randomized controlled trials (RCT)
 • Women’s Health Initiative (Tannen, 2007; Weiner, 2008)
 • Other cardiovascular diseases (Tannen, 2008; Tannen, 2009) and value of statin drugs in primary prevention of coronary heart disease (Danaei, 2011)
 – Observational studies
 • Metformin and reduced cancer mortality rate (Xu, 2014)

• Much potential for using propensity scores with observational studies as complement to RCTs
 – Often but not always obtain same results as RCTs (Dahabreh, 2014)
Public health

- “ Syndromic surveillance” aims to use data sources for early detection of public health threats, from bioterrorism to emergent diseases
- Interest increased after 9/11 attacks (Henning, 2004; Chapman, 2004; Gerbier, 2011)
- Ongoing effort in Google Flu Trends
 - http://www.google.org/flutrends/
 - Search terms entered into Google predicted flu activity but not early enough to intervene (Ginsberg, 2009)
 - Performance in recent years has been poorer (Butler, 2013)
 - Case of needing to avoid “Big Data hubris” (Lazer, 2014)

Implementing the learning healthcare system (Greene, 2012)
Operational clinical data may be (Medical Care, 2013):

- Inaccurate
-Incomplete
- Transformed in ways that undermine meaning
- Unrecoverable for research
- Of unknown provenance
- Of insufficient granularity
- Incompatible with research protocols

Inaccurate

- Documentation not always a top priority for busy clinicians (de Lusignan, 2005)
- Data entry errors in a recent analysis in the English National Health Service (NHS) – yearly hospital statistics showed approximately (Brennan, 2012)
 - 20,000 adults attending pediatric outpatient services
 - 17,000 males admitted to obstetrical inpatient services – mainly due to male newborns (Roebuck, 2012)
 - 8,000 males admitted to gynecology inpatient services
Inaccurate (cont.)

• Analysis of EHR systems of four known national leaders assessed use of data for studies on treatment of hypertension and found five categories of reasons why data were problematic (Bayley, 2013)
 – Missing
 – Erroneous
 – Un-interpretable
 – Inconsistent
 – Inaccessible in text notes

Incomplete

• Not every diagnosis is recorded at every visit; absence of evidence is not always evidence of absence, an example of a concern known by statisticians as censoring (Zhang, 2010)
• Makes tasks such as identifying diabetic patients challenging (Miller, 2004; Wei, 2013; Richesson, 2013)
• Undermine ability to automate quality measurement
 – Measures under-reported based on under-capture of data due to variation in clinical workflow and documentation practices (Parsons, 2012)
 – Correct when present but not infrequently missing in primary care EHRs (Barkhuysen, 2014)
Incomplete (cont.)

- Studies of health information exchange (HIE)
 - Study of 3.7 million patients in Massachusetts found 31% visited two or more hospitals over five years (57% of all visits) and 1% visited five or more hospitals (10% of all visits) (Bourgeois, 2010)
 - Analysis of 2.8 million emergency department patients in Indiana found 40% had data at multiple institutions (Finnell, 2011)

Unrecoverable for research

- Many clinical data are “locked” in narrative text reports (Hripcsak, 1995; Hripcsak, 2012), including summaries of care (D’Amore, 2012)
- A promising approach for recovering these data for research is natural language processing (NLP) (Nadkarni, 2011)
 - Has been most successful when applied to the determination of specific data elements, e.g., eMERGE studies (Denny, 2012)
- State of the art for performance of NLP has improved dramatically over the last couple decades, but is still far from perfect (Stanfill, 2010)
 - Still do not not know how good is “good enough” for NLP in data re-use for research, quality, etc. (Hersh, 2005)
Of unknown provenance and insufficient granularity

- Provenance – knowing where your data come from (Seiler, 2011)
- Granularity – knowing what your data mean
 - Diagnostic codes assigned for billing purposes may be generalized to a broad class of diagnosis due to regulatory and documentation requirements
 - For example, patient with set of complex cytogenetic and morphologic indicators of a pre-leukemic state may be described as having “myelodysplastic syndromes (MDS)” for billing purposes, but this is insufficient for other purposes, including research

Many data “idiosyncrasies” between clinical practice and research protocols

- “Left censoring” – First instance of disease in record may not be when first manifested
- “Right censoring” – Data source may not cover long enough time interval
- Data might not be captured from other clinical (other hospitals or health systems) or non-clinical (OTC drugs) settings
- Bias in testing or treatment
- Institutional or personal variation in practice or documentation styles
- Inconsistent use of coding or standards
Overcoming the caveats: recommendations for EHR data use

- (Hersh, 2013)
- Assessing and using data
- Adaptation of “best evidence” approaches to use of operational data
- Need for standards and interoperability
- Develop clinical data research networks
- Appropriate use of informatics expertise

Assessing and using data

- Assessing availability, completeness, quality, and transformability
 - Need to address small data issues before getting to big data
- Also need
 - Toolkits and pipelines
 - Methods and metrics for assessment
 - Standardized reporting methods
Approach: adapt rules of evidence-based medicine (EBM)?

• Ask an answerable question
 – Can question be answered by the data we have?
• Find the best evidence
 – In this case, the best evidence is the EHR data needed to answer the question
• Critically appraise the evidence
 – Does the data answer our question? Are there confounders?
• Apply it to the patient situation
 – Can the data be applied to this setting?

Need for standards and interoperability
• Recognition by ONC as critical for HIT success
• Emerging standards should facilitate
 • e.g., Fast Health Interoperability Resources (FHIR)
Develop clinical data research networks

- PCORnet developing
 - Clinical data research networks (CDRNs) – 11 networks aggregating data on >1M patients each
 - (Fleurence, 2014; Collins, 2014; and other papers in JAMIA special issue)
 - Patient-powered research networks (PPRN) – 18 networks of activated patients focusing on specific diseases
 - Common Data Model for all data

http://pcornet.org/

Also need academic contributions of informatics

- Informatics workforce and its training (Hersh, 2010)
 - Development and implementation driven with users and optimal uses in mind – engage by providing value
 - Led by well-trained workforce, including clinical informatics subspecialists (Detmer, 2014)
- Research agenda – must better understand
 - Biases healthcare process creates in EHR data
 - Workflows – impact and optimization
 - User interfaces that allow the entry of high-quality data in time-efficient manner
 - Limitations of all data and how it can be improved
Conclusions

• Dysfunctional healthcare systems require information-driven solutions
• There are plentiful opportunities for secondary use or re-use of clinical data
• We must be cognizant of caveats of using operational clinical data
• We must implement best practices for using such data