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* Opportunities
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— Early work
— EHR data for quality assessment
— EHR data for clinical research and comparative
effectiveness research
— Insights from health information exchange
e Future directions
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Opportunities

* Many “secondary uses” or re-uses of
electronic health record (EHR) data, including
(Safran, 2007)

— Personal health records (PHRs)

— Clinical and translational research — generating
hypotheses and facilitating research

— Healthcare quality measurement and
improvement

— Health information exchange (HIE)
— Public health surveillance for emerging threats .
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Opportunities (cont.)

* Facilitated by

— Incentives for “meaningful use” of EHRs in the HITECH Act
(Blumenthal, 2011; Blumenthal, 2011), aiming toward the
“learning healthcare system” (Friedman, 2010)

— Continued investment in Clinical and Translational
Research Award (CTSA) program (Collins, 2011; Helfand,
2011)

— Facilitation of comparative effectiveness research (CER)
(Sox, 2009)

e Science is entering the era of “big data” (Hey, 2009),
but there are some provocations about which to be
concerned (Boyd, 2011) .
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Challenges

e Documentation is often what stands between
clinical day and going home for dinner

* In other words, quality of data in EHR is often
not the top priority for busy clinicians

* In addition, clinical records do not always tell a
complete or accurate story, e.g., patients get
care in many places or do not follow up

* What does the research show?
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Early work focused on coded data

* Jollis, 1993 — for patients admitted for cardiac
catheterization for suspected ischemic heart
disease, claims data found lacking for important
diagnostic and prognostic information

Condition Condition in Kappa Sensitivity* Specificity* Agreement*®
Clinical Data

Present Absent
Diabetes mellitus 2488 10 330 0.83 0.83 0.98 0.95
Acute myocardial infarction 5032 7786 0.73 0.76 0,95 0.88
Hypertension 6558 6266 0.56 0.65 091 0.78
Mitral insufficiency 2415 9915 0.48 0.44 0.97 0.86
Congestive hean failure 1788 11 066 0.39 0.36 0.96 0.88
Peripheral vascular disease 1237 11 510 0.34 0.29 098 0.91
Old myocardial infarction 3003 9934 0.33 0.30 097 0.81
Hyperlipidemia 1916 8707 0.31 0.36 0.91 0.74
Cerebrovascular disease 97 11 783 0.19 0.14 0.99 0.92
Tobacco use 8195 4616 0.17 0.24 0.98 0.51
Angina 9720 T 0.12 0.29 0.91 0.45
Unstable angina 472 5465 0.09 0.14 0.96 0.49




Coded data

limitations (cont.)

* Many places for error

in coding process
(O’Malley, 2005)

Claims data also have

potential bias from
incomplete data,

although are plentiful

and inexpensive

(Schneeweiss, 2005)
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Bulk of more recent work has focused
on quality assessment

e Systematic review by Chan (2010) identified
35 studies assessing data quality for reliability
and validity of quality measures from EHR
data; categorized into three areas

— Accuracy
— Completeness
— Variability

e (Cited previous systematic review on older
systems by Thiru, 2003)
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Continued research since Chan
systematic review

e Kahn, 2010 - significant differences in rates of
adverse drug events in a single institution’s EHR
based on how calculated

* Benin, 2011 — measuring quality metrics using
EHR data required substantial validation to
ensure accuracy

e Parsons, 2012 — quality measures underestimated

by use of only EHR data; impacted by variations in
workflow and documentation practices %
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Some work has focused on quality of
data for clinical research

* In Texas academic hospital, billing data alone only identified
22.7% and 52.2% respectively of patients with breast and
endometrial cancer, increasing to 59.1% and 88.6% with a
machine learning algorithm (Bernstam, 2010)

* At Columbia University, 48.9% of patients with ICD-9 code
for pancreatic cancers did not have corresponding disease
documentation in pathology reports, with many data
elements incompletely documented (Botsis, 2010)

* Data from two medical centers in Minnesota were found to
better predict Type 2 diabetes mellitus than from a single
center (Wei, 2012)

* Alerting system to add 17 problems to patient problem lists
accepted 41% of time (Wright, 2012)
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Data “idiosyncracies” for clinical
research from EHR data (Weiner, 2011)

e “Left censoring”: First instance of disease in record
may not be when first manifested

* “Right censoring”: Data source may not cover long
enough time interval

e Data might not be captured from other clinical (other
hospitals or health systems) or non-clinical (OTC drugs)
settings

* Bias in testing or treatment

* Institutional or personal variation in practice or
documentation styles

* Inconsistent use of coding or standards
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Much data is “locked” in narrative text
reports (Hripcsak, 1995)

* Will natural language processing (NLP) help?

 State of the art and quantity of text
increasing, but performance still imperfect
(Stanfill, 2010)

— How good is “good enough” for clinical research?

— Possible uses interactively rather than
unsupervised?

— Research may guide improvement, e.g., challenge
evaluations such as i2b2 (Uzuner, 2007-2010),
TREC Medical Records Track (Voorhees, 2011), etc. .
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Additional insight is provided by
studies of health information exchange

e Study of 3.7M patients in Massachusetts
found 31% visited 2 or more hospitals over 5
years (57% of all visits) and 1% visited 5 or
more hospitals (10% of all visits) (Bourgeois,
2010)

e Study of 2.8M emergency department (ED)
patients in Indiana found 40% of patients had
data at multiple institutions, with all 81 EDs
sharing patients in common (Finnell, 2011)
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Important not to forget the successes
of discovery from the EHR

¢ Validation of genome-wide association studies (GWAS),

many results from eMERGE, e.g.,

— Red blood cell traits, built into a model, identified three of four
previously identified loci (Kullo, 2010)

— Combination of billing and clinical data predicted
polymorphisms of a gene known to affect atrioventricular
conduction (Denny, 2009)

* Designation of research cohort of patients with rheumatoid

arthritis (Liao, 2010)

e Growing number of projects focused on advancing use of

EHR data for clinical research

— eMERGE (McCarty, 2010; Koh, 2011)

— SharpN (Chute, 2011; Rea, 2012)
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Future directions

e CTSA Taskforce on CER and Informatics

— Task force for two CTSA Key Function Groups
addressing this issue with EDM Forum

e What is needed?

— ldentification of best practices and development
of guidelines for optimal data entry, structure, and
extraction

— Research agenda to identify and implement
optimal approaches
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