Edit distance dynamic programming algorithm

e Given two strings S1 and S of length m and n respectively

e Let F'(2, ) be the fewest edits mapping S1[1, ¢] to Sa[1, 7]
elet FF(0,7) = 7 and F'(2,0) = ¢ forall ¢, j

e Let M [x, y| be the cost of mapping from symbol x to symbol y

0 fr=uy
Mz, y| = {

1 otherwise
e Then

F(Zaj_l) + ]-9
F(i,7) = min< F(i—1,j5) +1,
F(i—1,5—1) + M[S1(¢), S2(J)]
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Tabular representation: ‘perambulate’ — ‘preamble’

P r e a m b 1 e

Lij=> 0o | 1 2 3 | 4|5 6| 7 8
0
p 1
2
r 3
a 4
m 5
b 6
u 7
1 8
a 9
t 10
e 11




Initialize zero positions

p r e a m b
L=l o | 1 2 | 3 5

0 0 1 2 3 5 6
p 1 1
2 2
r 3 3
a 4 4
m 5 5
b 6 6
u 7 7
1 8 8
a 9 9
t 10 10
e 11 11
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Fillcell, i =1, j = 1

p r e m b 1 e
L=l o | 1 2 | 3 5 3
0 0 1 2 3 5 6 7 8
p 1 1 N
2 2
r 3 3
a 4 4
m 5 5
b 6 6
u 7 7
1 8 8 F(1,0) + 1,
a 9 9 F(1,1) = ming F(0,1) + 1,
¢ 10 10 F(0,0) + M|p, p]
e 11 11
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Fill cell, i = 2, j = 1

p r e m b 1 e
L=l o | 1 2 | 3 5 3
0 0 1 2 3 5 6 7 8
p 1 1 0
2 2|3
r 3 3
a 4 4
m 5 5
b 6 6
u 7 7
1 8 8 F(2,0) + 1,
a 9 9 F(2,1) = min{ F(1,1) +1,
¢ 10 10 F(1,0) + Mle, p]
e 11 11
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Fill cell, i = 1, j = 2

P r m b 1 e
Li—> 0o | 1 | 2 5 3
0 0 1 2 5 6 7 8
p 1 1 0 |
2 2 1
r 3 3
a 4 4
m 5 5
b 6 6
u 7 7
1 8 8 F(1,1) + 1,
a 9 9 F(1,2) = minq F(0,2) + 1,
t 10 10 F(0,1) + M|p, 7]
e 11 11
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Fill cell, s = 2, j = 2

P r m b 1 e
Li—> 0o | 1 | 2 5 3
0 0 1 2 5 6 7 8
p 1 1 0 1
2 2 1|
r 3 3
a 4 4
m 5 5
b 6 6
u 7 7
1 8 8 F(2,1) +1,
a 9 9 F(2,2) = min{ F(1,2) + 1,
¢ 10 10 F(1,1) + M|e, ]
e 11 11
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Fill cell, i = 3, j = 1

P r m b 1 e
Li—> 0o | 1 | 2 5 3
0 0 1 2 5 6 7 8
p 1 1 0 1
2 2 1 |
r 3 30
a 4 4
m 5 5
b 6 6
u 7 7
| 8 8 F(3,0) + 1,
a 9 9 F(3,1) = min{ F(2,1) +1,
¢ 10 10 F(2,0) + M|r, p]
e 11 11
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Fill cell, i = 3, j = 2

P r m b 1 e
Li—> 0o | 1 | 2 5 3
0 0 1 2 5 6 7 8
p 1 1 0 1
2 2 1 1
r 3 3 2 |
a 4 4
m 5 5
b 6 6
u 7 7
1 8 8 F(3,1) + 1,
a 9 9 F(3,2) = min{ F(2,2) +1,
. SIRT F(2,1) + M[r, ]
e 11 11
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Fill cell, i = 1, j = 3

p r e m b 1 e
L=l o | 1 2 | 3 5 3
0 0 1 2 3 5 6 7 8
p 1 1 0 1
2 2 1 1
r 3 3 2 1
a 4 4
m 5 5
b 6 6
u 7 7
1 8 8 F(1,2) +1,
a 9 9 F(1,3) = min< F(0,3) + 1,
t 10 10 F(0,2) + M|p; €]
e 11 11
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Fill cell, i = 2, j = 3

p r e m b 1 e
L=l o | 1 2 | 3 5 3
0 0 1 2 3 5 6 7 8
p 1 1 0 1 2
2 2 1 1 X
r 3 3 2 1
a 4 4
m 5 5
b 6 6
u 7 7
1 8 8 F(2,2) +1,
a 9 9 F(2,3) = minq F(1,3) +1,
t 10 10 F(1,2) + Mle, €]
e 11 11
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Fill cell, 2 =3, 3 = 3

p r e m b 1 e
L=l o | 1 2 | 3 5 3
0 0 1 2 3 5 6 7 8
p 1 1 0 1 2
2 2 1 1 1
r 3 3 2 1|
a 4 4
m 5 5
b 6 6
u 7 7
1 8 8 F(3,2) + 1,
a 9 9 F(3,3) = min{ F(2,3) + 1,
: 0 0 F(2,2) + M[r, €]
e 11 11
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Fill cell, i = 4, j = 4

AR

10

11

10

11
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Fill cell, 2 =5, 7 =5

St

10

11

10

11
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Fill cell, 2 =6, 3 = 6

St

10

11

10

11
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Fill cell, 2 =7, 3 =7

10

11

10

11
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Fill cell, 2 =8, 3 = 8

10

11

10

11
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Fill cell, 2 =9, 3 = 8

Y

10

11

10

11
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Fill cell, i = 10, j = 8

Mt

10

11

10

11
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Fill cell, 4 = 11, j = 8

St

10

10

11

10

11
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1 edit distance: cell 1 = 11, 3 = 8

inima

M

10

10

11

10

11
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Find the optimal alignment

e Now we know that the lowest cost of aligning ‘perambulate’ to

‘preamble’ 1s 5
— This 1s called the Levenshtein distance
e Just knowing this cost might be useful in some cases

e But in general, we want to know which edits led to the optimal

alignment

e Thus, backtrace to find the path(s) corresponding to the score in
bottom-right cell (z = 11, 3 = 8)

— (Why might we have more than one optimal path?)

29



Find path(s) corresponding to score in ¢ = 11, 5 = 8

10

10

11

10

11

42



Backtrace

e Can find the path(s) corresponding to final score in O(n + m)

e While filling in the matrix, keep a backpointer B(z, 7) for each
cell such that

( F(iaj_l) + 1,
B(i,5) = argmin ¢ F(i—1,75) + 1, 2
F(i—1,5—1) + M[S1(), S20)]

— On a match/substitution, B(%, 3) will point to cell (¢2—1, 7—1)
— On an insertion, B(z, 7) will point to cell (z, 7—1)

— On a deletion, B(%, 3) will point to cell (¢—1, 7)

— On atie, B(z, ) may point to multiple cells
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Backpointers along optimal path(s)

p r e a

L= o0 | 1 | 2 | 3 | 4
0 N

p 1 N+

e 2 T NN

r 3 N Ay

a 4 N

m 5

b 6

u 7

1 8

a 9

t 10

e 11

49




Paths correspond to alignments

e Three different alignments result in edit distance of 5:

1 preamb/ - 1|--|e
periambiulja t e

5 p -r e m b -1 -|-e
p e r|- m b u/l aj/t e

3 pr ej- mb -1 -]|-e
p - e|r m b u/l aj/t e

e Can choose to slightly skew costs to avoid such ambiguities

— e.g., score substitutions at cost 0.99



Substitution models

e For natural language sequences, typically looking for full approximate matches

(e.g., spell checking)

e For protein and DNA/RNA sequences, more often looking to match

subsequences (e.g., for similarity across species)

e Need some way to find “likely” related subsequences, i.e., approximate matches
that probably didn’t arise by chance
— Build “random” model, whereby two sequences are modeled independently
— Build joint model, whereby two sequences are modeled together
— Compare likelihoods via log likelihood or log odds ratio

e This is a principled way to capture the fact that particular symbols tend to

substitute for each other

— 1.e., are evolutionarily related
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Substitution likelihood

e Let g(a) be the probability of observing symbol a
e Let p(ab) be the probability that symbols a and b are substituted

e Then, for a given ungapped alignment between S; and S, the odds ratio

between the joint and random models 1s

OddS(Sl, Sz) =

[Lip(S:1(1)S2(2)) 1l p(51(2)Sa(2))
[1:a(51(2)) 11; a(S2(2)) . 4(51(2))q(52(7))

e Taking the log, we get
log-odds(S1, S2) = Y L[S1(i), S2(3)]

where Lla,b] = logp(ab) — logq(a) — log q(b)
e L[a, b] will be positive for symbols with high probability of substitution

e Note that we now switch from min to max for dynamic programming
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Substitution likelihood

e Let g(a) be the probability of observing symbol a
e Let p(ab) be the probability that symbols a and b are substituted

e Then, for a given ungapped alignment between S; and S, the odds ratio

between the joint and random models 1s

OddS(Sl, Sz) =

[Lip(S:1(1)S2(2)) 1l p(51(2)Sa(2))
[1:a(51(2)) 11; a(S2(2)) . 4(51(2))q(52(7))

e Taking the log, we get
log-odds(S1, S2) = Y L[S1(i), S2(3)]

where Lla,b] = logp(ab) — logq(a) — log q(b)
e L[a, b] will be positive for symbols with high probability of substitution

e Note that we now switch from min to max for dynamic programming
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PAM and Blosum matrices

e PAM (Point Accepted Mutation) amino acid substitution matrices
— Developed by M. Dayhotf from explicit models of evolution

e PAMI matrix estimates expected substitution rates if 1% of the

amino acids had changed

e Can calculate expected rates over longer durations by taking M k

e Most widely used 1s PAM250, scaled by j 0:; 5

e BLOSUM (block substitution matrix) are preferred for evolution-

arily divergent sequences

— Repeated small changes poorly estimates large differences
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PAMZ250 substitution matrix

aniiNe
GRS
S8 Ne)
O
O wn
[ale)
Z, O\
& \O

< =

17

4

4

w

—

(Q\

Vg

N

w

10 10 4 7 9 27 5 5

5

12

)

(Q\]

(Q\]

(a9

X ZAOLVOH O T~

13

4

5

13

15 34 4 20

5

3

4 24 9 2

5

10 8 10

18

K 6

2
3

|
4 20

I 1
2 2
5

1
1

2
4 32

2
1

2 20 6

3

2 6
55 0
3 2
5 72 4 17

6 8
0 1
1 2
5 5

3
|
15
10

6 4 6
0O 1 O
2 2 1
4 15 10 4

4
1
3
5
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Blosumb50 substitution matrix

T W Y V
3 -2 0

0
-1
0

-1

S
1

-1
-3
-2
-1

3
3
4
5

L K M F P
2 -1 -1
3 3

3
3
4

-1

-1
-2
-3

3
4
5

-1

)
)
4

4
3
4

0

1
-1

3

1

1

0

4 0
4

-1

1

-1
-1

4
3
4

-1

0
-2
-3
-1

2

2
|

-2
0

2
3
4
3

3
4

-2
-3

-3
-3
-3
-3
-2
-3
-1

-1
-2
-2
-1
-1
-1
-1
-2
-1

2

-1

4
4
4

0
-2

-3
8
-2

2 0
2
3
4
1
3
4
10
1
1
4
3
3

302 -3
-3 0

-1

0

-1
-3
-3

10

1

-1
-1

-2

0
|

4

2 3 4 4 -2 -2 3 4 3
|
-2
-3
-1
-1
-1
-3
-2
-3

L

-3

0
-2
-3
-1
5

-2
7
0
-3
-2
-1
-1

36
-2
0

-3

20

0
8
4
3

-1
-1
-2
-1
-2
-3

3
4
2
0
)
3

2 0
)
4

4
5
1

2
4
2

-2
-3
-3

-1
-3
-1

M

F

4

1

-3
-2
0

-3
-2
-2
2

4
4

-1
0
-1
-3

4
3
1

-2

-3
-3
-1
-3

2
4
2

15

3
)

|

4

1

-1
-1
-3

-5
-3
-1

5
3
4

4
2
3

-3
-1
-3

-3
-2
0

%
Y

v

2
-3

-1

20

4 4

4
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Gap penalties

e Not just substitution to consider — also insertion and deletion
e These are penalized as “gaps” of a certain length g
e Linear gap penalties give the same cost d to every single symbol gap
— Thus, the penalty for a gap of length g is v(g) = —gd
e Also, commonly, an “affine” gap penalty 1s used
— A penalty for starting a gap d
— Another penalty for continuing an already started gap e
— Thus, the penalty for a gap of length g is v(g) = —d — (g — 1)e
e For affine gap penalties, need to keep track of whether gap is started or not

— slightly different dynamic programming (stay tuned ...)
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Protein sequence alignment

e Will use example from Durbin et al., section 2.3

— Strings S7 = ‘HEAGAWGHEE’ and S5 = ‘PAWHEAE’
— Use BLOSUMS5O0 substitution matrix

— Linear gap penalty
oelet F(0,5) = —3d

e Alignment scores are

F(z,7) = max <

withd = 8
and F'(¢,0) = —zid forall <,
calculated

[ F(i,j—1) — d,
F(i_lvj) — d, ’

 F(i—=1,5—1) + M[S51(2), S2(3)] |
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Initialize zero positions

p | A|w | H|]E]| A E

Lj— 12 3 | 4 | 5 |6 | 7

0 8 | 16 | 24 | 32 | 40 | 48 | 56
H | 1 | -8
E | 2 | -16
A | 3 | 24
G | 4 | R
A | 5 | 40
W o | 6 | 48
G | 7 | -56
H | 8 | 64
E | 9 | 72
E | 10 | -80
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Fillcell, i =1, j = 1

59

M[H, P]

— 2

P A W  H E | A | E
Lj— 12 3 | 4 | 5 |6 | 7
0 8 | <16 | 24 | 32 | 40 | 48 | -56
H 1 8|
E 2 | -16
A 3| 24
G 4 | 32
A 5 | 40
W6 | 48
G 7 | -56
H 8 64 F(1,0) -8,
ARNE RERE FTrE
E | 10 | -80



Fill cell, s = 2, j = 2

60

MIE, A]

—1

P A | W | H E A E
Lj— 12 3 | 4 | 5 |6 | 7
0 8 | 16 | 24 | 32 | -40 | 48 | -56
H 1 8 | 2 | -10
E 2 16 | -9 |
A 3 24
G 4 32
A 5 40
w 6 48
G 7 -56
H 8 64 F(2,1) -8,
E 7 72 e ?g:?;—kf\;[[E,A]
E 10 | -80



(skip to interesting bits) Fill cell, 2 = 5, 3 = 2

P A | W | H E A E
li— 1 2 3 4 5 6 7
0 8 | <16 | 24 | 32 | 40 | -48 | -56
H 1 8 2 | -10
E 2 16 | -9 | 3
A 3 24 | 217 | -4
G 4 32 | 25 | -12
A 5 40 | 33 | X
W 6 48
G 7 -56
H 3 _64 F(5,1)—8,
RENE: e e
E 10 | -80 MIAA] = 5
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Fill cell, 2 =6, 3 = 3

62

P A | W |  H | E | A | E
Lj— 12 3 | 4 | 5 |6 | 7
0 8 | <16 | 24 | 32 | 40 | 48 | -56
H I 8 | 2 | -10 | -18
E 2 | 216 | 9 | 3| -l
A 3 | 24 | 17 4 | 6
G 4 | 32 25 | 12 | 7
A 5 | 40 | -33 | 20 | -15
W 6 | -48 | -41 | 28 |
G 7 | -56
H 3 _64 F(6,2) — 8,
ARRE R T
E 10 ] -80 MW, W] = 15



Fill cell, 2 =9, 7 =5

\O
[l Vo
1
o0
O | <t
1
w | FIR|® S22 2y,
| I N | | [ I | | I | \\—/
oo | on (e}
M | °r | ° | 1 1 1
o0
T | 1 | 1 1 r | 1 | 1
O | O© Al | © 0 | O | T | A
N == DT | = Q||| 5|0
~ v\ | N | — | N>~
i RS RN RN E AR RCEE SR SRR
O | T | N | © |0 | O | F | A | O
SIS R = Q|| F T 9 |Q |5 |X
S| =t o~ ||
- —>
T W< Ol< 2O D oo
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Best path (one

among many)

P A | W | H E A E
L= 0 | 1 | 2 3 | 4| 5| 6 | 7
0 0 8 | -16 | 24 | 32 | 40 | 48 | -56
H 1 8 2 | 10| <18 | ;14 | 2| 30 | 38
E 2 16 | =9 | 3 | a1 18 | -8 | -16 | -24
A 3 24 | 17 | 4| 6 | 13| <16 | -3 | -11
G 4 32 | 25 | =12| 7 8 | -16 | -11 | -6
A 5 40 | 33 | =20 <15 | 9 9 | 11 | -12
W 6 48 | 41 | 28 | =5 | 13| 12 | <12 | -14
G 7 56 | -49 | 36 | =13 | -7 | -15 | -12 | -15
H 8 64 | 57 | 44 | 21 | =3 | 7 | <15 | -12
E 9 72 0 65 | 52| 29| 11| 3 | -5 | 9
E 10 | -80 | -73 | 60 | 37 | -19 | -5 2 1
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Finite-state transducer: linear gaps

e/-d
X-e e PlAlele Wl e HEAE
HE A G A W/ G HIE| € E
state: 0|0 (0000|0000 0

e Only one state required; add scores together
e e represents a gap of length 1
e gaps receive —d cost for each symbol in gap

e Mapping input symbol @ to output symbol y gets substitution matrix score for

that pair
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Finite-state transducer: affine gaps

g:y/-e

state: O 1 |00 |11

e Three states required; add scores together
e Initial gap on input goes to state 1; initial gap on output to state 2
e gaps receive —d cost to start; plus —e for each additional symbol in gap

e Mapping input symbol x to output symbol y gets substitution matrix score for

that pair
66



Larger chart required for dynamic programming

P A W H E A
PN 1 2 3 4 5 6
state: 2 1 I |2 1 1 1 1
0 -8 -12 -16 -20 -24 -28
H 1 -8 —
E 2 -12
A 3 -16
G 4 -20
A 5 -24
W 6 -28
G 7 -32
H 8 -36
E 9 -40
E 10 -44
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Larger chart required for dynamic programming

P A W H E A

PN 0 1 2 3 4 5 6

state: | O 1 2 0 1 1 2 1 1 1 1

0 ol lElE] -8 -12 -16 -20 24 -28

H| 1 I -8 | N\ | —

E| 2 -12
Al 3 -16
G| 4 -20
Al 5 -24
wW| 6 -28
G| 7 -32
H| 38 -36
E| 9 -40
E| 10 -44
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State 1 only from states 0,1; State 2 from 0,2

P A W H E A

PN 1 2 3 4 5 6

state: 2 0|1 I |2 1 1 1 1

0 -8 -12 -16 -20 -24 -28

H 1 -8 | -2 — | 4

E 2 -12
A 3 -16
G 4 -20
A 5 -24
W 6 -28
G 7 -32
H 8 -36
E 9 -40
E 10 -44
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State 1

only from states 0,1; State 2 from 0,2

P

1
I
[]

-12

-16

-20

24

-28

L]

e

-12

-16

-20

24

-28

-32

-36

O || 0| Q|| NN ||W||—

40

oo = Q= > Q> oD

[S—
S

44
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State 1 costs —d from state 0; only —e from state 1

P A \W% H E A
PN 1 > 3 4 5 6

state: 2 0|1 0 I |2 1 1 1 1
0 -8 -12 -16 -20 -24 -28

H 1 -8 | -2 -10 | -10 —

E 2 -12

A 3 -16

G 4 -20

A 5 -24

\\% 6 -28

G 7 -32

H 8 -36

E 9 -40

E 10 -44
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State 1 only from states 0,1; State 2 from 0,2

P A W H E A
PN 1 > 3 4 5 6
state: 2 0|1 0 r 2|0 | 1 1 1
0 -8 -12 -16 -20 -24 -28
H 1 -8 | -2 -10 | -10 -15 | -14
E 2 12N | —
A 3 -16
G 4 -20
A 5 -24
W 6 -28
G 7 -32
H 8 -36
E 9 -40
E 10 -44
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State 2 costs —d from state 0; only —e from state 2

P A W H E A
PN 1 2 3 4 5 6
state: 2 0| 1] 2 0 L 2|0 1 1 1 1
0 -8 -12 -16 -20 -24 -28
H 1 -8 | -2 -10 | -10 -15 | -14
E 2 -12 ] -9 -10
A 3 6| N | — |
G 4 -20
A 5 -24
W 6 -28
G 7 -32
H 8 -36
E 9 -40
E 10 -44
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And so

on — same dynamic programming

P A W H E A
PN 0 1 2 3 4 5 6
state: 2 0 1 2 0 0 1 1
0 8 12 16 220 24 28

H| 1 8| 2 110 | -10 15| -14

E| 2 129 . [-10

NEE g6 -13] - |14

G| 4 20

Al s 24

w| 6 28

G| 7 32

H| 8 36

E| o9 40

E| 10 44




Finite-state transducers for alignment

e Can move to arbitrarily complex finite-state transducer models

— Durbin et al. discuss a 4 state model, with two match states

corresponding to low and high fidelity regions

e Must keep track of scores at each state in dynamic programming
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Local alignment

e Simple idea: allow resetting alignment at any point
e Get high quality local alignments, rather than global alignments

e Same algorithm, except now:
( )

0,
. . F(iaj_l) T da
F _
 F(i—1,j—1) + M[S1(i), S2(5)] |

e Similar modification for multi-state models

e Note: assumes scores less than zero

— PAM250 won’t work unmodified
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Initialize zero positions (Global)

P | A | W/| HI|E]| A]J]E

L= 12 | 3 | 4 | 5 | 6 | 7

0 8 | <16 | 24 | 32 | 40 | 48 | -56
H | 1 | -8
E | 2 | -16
A | 3 | 24
G | 4 | 32
A | 5 | -40
W | 6 | -48
G | 7 | -6
H | 8 | -64
E | 9 | 72
E | 10 | -80




Initialize zero positions (Local)

p—
S

+di—| O
0 0 0 0 0 0 0 0

H 1 0
E 2 0
A 3 0
G 4 0
A 5 0
W 6 0
G 7 0
H 8 0
E 9 0
E 0




P no matches; H 1 match

10

10

10



4 non-zero cells in next row

16

10

10

11



Great local match — not in global solutions

13

21

10

12



Sequence processing tasks using HMMs

e Gene prediction

— Non-hierarchical bracketing task:

are nucleotides inside an exon, intron or outside?

— Complicated graph structures for multi-exon genes
e Named-entity extraction

— Non-hierarchical bracketing task:
are words 1nside a named-entity (possibly of different types) or

outside?

— Different graph structures for different kinds of entities
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CpG Islands

e Some parts of the nucleotide sequence are more resistant to change
— Functionally critical regions, e.g., promoter regions

e Some local configurations are prone to change
— ‘methylation’: CG — TG

e If we find many change-prone local configurations in a particular

region, this 1s evidence of regional change resistance
e Useful evidence of functional importance

e Call areas with lots of CG pairs called ‘CpG Islands’



HMM alignment

e When tagging, one state transition per symbol
e When aligning, that will generally not be the case

— Deletions and insertions require variable number of state

transitions
e Each transition is labeled with a symbol pair

— substitution: x:y
— deletion: x:€e

— 1nsertion: e€:y
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HMMs

e Sequence of hidden states, representing variables X
— e.g., whether or not in a CpG Island

e States output the observed values y
—1n this case, the particular nucleotide

e Typical graphical model representation:

OO OO

Y, Y2 VE! y,




HMM parameterization

e Model consists of two kinds of parameters
— Transition probabilities between states: P(X; = = | X;_; = @),
for some instantiated values x, «’
— Emission probabilities from states to observations:
P(y; | X; = x)
e When we include start and end states, this defines a probability

distribution over joint state/observation sequences

— Can use it to infer the “best” state sequence for a given obser-

vation sequence



Explicitly breaking out states in HMM

e Transitions with € output
— Carrying the HMM state transition probabilites
e Transitions with y; output

— Carrying the HMM emission probabilities

y, /P(yl 1) e/PIID Y, /P(y211) € /PAI)
_— = _— = —_ > —— e — - >
<
& AN A
N (_O 7
\\\/0 ///

N4
O\// \\

)
¢\
&
A
% % % 2
2N Y1 /Py110) £ /PO10) Y, /P210) £ /PO10)

S




Weighted finite-state automaton representation

y/P(y )
) e /P(IIT)
\
<
&
jof
0,
J’Aj

y / P(y | O)

10



Larger state space

e This model will not do a good job of modeling CpG islands
e Why not?

— CpG 1slands are regions with CG neighbors

— In the current model, the probability of outputting a G depends
only on whether the hidden state 1s I or O

— The model forgets whether the previous observation was C or

not
e The solution 1s to stop the model from forgetting about C

e We will split the states of our HMM to encode the previous symbol

11



General HMM notation

e Let a, ,» denote the transition probability:

ay o = P(Xj=2' | X;_1=x)

= P(2' | x)

xr

e Let az be shorthand for a<s>
e Let agy be shorthand for ay, ./~
e Let by 4 denote the emission probability:
bey = P(Y;=y | X;=x)
= P(y | x)

12



Larger state space HMM

e Need to remember previous symbol, and whether I or O

e Hence, since 3 = {A,C,T,G}, there are 10 states:
<s>, </s>, A-1, C-1, T-1, G-1, A-O, C-0O, T-0, G-O

e Note: for any non-start/stop state, only one possible observation:
bx.ax =1 for X € ¥ and A € {I,0}
e Many more transition probabilities

— 64 transitions between X -A symbols

— 8 start and 8 stop transitions

e Hopefully P(G-I | C-I) > P(G-O | C-0), i.e., acig1 > Qc.oc-0

13



Larger state space FSA
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Add start transitions to larger state space FSA
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Add final transitions to larger state space FSA
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Add adjacent state arcs to larger state space FSA
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Add longer distance arcs to larger state space FSA
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Add longer distance arcs to larger state space FSA
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Add longer distance arcs to larger state space FSA
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Add longer distance arcs to larger state space FSA
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Add longer distance arcs to larger state space FSA
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Add longer distance arcs to larger state space FSA
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Don’t forget labels (and probs) on transitions

ONONCFC

T /P(T-11 A-0) G /P(G-11A-0)

C/P(C-11A-O)

A /P(A-11A-0O)

e

G /P(G-O1A-0)
T/P(T-01A-0)
X
Cc/
A/PA-OI AOQ/ P(C-O 1 A-O

£/ P(</s> | A-O)
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Full Decoding graph

\ \"'E; \\\\\"Ii/
N \\wlli

4// \

\ \ <
\\4 <700 s : y
\ Y
\ \ 7/ P
\\‘( ’ /’ \\/g\ti) -y /\/\\///:1/7‘/ /l/
i\ '\'/'v'« \
A RN,
“\" Vil \‘c l/l,i SIS
/ "» N
l RN }{)J/‘N’V 2w
A X ﬁ\ N4

‘\v ‘/" '// '\

‘ ( \)\\y e \/\/ DIy

“‘ \’I\ )'.‘ “\"\ //\>;\(\<(/ \\\\//K\\\/; ;‘\\vlzg’(/’\ N
“ A\OA\/» W~ IEAUAR) & L
QV\"\ '// . \‘V/' \(\:*1\7“/;?*‘\(,‘)(«\,
\\\ \\/\\ /\/\\\I\\l A//\?/

“( "\‘\\ / ’ W \:// ; /j/l\ ’/5\ K

/A
’ “"\ l\l“ "' AN <\\/\/I’/I YN
IR IS IA N
/7 \ \\'l\// I\ I \, Vi
/ ’ ‘/ , AR K N
, /AT AR ARV S
/// RN 7 \
IV AN AN
< 7 VS 2 N
<~ VAN v \
A LS \
{ Y VA \
/ v noN P
\\ \// p \ X \/
N SR TN
SN2 VAN \
AT
/
N




Sequence processing tasks using HMMs

e Gene prediction

— Non-hierarchical bracketing task:

are nucleotides inside an exon, intron or outside?

— Complicated graph structures for multi-exon genes
e Named-entity extraction

— Non-hierarchical bracketing task:
are words 1nside a named-entity (possibly of different types) or

outside?

— Different graph structures for different kinds of entities
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HMM alignment

e When tagging, one state transition per symbol
e When aligning, that will generally not be the case

— Deletions and insertions require variable number of state

transitions
e Each transition is labeled with a symbol pair

— substitution: x:y
— deletion: x:€e

— 1nsertion: e€:y
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Affine gap alignment as HMM

e To define an HMM, we first need to define the states
e Second, the transition and emission probabilities

— which we denote a; ;v and by y

— (Recall, last example, by, was always O or 1, hence ignored)

e Then, let’s look at the graph
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States in affine gap model

e Start (<s>) and stop (</s>) states
e State after zero deletions or insertions (M)
e State after one or more deletion (X)

e State after one or more insertion (Y)

47



Affine gap HMM transducer states
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Affine gap HMM transducer states
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Affine gap HMM transducer states
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Affine gap HMM transducer states

£/ 1-28-1 @ e/t

55



Affine gap HMM transducer states
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Affine gap HMM transducer states
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Affine gap HMM transducer states

A:e/0.25
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Affine gap HMM transducer

A:C/0.01
A:T/0.01

A:G/0.03

C:A/001
C:.C/0.2
C:T/0.03

C:G/001

@ e/y
e:T/0.25
€:G/0.25

A:e/0.25

@

e/0

e/t

/—\
e/ 1-20- e/t
T:A/0.01
T:C/0.03
T:T/0.2

e/90
e:A/0.25
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Alignment with transducers

e Composition: X oY

— Match ouptut labels in X with input labels in Y
— When matched, keep input in X and outputin Y
— Multiply probabilities (in the real semiring)

— States 1n resulting transducer represent pairs of states,

one from X and one from Y

— Both must be final for the resulting state to be final
e One key complication: €

— Advisable to use an epsilon filter
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Learning alignment models

e Some insertions, deletions and substitutions are more likely than

others

— A/G and C/T form functional pairs more likely to substitute

— In spoken language, some sounds are more likely to be inserted,

others more likely to be deleted
e How can we go about learning to better predict such patterns?
e Answer: start with a model, use EM to improve model

e As with a tagging task, HMM alignment model can be used with
forward-backward and EM
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Ristad and Yianilos (1997)

e Each word 1n a speech recognition system has a canonical pronun-

ciation (or three)
—e.g., nuclear: N UW K L IY ER
e Actual utterances may depart from this

—e.g., Bush: N UW K Y AA L ER
—or New York: N UW K L 1Y AH

e May want to learn common edits from canonical pronunciations
e Ristad and Yianilos show that trained edit distance 1s far superior

to standard Levenshtein distance
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Ristad and Yianilos (1997) task

e Training and testing corpus of utterances phonetically labeled
e Given

— Pronunciation lexicon with canonical pronunciations

— Alignment model
e Find the word string that best matches phonetic label string

e With HMM alignment models, can use EM to re-train alignment

model

— For this paper, they used 10 iterations
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Basic findings

e Levenshtein distance not particularly effective
e Generally untied parameters were best

— With large amount of training and small vocabulary, usually

enough observations for parameters
e In at least one scenario parameter tying was helpful
e Reached reasonable performance

— Probably could get even better performance with more states in
HMM model
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Larger state space

e Consider earlier motivating example:
N UW K LIY ER— N UW K Y AA L ER

e Insertion of ‘Y AA’ probably has a lot to do with having ‘K’ and
‘L’ together

e Encoding the local context in the HMM alignment model states

will do a better job of capturing such regularities
e With more states and transitions, fewer observations per parameter

— Sparse data: parameter tying probably a good idea
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