Pre-processing for good suffix

e For a given ¢, let k=|P|—1+1, i.e., the length of P[:, | P|]

—Let L(z)=35<|P| be the largest position such that
P|(i,|P|] matches P[j—k+1, j] and P(3—k) # P(1—1)

— If no such j exists, L(z) = 0
e Let [(2) be the length of the largest suffix of P(z, |P|)

that is also a prefix

e These can be calculated in linear time (see Gusfield)

14

Pre-processing for Boyer-Moore

Position: 1 2 3 4 5 6
String: x t px td
Z;: 00200
L(z): 00000
I[(z): 00000

R(x) = 4
R(t) = 5
R(p) =3

R(d) = 6

15

Using good suffix and bad character

e Using simple bad character and strong good suffix
e Bad character: shift P by max(1,: — R(T'(k)))
e Good suffix:

— If an occurrence of P is found then shift P by |P| — [(2)

— Else if ¢ = | P| then advance P by 1

— Else if mismatch is at ¢—1 of P and L(z) > O then shift P by
|P| — L(%)

— Else shift P by |P| — ()

e Shift by the max of these two rules

16

For current example

e All I(2) and L(z) are 0, hence Good Suffix rule becomes:

— If « = | P| and no match, advance by 1

— otherwise if no match, advance by | P|

17

Boyer-Moore

x luxtpxtdgwtdxtpxtsyxtpxtdy
x tpxtd

/]\
Align both strings at their beginning position and begin

comparing from the last character of P

Comparisons: 1

R(z) = 4; R(t) = 5; R(p) = 3; R(d) = 6

18

Boyer-Moore

x luxtpxtdgwtdxtpxtsyxtpxtdy
x t px td

T
If symbols don’t match, shift P by the max of the good

suffix and bad character rules

Comparisons: 2

R(p) = 3, hence bad character: shift max(1,6-3)=3
¢t = |P|, hence good suffix: shift 1

18

Boyer-Moore

x luxtpxtidijgwtdxtpxtsyxtpxtdy
x t px t|d

T

If symbols match, compare previous symbols

Comparisons: 3

18

Boyer-Moore

x luxtpxjtdjgwtdxtpxtsyxtpx tdy
x t px/td

/l\

If symbols match, compare previous symbols

Comparisons: 4

18

Boyer-Moore

x luxtpxtdigwtdxtpxtsyxtpxtdy
x t pxtd

/]\

If symbols match, compare previous symbols

Comparisons: 5

18

Boyer-Moore

x luxtpxtdigwtdxtpxtsyxtpxtdy
x tipxtd

T

If symbols match, compare previous symbols

Comparisons: 6

18

Boyer-Moore

x luxjtpxtdigwtdxtpxtsyxtpx tdy
x'tpxtd

T

If symbols match, compare previous symbols

Comparisons: 7

18

Boyer-Moore

lux tpxtdigwtdxtpxtsyxtpxtdy

x t pxtd
/]\

If P is found, shift P by |P| — I(2), begin at end
Comparisons: 8

R(z) = 4; R(t) = 5; R(p) = 3; R(d) = 6

18

X

Boyer-Moore

lux tpxtdigwtdxtpxtsyxtpxtdy

Xx tpxtd
T

If symbols don’t match, shift P by the max of the good

suffix and bad character rules

Comparisons: 9

R(t) = 5, hence bad character: shift max(1,6-5)=1
¢t = |P|, hence good suffix: shift 1

18

X

Boyer-Moore

lux tpxtdigwtdxtpxtsyxtpxtdy

X tpxtd
T

If symbols don’t match, shift P by the max of the good

suffix and bad character rules

Comparisons: 10

R(p) = 3, hence bad character: shift max(1,6-3)=3
¢t = |P|, hence good suffix: shift 1

18

X

Boyer-Moore

lux tpxtdigwtdxtpxtsyxtpxtdy

x tpxtd
T

If symbols don’t match, shift P by the max of the good

suffix and bad character rules

Comparisons: 11

R(s) = 0, hence bad character: shift max(1,6-0)=6
¢t = |P|, hence good suffix: shift 1

18

X

Boyer-Moore

lux tpxtdigwtdxtpxtsyxtpxtdy

X t pxtd
T

If symbols don’t match, shift P by the max of the good

suffix and bad character rules

Comparisons: 12

R(t) = 5, hence bad character: shift max(1,6-5)=1
¢t = |P|, hence good suffix: shift 1

18

X

Boyer-Moore

lux tpxtd

qwtdxtpxtsyxtpx:t
X t pXxt

/]\

If symbols match, compare previous symbols

Comparisons: 13

18

X

Boyer-Moore

lux tpxtd

qgqwtdxtpxtsyxtpx
X U pX

T

If symbols match, compare previous symbols

Comparisons: 14

18

t d
t d

X

Boyer-Moore

lux tpxtd

qwtdxtpxtsyxtp
X tp

/l\

If symbols match, compare previous symbols

Comparisons: 15

18

x t d
x td

X

Boyer-Moore

lux tpxtd

qwtdxtpxtsyx:t

X t

/]\

If symbols match, compare previous symbols

Comparisons: 16

18

p x td
p x td

X

Boyer-Moore

lux tpxtd

If symbols match, compare previous symbols

Comparisons: 17

qwtdxtpxtsyx

X

T

18

t px td
t px td

X

Boyer-Moore

lux tpxtdigwtdxtpxtsyxtpxtd

If P is found, shift P by |P| — [(2), begin at end
(past end... finished)

Comparisons: 17

vs. 42 for naive algorithm and
30 for Knuth-Morris-Pratt

18

Boyer Moore algorithm

e Current example does not show some parts of Boyer

Moore that are de-emphasized in the text

¢ When using the good suffix for shifting with L(z) or

[(2), some of string is already matched

e Without skipping already matched material, lots of
duplicate effort

19

Good suffix rule (strong)

[llustration from Gusfield

T T t
P before shift z t yl ot
P after shift z t y|

20

Good suffix rule (strong)

[llustration from Gusfield

T T t
P before shift z t yl ot
P after shift z t y|

21

Algorithm in Gusfield Text

k +— |P|
while k& < |T|
1 <+ | P|
h +— k
while ¢ > 0 and P(z) = T'(h)
1+—1—1
h<+<h-—1
ifz =20
found P ending at k
k<+ k+|P|—1(2)
else

k < k 4+ max(bad-char, good-suffix)

22

More to keep track of

k +— |P|
while k& < |T|
1 <+ | P|
h <k
while ¢ > 0 and P(z) = T'(h)
1< 1—1
h<+h-—1 <— may need to skip over some
ifez =20
found P ending at k
k<+ k+|P|—1(2) <+ anything to skip over?
else

k < k 4+ max(bad-char, good-suffix) <— anything to skip over?

23

