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Abstract 

Background: Text-mining can assist biomedical researchers in reducing information 

overload by extracting useful knowledge from large collections of text. We developed a 

novel text-mining method based on analyzing the network structure created by symbol 

co-occurrences as a way to extend the capabilities of knowledge extraction. The method 

was applied to the task of automatic gene and protein name synonym extraction.  

Results: Performance was measured on a test set consisting of about 50,000 abstracts 

from one year of MEDLINE. Synonyms retrieved from curated genomics databases were 

used as a gold standard. The system obtained a maximum F-score of 22.21% (23.18% 

precision and 21.36% recall), with high efficiency in the use of seed pairs.  

Conclusions: The method performs comparably with other studied methods, does not 

rely on sophisticated named-entity recognition, and requires little initial seed knowledge. 
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Background 

The volume of published biomedical research, and therefore the underlying biomedical 

knowledge base, continues to grow. The MEDLINE 2004 database is currently growing 

at the rate of about 500,000 new citations each year [1]. With such growth, it is 

challenging to keep up-to-date with all of the new discoveries and theories even within 

one’s own field of research. Methods must be established to aid biomedical researchers in 

making better use of the existing published research and helping them put new 

discoveries into practical use [2]. 

Text mining and knowledge extraction are ways to aid biomedical researchers in 

identifying important connections within information in the biomedical knowledge base. 

A subset of natural language processing (NLP), text mining and knowledge extraction 

concentrate on solving a specific problem in a specific domain identified a priori. For 

example, literature searching may be improved by identifying all of the names and 

symbols used in the literature to identify a particular gene [3], or potential new treatments 

for migraine may be determined by looking for pharmacological substances that regulate 

biological processes associated with migraine [4, 5]. 

Similar to acronym and abbreviation extraction, which has been studied by several 

groups [6-8], the problem of gene and protein name synonymy is one that can be 

addressed with the aid of text mining. Many genes and proteins have multiple names with 

several orthographic and lexical variants. Gene names are often not used consistently, and 

new names continue to be created [9, 10]. Many attributes of a gene, such as its 

phenotypes and polymorphisms, may lead to it being given several names over time. 
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Also, genes may have names that are later retracted when new information becomes 

available [11].  

While databases of gene names exist, they have several limitations. Gene name 

databases such as FlyBase [12] and Genew [13] are restricted to a single species (fruit 

flies and humans, respectively). LocusLink includes genes and names for several species, 

but does not attempt to include all names, symbols, and lexical variations that refer to a 

gene. The Genew database was created by the Human Genome Organisation for the 

purpose of establishing an approved set of unique gene names and symbols for every 

gene in the human genome [14]. However, Genew is focused on creating the set of gene 

names recommended for use in biomedical writing. It is not intended to be a complete 

collection of the gene names and symbols actually used in the biomedical literature [15].  

Since the gene names and symbols used in a journal article are fixed once published, 

later correction of improper names does not affect the prior published literature. 

Therefore, the name space representing a gene can become quite large between the time a 

gene is first suspected and when it is well studied and has a universally agreed upon 

name. In addition, gene and protein names overlap. They are often used in place of one 

another within the literature, with the intended gene or protein being dependent upon 

context. When conducting a literature review, it is useful to search for both gene and 

protein names simultaneously [9]. Therefore in this work we make no distinction between 

names of genes and the names of the proteins for which they encode. 

An automatically generated list of synonyms would be a useful aid in searching the 

biomedical literature. These could then be used to improve the recall of genomics 

investigators trying to find all known information on a gene or protein, regardless of the 
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name or names used in a specific article, although a decrease in precision may result in 

cases where some of the symbols are shared by multiple genes. An automatically 

generated list of name synonyms would also be useful in further work on extracting other 

genomics information from textual sources [16]. To make efficient use of the available 

data when mining the biomedical literature for relationships, it is important to recognize 

differing names for identical concepts and treat these as a single concept [17].  

The basic idea of name synonym extraction is to automatically extract synonymous 

names for a given concept from natural language text. In this case, the goal is to extract 

the names and symbols referring to an individual gene from MEDLINE abstracts. There 

is significant prior work in this area, done over the last five years by Yu and Agichtein. 

Yu [18] first worked on gene name synonym extraction with a system that extracted gene 

name synonyms based on manually identified patterns in which gene name synonyms 

commonly occur. Domain experts were used to identify common patterns. Yu et al. 

estimated the precision of their system to be approximately 71%. Recall measurements 

were not published. 

Yu and Agichtein [3] then worked together to combine several gene and protein name 

synonym text-mining approaches. Their best single system, a pattern-based system 

named Snowball, was based on Brin’s Dual Iterative Pattern Expansion (DIPRE) system 

for the Web [19], which had previously been adapted for extracting relationships from 

large text collections [20]. A small set of initially known facts is used to find the patterns 

in which these facts occur within a large corpus. Then these patterns were used to extract 

more facts, which in turn were used to find more patterns.  
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Yu and Agichtein combined four approaches, including Snowball, and GPE, a system 

based on labor-intensive manually created patterns and heuristic rules, into a single 

system, by computing the overall system confidence in each synonym pair. The overall 

confidence measure for the Combined systems was defined as one minus the probability 

that all of the other systems are incorrect, which is the product of one minus the 

individual confidences. They found that the Combined approach worked better than any 

individual approach, producing a recall of about 80% with a precision of about 9%.  

Automatic gene and protein synonym extraction systems have not been put into general 

use, perhaps because the current level of performance is inadequate for many purposes. It 

is therefore important to investigate alternative and complementary approaches. 

Additionally, since the primary work in this area has been done by a single group of 

investigators, it is essential that other researchers investigate this problem to verify the 

reproducibility of the results. 

Results 

Running our system on the test collection for 9 iterations took approximately 14.5 hours 

on a 1.7 GHz Pentium 4 with 512M of RAM. For rapid prototyping the system was 

implemented in Python, an interpreted language. It is expected that recoding in a 

compiled language could substantially reduce the execution time. 

The experiment produced two kinds of results: performance measures and error 

analysis. The performance measures summarize the quality of the extracted information. 

Error analysis provides insight into the strengths and weaknesses of the approach.  
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Performance measures 

System performance was measured using the precision, recall, and F-score of the 

extracted set of synonym pairs, as well the absolute and relative number of correct pairs 

extracted, cumulative for each iteration. Precision is defined as the number of correct 

pairs, divided by the number of pairs extracted. Recall is defined as the number of pairs 

extracted that are also present in the recall gold standard, divided by the number of pairs 

in the recall gold standard. The F-score is the harmonic mean of precision and recall, 

defined as 2*precision*recall / (precision + recall) [9]. 

Figure 1 shows precision versus recall of the extracted synonym pairs, starting with the 

first iteration at the left-most point and continuing to the 25th iteration at the right-most 

point. The graph includes plots of both FOUND pairs (synonym pairs explicitly found in 

the text by the patterns), as well as FOUND plus INFERRED synonyms (pairs inferred 

by the graph traversal algorithm). The first iteration achieved a precision of about 25.0%, 

at a recall of about 6.2%. Precision declines and recall increases practically 

monotonically over the 24 following iterations to a high recall of about 27.3%, and a 

precision low of 5.9%. 

Figure 2 presents the F-score at each iteration, and again the graph includes plots of 

both FOUND synonyms as well as FOUND+INFERRED. The maximum F-score of 

18.35% for FOUND+INFERRED occurs at iteration 9 (precision 16.18%, recall 

21.33%), gradually falling off during subsequent iterations. The use of inference does not 

greatly impair the algorithm’s overall accuracy (as measured by the F-score) until 

approximately iteration 15. 



 8

The absolute number of correct pairs extracted is presented in Figure 3. Including pairs 

identified using the inference capability of the network consistently found more pairs 

than not using the inference capability. At the maximum F-score the system using 

FOUND+INFERRED synonyms extracted 539 correct synonym pairs, including only the 

FOUND pairs yielded 479 synonym pairs. The approximately 10% (12.5% at iteration 9) 

difference in extracted pairs is fairly consistent across all iterations after the initial 

iteration. 

Figure 4 compares the results of our system with those of Yu and Agichtein’s Snowball 

(their best automated pattern-based approach) and Combined (their best overall approach) 

systems, interpolated from published graphs. The maximum F-score we obtained is 

comparable with that of Snowball (16.77%, precision 52%, recall 10%), but less than that 

of the Combined system (30.24%, precision 62%, recall 20%). The combined system of 

Yu and Agichtein had superior performance to any single method. 

Another useful measure of system performance is the amount of knowledge extracted 

per unit of instance knowledge input to the system.  This can be interpreted as a measure 

of how efficiently the algorithm uses the seed data. Figure 5 compares the number of 

correct extracted pairs to the number of seeds used by our system and those of Yu and 

Agichtein. Results are shown at the point of maximum F-score in order to provide a 

consistent comparison. Our system used 8 seed pairs, and 539 correct synonym pairs 

were extracted. The Snowball and Combined systems used 650 seed pairs and extracted 

700 and 950 correct synonym pairs respectively. The number of correct pairs divided by 

number of seeds used gives a ratio of 67.38 for our method, with the other systems 

having much smaller ratios of 1.08 and 1.46 respectively. The Snowball and Combined 
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systems may not have actually required all 650 seed pairs given as input. However, peak 

performance of these systems was achieved after only two iterations, implying that the 

large number of seeds had a substantial influence on the reported results. Further study on 

the Snowball and Combined systems is needed is determine how many seed pairs are 

actually required. 

Error analysis 

Two kinds of errors were studied, precision errors and recall errors. Precision errors 

occurred when the algorithm extracted symbol pairs that were later not verified as 

synonyms by the precision gold standard data set. These are false positives. Recall errors 

occurred when the algorithm failed to extract symbol pairs present in the recall gold 

standard data set. These are false negatives. Errors were studied at the point of maximum 

F-score, iteration 9. 

Recall error analysis 

Recall errors were categorized into two pre-defined and mutually exclusive categories, 

No matching pattern, and Pattern not accepted. The No matching pattern error category 

included all recall errors for which the pattern generation routines failed to identity a 

pattern that matched the given pair in the abstract text. Pattern not accepted errors 

included those recall errors for which a matching pattern was found, but the matching 

pattern or patterns were not accepted during the pattern selection optimization step. Using 

a random sample of 100 false negatives, the majority, 65%, were attributed to the system 

failing to generate a pattern that matched the recall synonym pair. The remaining 35% of 

recall errors were due to matching patterns not being accepted by the pattern optimization 

step. 
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Some of the recall errors identified as No matching pattern may be fixable using a more 

flexible matching algorithm. In the current system, exact word matching is required of 

surrounding and intervening words. Small variations in contextual words may have made 

the algorithm fail to extract a synonym pair that could have been found with more 

flexible pattern matching. For example, our system treats the patterns “$GENE$($GENE) 

gene” and “$GENE$/$GENE gene” as completely separate patterns. A more flexible 

“fuzzy” matching system could allow a pair of gene names followed by the word “gene” 

to be treated as variants of a single pattern. This approach requires additional tuning to 

determine how close is “close enough” for a fuzzy match. 

Other recall errors identified as No matching pattern may be unavoidable in an 

approach such as ours if the error arises from a synonym pair that only occurs within text 

pattern not used by any other synonym pair, that is, the text surrounding the synonym 

pair is unique. This can happen when the synonyms are close together in the text, or when 

many words separate the synonyms in the text. Because they are long, these patterns will 

most often be unique. For example, the pair (AHC, NR0B1) is only found in two places 

in the test collection, in both cases separated by many unique words: 

DAX1 encoded by NR0B1, when mutated, is responsible for X-linked adrenal hypoplasia 

congenita (AHC). [21] 

 

Mutations in DAX1 [dosage-sensitive sex reversal-adrenal hypoplasia congenita (AHC) 

critical region on the X chromosome gene 1; NR0B1] cause X-linked AHC, a disease 

characterized by primary adrenal failure in infancy or childhood and reproductive 

abnormalities later in life. [22] 
 

Precision error analysis 

Precision errors were categorized by first reviewing a small random sample of 20 errors. 

From this pilot set of errors, a set of mutually exclusive precision error categories was 

determined by inspection. The resulting set of six error categories was then applied to an 
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additional random sample of 100 precision errors. The six categories of precision error 

and the proportions found were: 

(1) Not a gene name (28%). One or both symbols were not the name of a gene, allele, 

mutation, or gene family. For example, in the pair (GLN, HBD-2) GLN is an 

abbreviation for the amino acid glycine. 

(2) Partial gene name (9%). One or both symbols were part of an incompletely 

extracted gene name pair. For example in the pair (MAPK, P38), MAPRK1, and 

MAPK2 are synonyms of P38. 

(3) Biochemically related (48%). Two different genes that have been reported to 

interact within the context of a biochemical mechanism, or, names for two distinct 

genes from the same functionally related family. For example in the pair (IGFI, 

IGFII) the genes are both members of the family of insulin-like growth factors, and 

in the pair (BCR, ABL1) the fusion of the BCR and ABL1 genes has been found to 

be a “recurrent aberration in B cell precursor leukemia cells” [23]. 

(4) Unrelated genes (3%). Two complete gene names but we were unable to establish 

family or biochemical relationship by reviewing the test data set or MEDLINE. For 

example in the pair (ARC, CH3) the names are both genes, and were not found to 

co-occur in the literature. This error is most likely caused by the inference of 

synonyms from other synonym pairs. 

(5) Mutation variants (5%). Two mutation names for the same gene but nonspecific for 

that gene. These are allele or mutation names that are generic and/or only used 

within a single abstract. For example, the allele A1, or the pair (CYS106ALA 

CYS7ALA). 
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(6) Correct (7%). A correct gene synonym pair not included in the gold standard 

dataset, found later during error analysis by abstract review. 

By far, the most commonly occurring error was a pair of gene symbols being chemically 

or biologically related but distinct, non-synonymous entities. These errors accounted for 

48% of the total. The next most common error, occurring 28% of the time, resulted when 

one or both of the extracted pair of symbols were not a gene or protein name or symbol. 

The remaining errors were much less common. 

Incorporation of error analysis into performance results 

About 7% of precision errors were later determined to be false negatives, that is, the 

synonym pair was determined by manual inspection of the literature to be correct but was 

not part of the gold standard data set. Incorporating this proportion of additional correct 

synonym pairs back into the performance measures previously shown results in an 

estimated precision of 23.18% and an estimated peak F-score of 22.21%. A comparison 

of this performance estimate with prior work is shown in Figure 6. 

Discussion 

Our results demonstrate that this method compares well to other automated methods of 

synonym extraction and is a useful general approach to knowledge extraction. The 

method is highly efficient in its use of seed pairs. This may be an advantage in situations 

where large numbers of seed pairs are difficult or expensive to collect.  

During training, it was determined that using eight initial seed pairs was adequate. It 

was observed that the performance was largely stable for different initial numbers of seed 

pairs between 8 and 32. This suggests that an initial “critical mass” of seed pairs was 

necessary to get the process started. Beyond the critical number, the algorithm 
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automatically found additional common seeds. Including additional common synonym 

pairs as seeds simply gave as input high confidence pairs that the algorithm could find on 

its own. 

Optimizing the network structure based on the quality metric of the overall network 

MCC/MNCC (see Methods section) ratio was an effective way to pick the best text 

patterns for gene synonym pair extraction. Using the symbolic network to support 

inference of synonym pairs improved both the recall as well as the absolute number of 

synonym pairs discovered, consistently finding approximately 10% more verified pairs. 

While there was some loss in precision for these additional pairs, the cost was modest 

until well past the peak F-score iteration. The inference capability added to its utility as a 

tool in knowledge discovery, and helped extract additional synonym pairs beyond those 

found strictly in the text. 

One way to improve system performance would be to reduce the very common 

Biochemically related errors by filtering the results to remove known associated gene 

pairs. There are several on-line databases of gene relationship networks [24, 25], and the 

information in these databases could be used as evidence of the genes being distinct and 

non-synonymous. While it is unlikely that this filtering could remove all of the false 

positives from this large source of error, the improvement is likely to be significant. 

The relative frequencies of the two types of recall errors present evidence suggesting a 

general observation about pattern-based text relationship mining systems. Two-thirds of 

the recall errors were due to the system not having discovered a pattern that matched the 

non-recalled pair, and only one-third of errors were due to the system having found a 

matching pattern, rejecting it based on the network metric criteria. The current system 
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used a large number of very specific patterns based on the text surrounding high 

confidence gene symbol pairs. The Snowball system used more flexible patterns, 

allowing “fuzzy” matching based on the relative importance of word in a pattern. The 

two different systems performed similarly, which may be due to some inherent limitation 

of the pattern-based approach to uncovering gene synonym relationships. The textual 

context of interesting biological relationships may not be specific enough to significantly 

improve performance. Certainly, more work is needed in this area before drawing strong 

conclusions. 

Since there is no standard test collection for gene symbol synonym extraction research 

and no absolute gold standard for recall, the recall standard used was an approximation. 

The method of constructing a recall standard used in this work facilitated comparison 

with prior work in the field. However, it was by nature a biased sampling method, and 

does not completely characterize the recall capabilities of current knowledge extraction 

systems as compared to manual expert review. 

The full text test collection previously used by Yu and Agichtein was not publicly 

available. Major limitations of our study include the lack of a widely available full text 

test collection of adequate size and the inability to use the same test collection as 

previous investigators. MEDLINE abstracts were used because they are plentiful and 

readily available. While prior investigators have stated that full text articles are better 

sources data for the extraction of gene name synonyms [18], it was encouraging to find 

that applying our method only to the article abstracts produced comparable results. 

The performance of the current system is limited somewhat by the simple orthographic 

approach used for named-entity recognition (NER). Gene names and symbols were 
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required to be a single string delimited by spaces and other punctuation characters. Not 

all gene names fit this description, although the gene name pairs extracted for the recall 

gold standard from SWISSPROT met this requirement. Precision error analysis showed 

that approximately 28% of precision errors were due to a non-gene or protein symbol 

being treated as a gene or protein. Another 9% of precision errors were due to an 

incomplete portion of a gene symbol being identified as a gene symbol. These two 

categories together represent failure of named entity recognition (NER) and account for 

37% of precision errors. Current state-of-the-art F-score performance of biological 

named-entity recognition is approximately 80% [26]. Using this number as the measure 

of performance, it can be estimated that the maximum improvement that could be 

obtained by incorporating a state-of-the-art gene and protein named-entity recognizer into 

the system would decrease these errors 20%, and increase the precision at the peak F-

score to 27%. The actual improvement is likely to be less than the maximum if the NER 

system makes use of the same contextual information used by the synonym extraction 

system. 

There are many other potential applications of our general approach to mining the 

biomedical literature. Many inter-entity relationships, such as enhance/inhibit relations 

between drugs, biological substances, and diseases, and the promoter/suppressor 

relationships between genes could be modeled as graph structures and appropriate 

metrics created to measure the relevant network properties. Multiple separate networks 

can be created simultaneously and then used together during the logical inference step to 

extend the approach to multiple types of entities and multiple types of relationships 

between those entities. Further work is necessary to determine whether extracting 
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enhance/inhibit and other functional relations from biomedical text is amenable to our 

approach. Automatic extraction of complex functional relationships is likely to be more 

complex than the extraction of synonyms.  

Perhaps the most exciting application for the network-based approach is in mining the 

biomedical literature for hypothesis generation, such as that done manually by Swanson 

[27], and automatically by others [28, 29]. While the Swanson approach is limited to 

relations between three entities, the network approach can support practically limitless 

intermediate inferences, limited largely by the confidence in the individual relationships. 

Future refinements will have to go beyond the simple method used in the current work to 

determine which relationships are strong enough to support inference. The chain of 

inference can be modeled as a confidence path with each link reducing the confidence in 

the entire path by a fraction based on the uncertainty of the relationship. 

Having the ability to infer useful hypotheses across several intermediate relationships 

has the exciting potential to accelerate the rate of medical progress and focus efforts on 

the most promising prospects. With the biomedical knowledge and the corresponding 

bibliome growing at an exponential rate, the raw material exists for computer assisted 

hypothesis generation. Further work on text mining and knowledge extraction will be 

necessary in order to better understand the problems to which it can be most usefully 

applied, as well as the means to evaluate these systems in order for text mining and 

knowledge extraction to realize its full potential.  

Conclusions 

These results support the conclusion that our method is useful in extracting gene and 

protein name synonym relationships from biomedical literature abstracts. The current 
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system could be improved by incorporating state-of-the-art NER, and by including 

additional domain knowledge from richer data sources such as full text articles, and gene 

network databases which could provide data for negative examples. Use of negative 

examples could be incorporated into our approach by adding a penalty for extracting 

negative examples to the genetic optimizer evaluation function. 

While performance is not as good as the best combined approach of other investigators, 

it is as good as the best of the individual methods. With more accurate NER, as well as 

post-filtering using knowledge contained in online databases, the system may perform 

even better. Data sets and gold-standard files used in this work are available for 

download at [30]. 

Methods 

In this section we present our gene and protein synonym extraction algorithm, and our 

evaluation methods. 

Algorithm 

We approached the problem of gene and protein name synonym extraction as a problem 

in mathematical network analysis. In the network, nodes are gene and protein names and 

symbols, and edges are labeled with the number of times the connected names have 

occurred in a text source together (i.e., the co-occurrence count). An initial set of 

synonym pair “seeds” is used to search through the text corpus for text patterns in which 

those synonym pairs occur. Occurrences of gene and protein names are replaced with a 

regular expression that matches a wide variety of possible gene and protein names. This 

regular expression is designed to have high recall for single word gene and protein names 

and symbols, at the expense of low precision. Then these patterns are matched against the 
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corpus, extracting text patterns that include co-occurrences between pairs of names that 

are potential synonyms. The name co-occurrences extracted by the patterns are used to 

construct a gene name synonym network, and this network is mathematically analyzed to 

determine the combination of patterns that produces the strongest set of synonyms. The 

new synonyms with the highest confidence are then used as seeds in the next iteration of 

the algorithm. This process can be repeated for a set number of iterations, or until no new 

high confidence synonym pairs are found. 

The regular expression used to identify gene and protein names is very non-specific: 

([^\s,/%<>;+&()=\[\]\?\$\'\"]{3,14}). The pattern excludes some punctuation and other 

special characters, but allows letters, numbers, as well as the period and colon characters. 

Gene and protein names are required to be between 3 and 14 characters long. The system 

then applies a set of heuristic rules to further screen out non-gene names. The name must 

not be in a stop list of words and patterns found during system development to be 

confused with gene and protein names (e.g., “RNA”, “DNA”, “.com”). The name may 

not begin with a digit, dash, colon, period, or asterisk, and may not end with a dash, 

period, or colon. Furthermore, the name may not contain only lowercase characters. All 

uppercase, a mix of upper and lowercase characters, or a combination of letters and 

numbers is required. These rules favor recall over precision.  

The synonym text patterns are extracted from the text surrounding a pair identified 

synonyms. The system requires the synonym pairs to be within 4 words of each other, 

and includes zero or one words to either side of the synonym pair. For example, if (CIP1, 

WAF1) is an initial seed pair, and the text corpus includes the sentence: 

Two percent or greater nuclear staining with WAF1/CIP1 monoclonal antibody was determined by 

hazard ratio analysis to constitute positive p21 expression. [31] 
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Then the system will extract the following patterns, where $GENE$ stands for the gene 

and protein name matching regular expression: 

• $GENE$/$GENE$ 

• with $GENE$/$GENE$ 

• $GENE$/$GENE$ monoclonal 

• with $GENE$/$GENE$ monoclonal 

These patterns can then be applied to the text corpus to find name co-occurrences. For 

example, using the pattern with $GENE$/$GENE$, the system will extract the co-

occurrence pairs (CARD15, NOD2) and (MMAC, PTEN) from the following sentence 

fragments found in the corpus respectively: 

Of the children with NOD2/CARD15 variants...[32] 

Human glioma xenografts treated with PTEN/MMAC gene transfer exhibited...[33] 

Given a set of patterns and the set of co-occurrences found by each pattern, the algorithm 

selects the best combination of patterns by evaluating the structure of the network created 

by the co-occurrences. The metric used to compare network structures is based on 

clustering coefficient measures [34]. A pattern is required to occur in the text a minimum 

of four times. The assumption is made that good synonym co-occurrence networks will 

have many separate, internally tightly linked clusters, since synonyms of synonyms 

should also have co-occurrences in the network. Figure 7 pictorially shows high versus 

low clustering co-occurrence networks.  

The quality of a co-occurrence network is taken to be the ratio of the mean clustering 

coefficient (MCC) over the mean non-clustering coefficient (MNCC), and is computed 

as: 
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where C is the number of nodes in the network, n(c) is the list of neighbors for node c, 

w(a,b) is the number of co-occurrences seen between a and b, and cmb(m, n) is the 

standard combination function giving the number of combinations of m items taken n at a 

time. The minimum quality score is zero, the maximum is open ended and depends upon 

the number of nodes in the network and how interconnected they are. It is possible that a 

simpler measure could also work, however using MCC alone was considered but rejected 

because it favors larger lightly connected networks over smaller highly connected 

networks.  The MNCC takes into account the size of the network and the number of 

nodes not connected to a given node. Note that MCC is only defined for nodes with two 

or more neighbors. A simpler measure of summing the weights for all the shared 

neighbors was considered, but not implemented. Analytically, it appears to give too much 

weight to a single very common synonym pair that is falsely connected to the node being 

measured. Computing the MCC/MNCC of the node pair averages the inter-connectivity 

across all the nodes connected to a pair of nodes, and therefore should be more accurate 

for groups of pairs synonymous to each other. 

Finding the set of patterns which produce the network with the highest quality measure 

is a combinatorial optimization problem; the co-occurrences found by each pattern can 

either be included in the network or not. One of the best methods of solving this type of 

problem uses a genetic algorithm to optimize the combination of patterns chosen. We 
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have chosen a variation of the canonical genetic algorithm that uses rank-order-based 

selection pressure [35, 36]. It is used simply as a combinatorial optimizer. This variation 

was chosen because it works well and is easy to implement. Other genetic algorithm 

variants likely would perform just as well. 

Once the set of patterns and their associated co-occurrences are chosen, the algorithm 

extracts synonym pairs from the co-occurrence network. This is done using a graph 

traversal algorithm much like Dijkstra’s shortest path algorithm [37], and extracts 

synonym pairs explicitly found in the text as well as those that can be inferred by 

following the synonym relationships represented by the edges in the network. For 

example, if A is a synonym of B, and B is a synonym of C, then A is likely a synonym of 

C. During system training it was found to be best to restrict inference to network edges 

that had co-occurrence counts of 2 or greater. 

In order to proceed with another iteration of the algorithm, the best synonym pairs must 

be chosen to use as seeds in the next iteration. Confidence in individual synonym pairs is 

determined using two network-based metrics. First, the overall confidence in a synonym 

pair with a given co-occurrence count n is estimated by computing the probability of 

seeing less than that occurrence count in a random graph with the same number of nodes 

and edges.  This is computed as: 

M
nk

k

n

n

e
nXPconfidence 




=<= ∑−=

=

−1

0 !
)(

µµ       (4) 

where M is the total number of co-occurrences, N is the number of nodes in the network, 

and µ = N/M. During training it was found that a confidence threshold of 0.999 gave the 

best results.  
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Synonym pairs with confidence greater then the threshold are then ordered by another 

network-based metric that measures the local clustering for the pair of nodes representing 

the synonym pair. The individual node clustering (CC) non-clustering (NCC) coefficients 

are computed, resulting in a local clustering metric (LCM) for each synonym pair: 
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Patterns are then extracted from the text using the high confidence synonym pairs as 

seeds, choosing the highest local clusterings first. The number of patterns to evaluate at 

each iteration was limited to 150, which was found to balance the quality of the results 

with the need to make the combinatorial optimization step solvable in a reasonable 

amount of time. 

Figure 8 illustrates the overall algorithm. The iterative pattern matching part of the 

algorithm is, like Snowball, based on the DIPRE approach of Brin. The novel parts of the 

algorithm presented here include the use of network-based metrics for evaluating the 

quality of patterns and synonym pairs, the use of a genetic optimization algorithm to 

determine the optimal set of patterns to use in extracting gene name synonyms, and the 

use of graph-based inference to infer synonym pairs not found explicitly in the text 

corpus. 
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Experimental Design 

The experiment was performed in three steps. The first step was to develop and refine the 

algorithm detailed in the previous section on the training and validation data sets. Next, 

the algorithm was run on the MEDLINE records in the test set. Lastly, the quality of the 

extracted synonym list was evaluated by validating the synonymy of each extracted pair 

against a gold standard and then computing performance metrics. 

Data sets 

The training, validation, and test data sets used in this experiment consist of sentences 

extracted from approximately 50,000 abstracts from a year’s worth of MEDLINE records 

containing the word “gene” for each set. Abstracts from 2001, 2002, and 2003 served as 

training, validation, and test sets, respectively. After downloading the MEDLINE records 

from PubMed, the records were parsed to extract the abstract field. The abstracts were 

then separated into sentences using a simple, lexically based sentence boundary detection 

algorithm. Finally, the sentences were screened to remove non-contributing sentences. 

These were sentences that did not contain at least two words that matched the gene and 

protein name regular expression discussed previously. This resulted in the three data sets 

used in this experiment each consisting of about 145,000 sentences each. 

The training set was used for system development, debugging, and parameter tuning, as 

well as for choosing the initial set of seed synonym pairs. The validation set was used to 

verify the system and ensure that the chosen parameters worked as expected on multiple 

data sets. The test set was used to produce the experimental results. 
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Gold standards 

Calculation of performance metrics for the experiment required gold standards for both 

precision and recall. Gene name synonyms available in on-line genomics databases 

served as the basis for both gold standards.  

The approach used to create the precision gold standard consisted of downloading 

several genomics databases available on-line, extracting out the name, alias, and 

synonym fields, and combining them into a single gold standard for use in the 

computation of precision. The database snapshots that we used to construct our gold 

standard consisted of: SWISSPROT downloaded on 12/10/2003, FlyBase, Genew, and 

LocusLink, downloaded on 1/12/2004, and the MGI, and SGD databases downloaded on 

1/22/2004. 

The online databases do not contain all synonyms in common use. Orthographic 

variations (e.g., “WAF1” and “WAF-1”) are often missing. Therefore during training and 

validation extracted candidate synonym pairs that were not found in the precision gold 

standard were manually reviewed for pairs that were likely to be correct (e.g. 

“CONNEXIN32” and “CX-32”), and these pairs were checked by reviewing MEDLINE 

for supporting information in the titles and abstracts. Manually verified pairs were added 

to the precision gold standard for use in scoring the results from the test data.  

Creation of the recall gold standard was more challenging. Typically an accurate gold 

standard requires multiple experts to agree on definitions and then manually review the 

literature for the information in question, comparing multiple expert opinions and 

computing inter- and intra-rater agreement. Considering the large amount of text used, 
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the expert resources were not available to use this method. Instead a simpler method was 

employed, based on the approach used by Yu and Agichtein. 

To approximate a recall gold standard, all of the synonym pairs extracted from the 

SWISSPROT database [38] were compared to all of the sentences in the test collection. If 

both symbols of a synonym pair given in SWISSPROT were present together in at least 

one sentence in the test collection, that synonym pair was included in the recall gold 

standard. This resulted in a recall gold standard set of 483 synonym pairs for the test 

collection. While this may bias the recall gold standard towards the gene and protein 

names present in SWISSPROT, the bias is independent of any feature of the algorithm. 

Additionally, using a recall gold standard construction method like that of Yu and 

Agichtein facilitates later comparison of results.  

Note that even though a pair of gene synonymous names from SWISSPROT may be 

present in a single sentence of the test set, it may be impossible for this or any other 

pattern-based algorithm to extract the pair. The synonyms could be separated by too 

many words, or the synonym pair may not occur in a repeated pattern. Nevertheless, a 

recall gold standard constructed by this method provides a useful benchmark.  
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Figure legends 

Fig. 1. Precision versus recall over all iterations. 

Fig. 2. F-score versus iterations. 

Fig. 3. Number verified pairs versus iterations. 

Fig. 4. Verified F-score comparison with work of Yu and Agichtein. 

Fig. 5. Number seeds, verified pairs extracted, and extraction efficiency. 

Fig. 6. Estimated F-score comparison with work of Yu and Agichtein. 

Fig. 7. Representation of high and low clustering co-occurrence networks. 

Fig. 8. Synonym extraction algorithm. 
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