
Exact Matching, Part 2

Kyle Gorman (filling in for Steven Bedrick)
CS/EE 5/655, 11/17/14

photophosphorescent

Plan for today:

Z-algorithm review

Knuth-Morris-Pratt

Boyer-Moore

Definitions: for a string S:

S[i,j] = contiguous substring starting at i and
ending at j. S(i) = S[i,i]

Definitions: for a string S:

S[i,j] = contiguous substring starting at i and
ending at j. S(i) = S[i,i]

S = aardvark

Definitions: for a string S:

S[i,j] = contiguous substring starting at i and
ending at j. S(i) = S[i,i]

S = aardvark

S[2,4] = ard

Definitions: for a string S:

S[i,j] = contiguous substring starting at i and
ending at j. S(i) = S[i,i]

S = aardvark

S[2,4] = ard S(4) = d

Definitions: for a string S:

S[i,j] = contiguous substring starting at i and
ending at j. S(i) = S[i,i]

S = aardvark

S[2,4] = ard S(4) = d

For i > 1, Zi(S) is the length of the longest
prefix of S[i,|S|] that is also a prefix of S.

For i > 1, Zi(S) is the length of the longest
prefix of S[i,|S|] that is also a prefix of S.

For i > 1, Zi(S) is the length of the longest
prefix of S[i,|S|] that is also a prefix of S.

S = xtpxtd

For i > 1, Zi(S) is the length of the longest
prefix of S[i,|S|] that is also a prefix of S.

S = xtpxtd

S[4,|S|] = xtd xtpxtd

For i > 1, Zi(S) is the length of the longest
prefix of S[i,|S|] that is also a prefix of S.

S = xtpxtd

Z4(S) = 2

S[4,|S|] = xtd xtpxtd

xtpxtd

S = aardvark

S = aardvark

S = aardvark

Z6(S) = 1

S = aardvark

Z6(S) = 1

S = aardvark

Z2(S) = 1

Z6(S) = 1

S = aardvark

Z2(S) = 1

Z6(S) = 1

S = alfalfa

S = aardvark

Z2(S) = 1

Z6(S) = 1

S = alfalfa

Z4(S) = 4

S = aardvark

Z2(S) = 1

Z6(S) = 1

S = alfalfa

Z4(S) = 4

S = photophosphorescent

S = aardvark

Z2(S) = 1

Z6(S) = 1

S = alfalfa

Z4(S) = 4

S = photophosphorescent

Z6(S) = Z10(S) = 3

These regions of prefix-overlap are called
z-boxes.

P = photophosphorescent

https://www.cs.umd.edu/class/fall2011/cmsc858s/Lec02-zalg.pdf

Fundamental Preprocessing

• P = “aardvark”: Z2 = 1, Z6 = 1

• P = “alfalfa”: Z4 = 4

• P = “photophosphorescent”: Z6 = Z10 = 3

i

P:

i + Zi - 1

ZiZi

https://www.cs.umd.edu/class/fall2011/cmsc858s/Lec02-zalg.pdf
https://www.cs.umd.edu/class/fall2011/cmsc858s/Lec02-zalg.pdf

p h o $ p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

23 3 3 3

By being clever about constructing our string,
we can easily find exact pattern matches:

Question: How to calculate Zi?

p h o $ p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

23 3 3 3

By being clever about constructing our string,
we can easily find exact pattern matches:

Make the pattern (P) the prefix...

Question: How to calculate Zi?

p h o $ p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

23 3 3 3

By being clever about constructing our string,
we can easily find exact pattern matches:

Make the pattern (P) the prefix...

Question: How to calculate Zi?

p h o $ p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

23 3 3 3

By being clever about constructing our string,
we can easily find exact pattern matches:

Make the pattern (P) the prefix...

... and now, any occurrence of P is a repeat
of the string’s prefix, and so has Zi = |P|

Question: How to calculate Zi?

Question: How to calculate Zi?

Question: How to calculate Zi?

The naïve way:

Question: How to calculate Zi?

The naïve way:

For every position i, compute the longest
common prefix between S and S[i,|S|]

Question: How to calculate Zi?

The naïve way:

For every position i, compute the longest
common prefix between S and S[i,|S|]

Problem: This is O(n2)!

Question: How to calculate Zi?

The naïve way:

For every position i, compute the longest
common prefix between S and S[i,|S|]

Problem: This is O(n2)!

The solution involves thinking about the
properties of Z-boxes.

p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 3 3

At any given i with Zi > 0, we can use Zi to
determine the length of its enclosing Z-box:

Also, we know that any position k inside a Z-box must correspond
to a position k’ somewhere in the prefix of S.

p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 3 3

At any given i with Zi > 0, we can use Zi to
determine the length of its enclosing Z-box:

Also, we know that any position k inside a Z-box must correspond
to a position k’ somewhere in the prefix of S.

p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 3 3

At any given i with Zi > 0, we can use Zi to
determine the length of its enclosing Z-box:

Z6(S) = 3For i = 6:

Also, we know that any position k inside a Z-box must correspond
to a position k’ somewhere in the prefix of S.

p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 3 3

Z6

At any given i with Zi > 0, we can use Zi to
determine the length of its enclosing Z-box:

Z6(S) = 3For i = 6:

Also, we know that any position k inside a Z-box must correspond
to a position k’ somewhere in the prefix of S.

p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 3 3

Z6 Z6

At any given i with Zi > 0, we can use Zi to
determine the length of its enclosing Z-box:

Z6(S) = 3For i = 6:

Also, we know that any position k inside a Z-box must correspond
to a position k’ somewhere in the prefix of S.

p h o t o p h o s p h o r e s c e n t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

19 3 3

Z6 Z6

i + Z6 - 1

At any given i with Zi > 0, we can use Zi to
determine the length of its enclosing Z-box:

Z6(S) = 3For i = 6:

Also, we know that any position k inside a Z-box must correspond
to a position k’ somewhere in the prefix of S.

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

Additional definitions:
More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

More definitions

• Let ri and li be defined as follows:

ri = max

1 < j i
s.t. Zj > 0

(j + Zj � 1)

li = argmax

1 < j i
s.t. Zj > 0

(j + Zj � 1)

Position: 1 2 3 4 5 6

String: x t p x t d

Zi: 0 0 2 0 0

ri: 0 0 5 5 5

li: 0 0 4 4 4

10

What does this get us?

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

E.g.: k = 7

For any position k where k > lk (i.e., is inside a z-box), we know
that there exists a position k’ s.t. S(k) = S(k’). k’ = k - lk + 1

What does this get us?

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

E.g.: k = 7 S(k) = “h”

For any position k where k > lk (i.e., is inside a z-box), we know
that there exists a position k’ s.t. S(k) = S(k’). k’ = k - lk + 1

What does this get us?

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

E.g.: k = 7 S(k) = “h” lk = 6

For any position k where k > lk (i.e., is inside a z-box), we know
that there exists a position k’ s.t. S(k) = S(k’). k’ = k - lk + 1

What does this get us?

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

E.g.: k = 7 S(k) = “h” lk = 6 k’ = 7-6+1 = 2

For any position k where k > lk (i.e., is inside a z-box), we know
that there exists a position k’ s.t. S(k) = S(k’). k’ = k - lk + 1

What does this get us?

For any position k where k > lk (i.e., is inside a z-box), we know
that there exists a position k’ s.t. S(k) = S(k’). k’ = k - lk + 1

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

E.g.: k = 7 S(k) = “h” lk = 6 k’ = 7-6+1 = 2

k’ is the k’s equivalent position in the matching prefix of the string!

What does this get us?

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

k’ is the k’s equivalent position in the matching prefix of the string!

What does this get us?

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

k’ is the k’s equivalent position in the matching prefix of the string!

Therefore, Zk’ can tell us something about the structure of the prefix
of the string.

What does this get us?

p h o t o p h o s p h o r e s c e n t
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3 3

ri 0 0 0 0 8 8 8 8 12 12 12 12 12 12 12 12 12 12

li 0 0 0 0 6 6 6 6 10 10 10 10 10 10 10 10 10 10

k’ is the k’s equivalent position in the matching prefix of the string!

Therefore, Zk’ can tell us something about the structure of the prefix
of the string.

If Zk’ > 0, there must be repeating elements!

Putting it all together into an algorithm:

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so: i.e., not inside a previously-
found matching region

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

i.e., not inside a previously-
found matching region

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

i.e., not inside a previously-
found matching region

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

We know that β must match S[k’,Zl]...

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = S[7,8] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

If k ≤ r, we are inside of an already-found z-box, so:

k’ = k - l + 1 ; β = S[k,r]

We know that β must match S[k’,Zl]...

↓
p h o t o p h o s p h o r e s c e n t

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zi 19 3

ri 0 0 0 0 8

li 0 0 0 0 6

β = S[k,r] = “ho”

S[k’,Zl] = S[7-6+1, 3] = S[2,3] = “ho”

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

Two possibilities:

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

Two possibilities:

S(k) could simply be part of a matching substring...

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

Two possibilities:

S(k) could simply be part of a matching substring...

Alternatively, S[k,r] could itself be a matching prefix of S!

Two possibilities:

S(k) could simply be part of a matching substring...

Two possibilities:

S(k) could simply be part of a matching substring...

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...

In this case, we know that the characters between S(k)
and S(r) are all part of a single match...

↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...

In this case, we know that the characters between S(k)
and S(r) are all part of a single match...

↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

... and so:

- we don’t need to update l and r

- Zk must be equal to Zk’, and therefore...

Two possibilities:

S(k) could simply be part of a matching substring...
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...

Alternatively, S[k,r] could itself be a matching prefix of S!

↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...

Alternatively, S[k,r] could itself be a matching prefix of S!

↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Alternatively, S[k,r] could itself be a matching prefix of S!
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

In this case, we are in an overlapping z-box...

Alternatively, S[k,r] could itself be a matching prefix of S!
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

In this case, we are in an overlapping z-box...

... so Zk might be potentially end up being different from Zk’...

Alternatively, S[k,r] could itself be a matching prefix of S!
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

In this case, we are in an overlapping z-box...

... so Zk might be potentially end up being different from Zk’...

... and we might need to update l and r (to reflect the
boundaries of the new z-box).

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

Two possibilities:

S(k) could simply be part of a matching substring...

Alternatively, S[k,r] could itself be a matching prefix of S!

How to tell which condition? Compare Zk’ to |β|:

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

If Zk’ < |β|, Zk = Zk’ and l, r are unchanged;

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

If Zk’ < |β|, Zk = Zk’ and l, r are unchanged;
If Zk’ ≥ |β|:

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

If Zk’ < |β|, Zk = Zk’ and l, r are unchanged;
If Zk’ ≥ |β|:

We know that Zk must be at least Zk’ - but it could be longer...

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

If Zk’ < |β|, Zk = Zk’ and l, r are unchanged;
If Zk’ ≥ |β|:

We know that Zk must be at least Zk’ - but it could be longer...

Start looking for a match between S[r + 1,] and S[|β| + 1,]

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

If Zk’ < |β|, Zk = Zk’ and l, r are unchanged;
If Zk’ ≥ |β|:

We know that Zk must be at least Zk’ - but it could be longer...

Start looking for a match between S[r + 1,] and S[|β| + 1,]

k is inside a z-box, but is not
the start of an overlapping box

Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

If Zk’ < |β|, Zk = Zk’ and l, r are unchanged;
If Zk’ ≥ |β|:

We know that Zk must be at least Zk’ - but it could be longer...

Start looking for a match between S[r + 1,] and S[|β| + 1,]

k must itself be the beginning
of a new, overlapping z-box

k is inside a z-box, but is not
the start of an overlapping box

Two possibilities:

S(k) could simply be part of a matching substring...

Alternatively, S[k,r] could itself be a matching prefix of S!

↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Two possibilities:

S(k) could simply be part of a matching substring...

Alternatively, S[k,r] could itself be a matching prefix of S!

↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

In this case, we know that Zk will be at least 2...

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

In this case, we know that Zk will be at least 2...

... and so we’ll need to do prefix matching, but we don’t have
to start at the beginning of the string.

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

In this case, we know that Zk will be at least 2...

... and so we’ll need to do prefix matching, but we don’t have
to start at the beginning of the string.

We know that S[k,r] must match S[1,Zk’], so can use our current
r offset to tell us where to start looking for a continued match.

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

We know that S[k,r] must match S[1,Zk’], so can use our current
r offset to tell us where to start looking for a continued match.

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

We know that S[k,r] must match S[1,Zk’], so can use our current
r offset to tell us where to start looking for a continued match.

Start comparing S[r+1,] and S[|β|+1,]; call the position in S where the
first mismatch occurs q.

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

We know that S[k,r] must match S[1,Zk’], so can use our current
r offset to tell us where to start looking for a continued match.

Start comparing S[r+1,] and S[|β|+1,]; call the position in S where the
first mismatch occurs q.

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

We know that S[k,r] must match S[1,Zk’], so can use our current
r offset to tell us where to start looking for a continued match.

Start comparing S[r+1,] and S[|β|+1,]; call the position in S where the
first mismatch occurs q.

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

We know that S[k,r] must match S[1,Zk’], so can use our current
r offset to tell us where to start looking for a continued match.

Start comparing S[r+1,] and S[|β|+1,]; call the position in S where the
first mismatch occurs q.

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4 q = 11

Alternatively, S[k,r] could itself be a matching prefix of S!

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

We know that S[k,r] must match S[1,Zk’], so can use our current
r offset to tell us where to start looking for a continued match.

Start comparing S[r+1,] and S[|β|+1,]; call the position in S where the
first mismatch occurs q.

q = 11

We can now set Zk = q - k ; the new r = q - 1 ; and l = k

Start comparing S[r+1,] and S[|β|+1,]; call the position in S where the
first mismatch occurs q.

q = 11

We can now set Zk = q - k ; the new r = q - 1 ; and l = k

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

⇣ ↓
a b a b x a b a b a y a b a b

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4 3

Start comparing S[r+1,] and S[|β|+1,]; call the position in S where the
first mismatch occurs q.

q = 11

We can now set Zk = q - k ; the new r = q - 1 ; and l = k

Now, continue on to the next k...

What does this get us?

What does this get us?

A lot, in the worst case:

What does this get us?

A lot, in the worst case:

(a long, repetitive pattern, with a string full of matches or
near-matches)

What does this get us?

A lot, in the worst case:

(a long, repetitive pattern, with a string full of matches or
near-matches)

We get to “skip ahead” quite often in that case.

What does this get us?

A lot, in the worst case:

(a long, repetitive pattern, with a string full of matches or
near-matches)

In a more “normal” case.... meh.

We get to “skip ahead” quite often in that case.

What does this get us?

A lot, in the worst case:

(a long, repetitive pattern, with a string full of matches or
near-matches)

In a more “normal” case.... meh.

Less skipping == less (relative) benefit

We get to “skip ahead” quite often in that case.

Plan for today:

Z-algorithm review

Knuth-Morris-Pratt

Boyer-Moore

Donald Knuth
1938 –

Historical notes:

Vaughan Pratt
1944 –

James Morris
1941 –

The KMP algorithm was discovered in 1974 by K & P at
Stanford, and independently by M at CMU in that same year.

The three authors formally published together in 1977.

D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern matching in strings. SIAM J. Comput., 6:323-50, 1977.

The Knuth-Morris-Pratt algorithm builds on
top of the Z-algorithm...

... the main innovation being that rather than
moving through S one character at a time...

... we use information about repetitive
segments of P to help us move more quickly.

For example, (from Gusfield):

P = a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

Consider a mismatch between P and S
occurring at position 8 in P:

m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑ ⇡

P
S

The previous algorithm would shift P down by one
position, and then resume searching for a match:

P
S m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑ ⇡

The previous algorithm would shift P down by one
position, and then resume searching for a match:

P
S

P
S m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

The previous algorithm would shift P down by one
position, and then resume searching for a match:

However, looking at the pattern, we can see that we
could have shifted further without missing anything!

P
S

P
S m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

The previous algorithm would shift P down by one
position, and then resume searching for a match:

However, looking at the pattern, we can see that we
could have shifted further without missing anything!

P
S

P
S m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

Definitions:

spi(P): The length of the longest suffix of P[1,i] that
is also a prefix of P. (and let sp0 = 0)

x t p x t d
i 1 2 3 4 5 6

Zi 19 0 0 2 0 0

spi 0 0 0 0 2 0

“Failure Function”: F(i): spi-1 + 1

Definitions:

spi(P): The length of the longest suffix of P[1,i] that
is also a prefix of P. (and let sp0 = 0)

x t p x t d
i 1 2 3 4 5 6 7

Zi 19 0 0 2 0 0

spi 0 0 0 0 2 0

F(i) 1 1 1 1 1 3 1

“Failure Function”: F(i): spi-1 + 1

Computing spi(P) can be done in linear time, using
a modification of the Z-algorithm:Linear-time calculation of spi(P)

Initialize spi(P) = 0 for all P (i)

From left-to-right over P , hence at position k we have already calculated Zk�1

and have current

values for l and r
• If k > r, begin comparing with beginning of P . Length of match is Zk. If Zk > 0, then

r = k + Zk � 1 and l = k.

* If spr(P) = 0 then set spr(P) = Zk

• If k r, then P (k) = P (k0
) where k0

= k � l � 1

Further, P [k, r] = P [k0, Zl]

Thus, Zk � min(Zk0, |P [k, r]|)

• If Zk0 < |P [k, r]|, then Zk = Zk0 and r, l unchanged

• If Zk0 > |P [k, r]|, then Zk = |P [k, r]| and r, l unchanged

• Otherwise, begin comparing position r + 1 with |P [k, r]| + 1

If mismatch at position q, then Zk = q � k, l = k, r = q � 1

⇤ If spr(P) = 0 then set spr(P) = Zk

6(See Gusfield for more gory details)

We will use F(i) to tell us how far we can safely
shift P along S when we encounter a mis-match.

x t p x t d
i 1 2 3 4 5 6 7

Zi 19 0 0 2 0 0

spi 0 0 0 0 2 0

F(i) 1 1 1 1 1 3 1

We will use F(i) to tell us how far we can safely
shift P along S when we encounter a mis-match.

x t p x t d
i 1 2 3 4 5 6 7

Zi 19 0 0 2 0 0

spi 0 0 0 0 2 0

F(i) 1 1 1 1 1 3 1

Basic idea: if we encounter a mismatch at character i of P,
we can shift P down F(i) positions along S.

Demo (roark_kmp.pdf)

Notes on KMP:

Notes on KMP:

KMP is a classic and widely-known linear time
exact-match algorithm...

Notes on KMP:

KMP is a classic and widely-known linear time
exact-match algorithm...

... and gives a nice speedup over the “simple”
linear-time algorithm...

Notes on KMP:

KMP is a classic and widely-known linear time
exact-match algorithm...

... but for many situations, it is not the method of
choice.

... and gives a nice speedup over the “simple”
linear-time algorithm...

Notes on KMP:

KMP is a classic and widely-known linear time
exact-match algorithm...

... but for many situations, it is not the method of
choice.

... and gives a nice speedup over the “simple”
linear-time algorithm...

The Boyer-Moore algorithm gives better typical
performance.

Historical Notes:

Boyer, R. S., and Moore, J. S. A fast string searching algorithm. Commun. ACM 20, 10 (Oct. 1977), 762–772.

Bob Boyer J Strother Moore

The Boyer-Moore algorithm was developed while BB was at
SRI and JSM was at Xerox PARC, and was published in 1977.

Fun fact: Moore’s first name is, in fact, the alphabetic
letter “J” – it’s not an abbreviation.

Boyer-Moore improves over KMP to give sub-
linear typical performance, and linear worst-case.

Key ideas:

Boyer-Moore improves over KMP to give sub-
linear typical performance, and linear worst-case.

Key ideas:

We still move the pattern (a.k.a. the “needle”) from
left to right through the string (the “haystack”)...

1.

Boyer-Moore improves over KMP to give sub-
linear typical performance, and linear worst-case.

Key ideas:

... but we start searching for matching characters from
the right of the pattern!

We still move the pattern (a.k.a. the “needle”) from
left to right through the string (the “haystack”)...

1.

Boyer-Moore improves over KMP to give sub-
linear typical performance, and linear worst-case.

Key ideas:

... but we start searching for matching characters from
the right of the pattern!

We still move the pattern (a.k.a. the “needle”) from
left to right through the string (the “haystack”)...

1.

If a mis-matched character T never occurs in P, we shift
P completely past that character.

2.

Boyer-Moore improves over KMP to give sub-
linear typical performance, and linear worst-case.

Key ideas:

... but we start searching for matching characters from
the right of the pattern!

We still move the pattern (a.k.a. the “needle”) from
left to right through the string (the “haystack”)...

1.

If a mis-matched character T never occurs in P, we shift
P completely past that character.

2.

3. We calculate an optimal shift amount (as in KMP), but we
use suffixes rather than prefixes.

Caveat: Some of the Boyer-Moore pre-processing
steps can be tricky to get one’s head around.

The explanation in Chapter 2 of Gusfield is very
decent, and you will need to spend some time
working through it to fully grok the algorithm.

Definitions:

R(x) =

Definitions:

“Bad character rule”:

R(x) =

Definitions:

“Bad character rule”:

For each character x in P...

R(x) =

Definitions:

“Bad character rule”:

For each character x in P...

R(x) = the position of the right-most
occurrence of x in P

Definitions:

“Bad character rule”:

For each character x in P...

R(x) = the position of the right-most
occurrence of x in P

x t p x t d
i 1 2 3 4 5 6

R(x) = 4
R(t) = 5
R(p) = 3
R(d) = 6

Definitions:

“Bad character rule”:

For each character x in P...

R(x) = the position of the right-most
occurrence of x in P

x t p x t d
i 1 2 3 4 5 6

“Bad character rule”:

x t p x t d
i 1 2 3 4 5 6

R(x) = 4
R(t) = 5
R(p) = 3
R(d) = 6

“Bad character rule”:

x t p x t d
i 1 2 3 4 5 6

If a mismatch occurs between character i of P and
k of T, shift P by max(1, i - R(T(k)))

R(x) = 4
R(t) = 5
R(p) = 3
R(d) = 6

“Bad character rule”:

x t p x t d
i 1 2 3 4 5 6

If a mismatch occurs between character i of P and
k of T, shift P by max(1, i - R(T(k)))

R(x) = 4
R(t) = 5
R(p) = 3
R(d) = 6

Furthermore, if T(k) does not appear in P, shift P by
|P| (since there’s no way that a match could
involve k.

“Bad character rule”:

x t p x t d
i 1 2 3 4 5 6

If a mismatch occurs between character i of P and
k of T, shift P by max(1, i - R(T(k)))

Intuition: Since we’re matching from right-to-left, R(x) tells
us the first place there could possibly be a match.

R(x) = 4
R(t) = 5
R(p) = 3
R(d) = 6

Furthermore, if T(k) does not appear in P, shift P by
|P| (since there’s no way that a match could
involve k.

m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

R(a) = 5

R(b) = 6

R(c) = 7

R(x) = 4

R(d) = 8

R(e) = 9

“a” and “e” don’t match; the next possible location in S
that a match could occur would involve position R(a) of
the pattern being aligned with the current index.

If a mismatch occurs between character i of P
and k of T, shift P by max(1, i - R(T(k)))

m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

R(a) = 5

R(b) = 6

R(c) = 7

R(x) = 4

R(d) = 8

R(e) = 9

If a mismatch occurs between character i of P
and k of T, shift P by max(1, i - R(T(k)))

R(T(k)) = R(T(9)) = R(a) = 5

We shift the pattern (and the search index!) by i - 5 = 9 - 5 = 4 positions.

m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

R(a) = 5

R(b) = 6

R(c) = 7

R(x) = 4

R(d) = 8

R(e) = 9

If a mismatch occurs between character i of P
and k of T, shift P by max(1, i - R(T(k)))

We shift the pattern (and the search index!) by i - 5 = 9 - 5 = 4 positions.

R(T(k)) = R(T(9)) = R(a) = 5

m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

R(a) = 5

R(b) = 6

R(c) = 7

R(x) = 4

R(d) = 8

R(e) = 9

If a mismatch occurs between character i of P
and k of T, shift P by max(1, i - R(T(k)))

Then, resume searching from the right-hand side of the
pattern moving to the left.

m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

R(a) = 5

R(b) = 6

R(c) = 7

R(x) = 4

R(d) = 8

R(e) = 9

If a mismatch occurs between character i of P
and k of T, shift P by max(1, i - R(T(k)))

Note that, in this case, our next shift would be quite large,
since “q” does not appear in the pattern!

“Bad character rule”:

According to Gusfield, just using the bad suffix
rule on its own yields good performance on
“normal” English...

“Bad character rule”:

According to Gusfield, just using the bad suffix
rule on its own yields good performance on
“normal” English...

... but in some situations (e.g. small alphabets), it is
less effective. Question for discussion: why?

“Bad character rule”:

According to Gusfield, just using the bad suffix
rule on its own yields good performance on
“normal” English...

... but in some situations (e.g. small alphabets), it is
less effective. Question for discussion: why?

To assist, Boyer-Moore defines the “Good suffix”
rule.

“The original preprocessing method [278] for the strong
good suffix rule is generally considered quite difficult and
somewhat mysterious (although a weaker version of it is
easy to understand). In fact, the preprocessing for the
strong rule was given incorrectly in [278] and corrected,
without much explanation, in [384]. Code based on [384]
is given without real explanation in the text by Baase
[32], but there are no published sources that try to fully
explain the method.”...

Gusfield, p. 19

“The original preprocessing method [278] for the strong
good suffix rule is generally considered quite difficult and
somewhat mysterious (although a weaker version of it is
easy to understand). In fact, the preprocessing for the
strong rule was given incorrectly in [278] and corrected,
without much explanation, in [384]. Code based on [384]
is given without real explanation in the text by Baase
[32], but there are no published sources that try to fully
explain the method.”...

Gusfield, p. 19

“In contrast, the fundamental preprocessing of P
discussed in Chapter 1 makes the needed preprocessing
very simple.”

Intuition of good suffix rule:

Intuition of good suffix rule:

When we hit a mismatch, we want to shift our
pattern further along the string.

Intuition of good suffix rule:

When we hit a mismatch, we want to shift our
pattern further along the string.

If we’ve found a partial match, and our pattern
contains repeated elements...

Intuition of good suffix rule:

When we hit a mismatch, we want to shift our
pattern further along the string.

If we’ve found a partial match, and our pattern
contains repeated elements...

... we can shift our pattern down until the right-
most repeated element* to the left of our current
position aligns with the current partial match.

Intuition of good suffix rule:

When we hit a mismatch, we want to shift our
pattern further along the string.

If we’ve found a partial match, and our pattern
contains repeated elements...

... we can shift our pattern down until the right-
most repeated element* to the left of our current
position aligns with the current partial match.

In many cases, this will be a further shift than the
bad-character rule would have given us!

Intuition of good suffix rule:

When we hit a mismatch, we want to shift our
pattern further along the string.

If we’ve found a partial match, and our pattern
contains repeated elements...

... we can shift our pattern down until the right-
most repeated element* to the left of our current
position aligns with the current partial match.

In many cases, this will be a further shift than the
bad-character rule would have given us!

*: Some conditions apply, stay tuned...

Good su�x rule (strong)

Illustration from Gusfield

T x t

P before shift z t0 y t

P after shift z t0 y t

13 Region of partial match

Good su�x rule (strong)

Illustration from Gusfield

T x t

P before shift z t0 y t

P after shift z t0 y t

13 Point of mis-match

Good su�x rule (strong)

Illustration from Gusfield

T x t

P before shift z t0 y t

P after shift z t0 y t

13 Repetition of partial-match
region in pattern

Good su�x rule (strong)

Illustration from Gusfield

T x t

P before shift z t0 y t

P after shift z t0 y t

13Closest possible place for
match to occur.

Good su�x rule (strong)

Illustration from Gusfield

T x t

P before shift z t0 y t

P after shift z t0 y t

13

Point from which we start our
next iteration of the algorithm.

More formally:

t: A substring of T and P matching at a particular
alignment.

More formally:

t: A substring of T and P matching at a particular
alignment.

t’: The right-most copy of t in P s.t.:

More formally:

t: A substring of T and P matching at a particular
alignment.

t’: The right-most copy of t in P s.t.:

 t’ is not a suffix of P and:

More formally:

t: A substring of T and P matching at a particular
alignment.

t’: The right-most copy of t in P s.t.:

the character to the left of t’ in P differs from the
character to the left of t in P.

 t’ is not a suffix of P and:

More formally:

t: A substring of T and P matching at a particular
alignment.

t’: The right-most copy of t in P s.t.:

the character to the left of t’ in P differs from the
character to the left of t in P.

 t’ is not a suffix of P and:

If t’ exists, shift P so that t’ in P is below substring t
in T.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

p r s t a b s t u b a b v q x r s t

q c a b d a b d a b
i 1 2 3 4 5 6 7 8 9 0

↑

t: ab

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

p r s t a b s t u b a b v q x r s t

q c a b d a b d a b
i 1 2 3 4 5 6 7 8 9 0

↑

t: ab

t’: occurs at position 3 in P

t: ab

t’: occurs at position 3 in P

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

p r s t a b s t u b a b v q x r s t

q c a b d a b d a b
i 1 2 3 4 5 6 7 8 9 0

↑

t: ab

t’: occurs at position 3 in P

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

p r s t a b s t u b a b v q x r s t

q c a b d a b d a b
i 1 2 3 4 5 6 7 8 9 0

↑

Note that had we relied on the “bad character”
rule, we only would have been able to shift
down 1 position!

t: ab

t’: occurs at position 3 in P

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

p r s t a b s t u b a b v q x r s t

q c a b d a b d a b
i 1 2 3 4 5 6 7 8 9 0

↑

Great! How do we find t’?

Definitions:

For each position i, let k = |P| - i + 1

(i.e., k = |P[i,|P|]|)
(i.e., k = the length of the
suffix of P starting at i.)

Definitions:

For each position i, let k = |P| - i + 1

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a
suffix of P[1,L(i)] and s.t. the character preceding that
suffix is not equal to P(i - 1).

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a
suffix of P[1,L(i)] and s.t. the character preceding that
suffix is not equal to P(i - 1).

c a b d a b d a b
i 1 2 3 4 5 6 7 8 9

↑

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a
suffix of P[1,L(i)] and s.t. the character preceding that
suffix is not equal to P(i - 1).

L(8) = 6c a b d a b d a b
i 1 2 3 4 5 6 7 8 9

↑

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a
suffix of P[1,L(i)] and s.t. the character preceding that
suffix is not equal to P(i - 1).

L(8) = 6c a b d a b d a b
i 1 2 3 4 5 6 7 8 9

↑

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a
suffix of P[1,L(i)] and s.t. the character preceding that
suffix is not equal to P(i - 1).

L(8) = 6

L’(8) = 3

c a b d a b d a b
i 1 2 3 4 5 6 7 8 9

↑

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a
suffix of P[1,L(i)] and s.t. the character preceding that
suffix is not equal to P(i - 1).

We’ll use L(i) and L’(i) for detailed steps in the algorithm...

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a
suffix of P[1,L(i)] and s.t. the character preceding that
suffix is not equal to P(i - 1).

We’ll use L(i) and L’(i) for detailed steps in the algorithm...

... but note that any position i in P where Li(P) > 0 must have
a corresponding repeating segment! (t’ in previous slides)

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a
suffix of P[1,L(i)] and s.t. the character preceding that
suffix is not equal to P(i - 1).

We’ll use L(i) and L’(i) for detailed steps in the algorithm...

Gusfield chap. 2 gives a lovely algorithm for computing L(i)
and L’(i) in O(|P|) time by using Z-boxes!

Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a
suffix of P[1,L(i)] and s.t. the character preceding that
suffix is not equal to P(i - 1).

One more definition: l(i).

l(i) is the length of the largest suffix of P(i,) that is also a
prefix of P, and can also be calculated in linear time (see
Gusfield).

Putting it all together:

1. Pre-calculate bad character table;

2. Pre-calculate good-suffix table;

3. Start at position |P| in T, move from right to left.

a. Look for matching characters;

b. If no match, skip max(bad character, good suffix)
positions further down in the string.

4. Wash, Rinse, Repeat!

Putting it all together: roark_boyer_moore.pdf

