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Plan for today:

Z-algorithm review

Knuth-Morris-Pratt

Boyer-Moore
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S = aardvark

Z2(S) = 1

Z6(S) = 1

S = alfalfa

Z4(S) = 4

S = photophosphorescent

Z6(S) = Z10(S) = 3



These regions of prefix-overlap are called 
z-boxes.

P = photophosphorescent

https://www.cs.umd.edu/class/fall2011/cmsc858s/Lec02-zalg.pdf

Fundamental Preprocessing

• P = “aardvark”: Z2 = 1, Z6 = 1

• P = “alfalfa”: Z4 = 4

• P = “photophosphorescent”: Z6 = Z10 = 3

i

P:

i + Zi - 1

ZiZi

https://www.cs.umd.edu/class/fall2011/cmsc858s/Lec02-zalg.pdf
https://www.cs.umd.edu/class/fall2011/cmsc858s/Lec02-zalg.pdf
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By being clever about constructing our string, 
we can easily find exact pattern matches:

Make the pattern (P) the prefix...
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Question: How to calculate Zi?

The naïve way:

For every position i, compute the longest 
common prefix between S and S[i,|S|]

Problem: This is O(n2)!

The solution involves thinking about the 
properties of Z-boxes.
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At any given i with Zi > 0, we can use Zi to 
determine the length of its enclosing Z-box:

Z6(S) = 3For i = 6:

Also, we know that any position k inside a Z-box must correspond 
to a position k’ somewhere in the prefix of S.
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If Zk’ > 0, there must be repeating elements!
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Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a 
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|
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Alternatively, S[k,r] could itself be a matching prefix of S!
↓

a b a b x a b a b a y a b a b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Zi 15 2 4

In this case, we are in an overlapping z-box...

... so Zk might be potentially end up being different from Zk’...

... and we might need to update l and r (to reflect the 
boundaries of the new z-box).



Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a 
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

Two possibilities: 

S(k) could simply be part of a matching substring...

Alternatively, S[k,r] could itself be a matching prefix of S!

How to tell which condition? Compare Zk’ to |β|:
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Putting it all together into an algorithm:

Initialize l and r to 0; for each k, 1 < k ≤ |S| :

If k > r, we are not in a z-box, so:

Calculate Zk the normal way

If Zk > 0, set l = k and r = k + Zk - 1

If k ≤ r, we are inside of an already-found z-box, so:

i.e., not inside a previously-
found matching region

k is the beginning of a 
match of length Zk

k’ = k - l + 1 ; β = S[k,r]|

If Zk’ < |β|, Zk = Zk’ and l, r are unchanged;
If Zk’ ≥ |β|:

We know that Zk must be at least Zk’ - but it could be longer...

Start looking for a match between S[r + 1,] and S[|β| + 1,]

k must itself be the beginning 
of a new, overlapping z-box

k is inside a z-box, but is not 
the start of an overlapping box
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first mismatch occurs q.

q = 11

We can now set Zk = q - k ; the new r = q - 1 ; and l = k
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⇣ ↓
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Start comparing S[r+1,] and S[|β|+1,]; call the position in S where the 
first mismatch occurs q.

q = 11

We can now set Zk = q - k ; the new r = q - 1 ; and l = k

Now, continue on to the next k...
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What does this get us?

A lot, in the worst case:

(a long, repetitive pattern, with a string full of matches or 
near-matches)

In a more “normal” case.... meh.

Less skipping == less (relative) benefit

We get to “skip ahead” quite often in that case.



Plan for today:

Z-algorithm review

Knuth-Morris-Pratt

Boyer-Moore



Donald Knuth
1938 –

Historical notes:

Vaughan Pratt
1944 –

James Morris
1941 –

The KMP algorithm was discovered in 1974 by K & P at 
Stanford, and independently by M at CMU in that same year.

The three authors formally published together in 1977.

D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern matching in strings. SIAM J. Comput., 6:323-50, 1977.



The Knuth-Morris-Pratt algorithm builds on 
top of the Z-algorithm...

... the main innovation being that rather than 
moving through S one character at a time...

... we use information about repetitive 
segments of P to help us move more quickly.



For example, (from Gusfield):

P = a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

Consider a mismatch between P and S 
occurring at position 8 in P:

m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑ ⇡

P
S



The previous algorithm would shift P down by one 
position, and then resume searching for a match:

P
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P
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↑



Definitions:

spi(P): The length of the longest suffix of P[1,i] that 
is also a prefix of P. (and let sp0 = 0)

x t p x t d
i 1 2 3 4 5 6

Zi 19 0 0 2 0 0

spi 0 0 0 0 2 0

“Failure Function”: F(i): spi-1 + 1



Definitions:

spi(P): The length of the longest suffix of P[1,i] that 
is also a prefix of P. (and let sp0 = 0)

x t p x t d
i 1 2 3 4 5 6 7

Zi 19 0 0 2 0 0

spi 0 0 0 0 2 0

F(i) 1 1 1 1 1 3 1

“Failure Function”: F(i): spi-1 + 1



Computing spi(P) can be done in linear time, using 
a modification of the Z-algorithm:Linear-time calculation of spi(P )

Initialize spi(P ) = 0 for all P (i)

From left-to-right over P , hence at position k we have already calculated Zk�1

and have current

values for l and r
• If k > r, begin comparing with beginning of P . Length of match is Zk. If Zk > 0, then

r = k + Zk � 1 and l = k.

* If spr(P ) = 0 then set spr(P ) = Zk

• If k  r, then P (k) = P (k0
) where k0

= k � l � 1

Further, P [k, r] = P [k0, Zl]

Thus, Zk � min(Zk0, |P [k, r]|)

• If Zk0 < |P [k, r]|, then Zk = Zk0 and r, l unchanged

• If Zk0 > |P [k, r]|, then Zk = |P [k, r]| and r, l unchanged

• Otherwise, begin comparing position r + 1 with |P [k, r]| + 1

If mismatch at position q, then Zk = q � k, l = k, r = q � 1

⇤ If spr(P ) = 0 then set spr(P ) = Zk

6(See Gusfield for more gory details)



We will use F(i) to tell us how far we can safely 
shift P along S when we encounter a mis-match.

x t p x t d
i 1 2 3 4 5 6 7

Zi 19 0 0 2 0 0

spi 0 0 0 0 2 0

F(i) 1 1 1 1 1 3 1



We will use F(i) to tell us how far we can safely 
shift P along S when we encounter a mis-match.

x t p x t d
i 1 2 3 4 5 6 7

Zi 19 0 0 2 0 0

spi 0 0 0 0 2 0

F(i) 1 1 1 1 1 3 1

Basic idea: if we encounter a mismatch at character i of P, 
we can shift P down F(i) positions along S.



Demo (roark_kmp.pdf)
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Notes on KMP:

KMP is a classic and widely-known linear time 
exact-match algorithm...

... but for many situations, it is not the method of 
choice.

... and gives a nice speedup over the “simple” 
linear-time algorithm...

The Boyer-Moore algorithm gives better typical 
performance.



Historical Notes:

Boyer, R. S., and Moore, J. S. A fast string searching algorithm. Commun. ACM 20, 10 (Oct. 1977), 762–772.

Bob Boyer J Strother Moore

The Boyer-Moore algorithm was developed while BB was at 
SRI and JSM was at Xerox PARC, and was published in 1977.

Fun fact: Moore’s first name is, in fact, the alphabetic 
letter “J” – it’s not an abbreviation.
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Boyer-Moore improves over KMP to give sub-
linear typical performance, and linear worst-case.

Key ideas:

... but we start searching for matching characters from 
the right of the pattern!

We still move the pattern (a.k.a. the “needle”) from 
left to right through the string (the “haystack”)...

1. 

If a mis-matched character T never occurs in P, we shift  
P completely past that character.

2. 

3. We calculate an optimal shift amount (as in KMP), but we 
use suffixes rather than prefixes.



Caveat: Some of the Boyer-Moore pre-processing 
steps can be tricky to get one’s head around.

The explanation in Chapter 2 of Gusfield is very 
decent, and you will need to spend some time 
working through it to fully grok the algorithm.
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“Bad character rule”:

x t p x t d
i 1 2 3 4 5 6

If a mismatch occurs between character i of P and 
k of T, shift P by max(1, i - R(T(k)))

Intuition: Since we’re matching from right-to-left, R(x) tells 
us the first place there could possibly be a match.

R(x) = 4
R(t) = 5
R(p) = 3
R(d) = 6

Furthermore, if T(k) does not appear in P, shift P by 
|P| (since there’s no way that a match could 
involve k.
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R(d) = 8
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“a” and “e” don’t match; the next possible location in S 
that a match could occur would involve position R(a) of 
the pattern being aligned with the current index.

If a mismatch occurs between character i of P 
and k of T, shift P by max(1, i - R(T(k)))
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m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

R(a) = 5

R(b) = 6

R(c) = 7

R(x) = 4

R(d) = 8

R(e) = 9

If a mismatch occurs between character i of P 
and k of T, shift P by max(1, i - R(T(k)))

We shift the pattern (and the search index!) by i - 5 = 9 - 5 = 4 positions.

R(T(k)) = R(T(9)) = R(a) = 5



m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

R(a) = 5

R(b) = 6

R(c) = 7

R(x) = 4

R(d) = 8

R(e) = 9

If a mismatch occurs between character i of P 
and k of T, shift P by max(1, i - R(T(k)))

Then, resume searching from the right-hand side of the 
pattern moving to the left.



m o q j a b c x a b c j q z r a a j o q

a b c x a b c d e
i 1 2 3 4 5 6 7 8 9

↑

R(a) = 5

R(b) = 6

R(c) = 7

R(x) = 4

R(d) = 8

R(e) = 9

If a mismatch occurs between character i of P 
and k of T, shift P by max(1, i - R(T(k)))

Note that, in this case, our next shift would be quite large, 
since “q” does not appear in the pattern!
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“Bad character rule”:

According to Gusfield, just using the bad suffix 
rule on its own yields good performance on 
“normal” English...

... but in some situations (e.g. small alphabets), it is 
less effective. Question for discussion: why?

To assist, Boyer-Moore defines the “Good suffix” 
rule.



“The original preprocessing method [278] for the strong 
good suffix rule is generally considered quite difficult and 
somewhat mysterious (although a weaker version of it is 
easy to understand). In fact, the preprocessing for the 
strong rule was given incorrectly in [278] and corrected, 
without much explanation, in [384]. Code based on [384] 
is given without real explanation in the text by Baase 
[32], but there are no published sources that try to fully 
explain the method.”...

Gusfield, p. 19



“The original preprocessing method [278] for the strong 
good suffix rule is generally considered quite difficult and 
somewhat mysterious (although a weaker version of it is 
easy to understand). In fact, the preprocessing for the 
strong rule was given incorrectly in [278] and corrected, 
without much explanation, in [384]. Code based on [384] 
is given without real explanation in the text by Baase 
[32], but there are no published sources that try to fully 
explain the method.”...

Gusfield, p. 19

“In contrast, the fundamental preprocessing of P 
discussed in Chapter 1 makes the needed preprocessing 
very simple.”
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Intuition of good suffix rule:

When we hit a mismatch, we want to shift our 
pattern further along the string.

If we’ve found a partial match, and our pattern 
contains repeated elements...

... we can shift our pattern down until the right-
most repeated element* to the left of our current 
position aligns with the current partial match.

In many cases, this will be a further shift than the 
bad-character rule would have given us!

*: Some conditions apply, stay tuned...
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region in pattern
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Illustration from Gusfield

T x t

P before shift z t0 y t

P after shift z t0 y t

13Closest possible place for 
match to occur.



Good su�x rule (strong)

Illustration from Gusfield

T x t

P before shift z t0 y t

P after shift z t0 y t

13

Point from which we start our 
next iteration of the algorithm.
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More formally:

t: A substring of T and P matching at a particular 
alignment.

t’: The right-most copy of t in P s.t.:

the character to the left of t’ in P differs from the 
character to the left of t in P.

 t’ is not a suffix of P and:

If t’ exists, shift P so that t’ in P is below substring t  
in T.
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↑
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t’: occurs at position 3 in P
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t: ab

t’: occurs at position 3 in P

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

p r s t a b s t u b a b v q x r s t

q c a b d a b d a b
i 1 2 3 4 5 6 7 8 9 0

↑

Note that had we relied on the “bad character” 
rule, we only would have been able to shift 
down 1 position!



t: ab

t’: occurs at position 3 in P

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

p r s t a b s t u b a b v q x r s t

q c a b d a b d a b
i 1 2 3 4 5 6 7 8 9 0

↑

Great! How do we find t’?



Definitions:
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(i.e., k = |P[i,|P|]|)
(i.e., k = the length of the 
suffix of P starting at i.)
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Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a 
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a 
suffix of P[1,L(i)] and s.t. the character preceding that 
suffix is not equal to P(i - 1).

L(8) = 6

L’(8) = 3

c a b d a b d a b
i 1 2 3 4 5 6 7 8 9

↑
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Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a 
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a 
suffix of P[1,L(i)] and s.t. the character preceding that 
suffix is not equal to P(i - 1).

We’ll use L(i) and L’(i) for detailed steps in the algorithm...

... but note that any position i in P where Li(P) > 0 must have 
a corresponding repeating segment! (t’ in previous slides)



Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a 
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a 
suffix of P[1,L(i)] and s.t. the character preceding that 
suffix is not equal to P(i - 1).

We’ll use L(i) and L’(i) for detailed steps in the algorithm...

Gusfield chap. 2 gives a lovely algorithm for computing L(i) 
and L’(i) in O(|P|) time by using Z-boxes!



Definitions:

For each position i, let k = |P| - i + 1

Let L(i) = the largest position from which P[i,] matches a 
suffix of P[1,L(i)].

Let L’(i) = largest position from which P[i,] matches a 
suffix of P[1,L(i)] and s.t. the character preceding that 
suffix is not equal to P(i - 1).

One more definition: l(i).

l(i) is the length of the largest suffix of P(i,) that is also a 
prefix of P, and can also be calculated in linear time (see 
Gusfield). 



Putting it all together:

1. Pre-calculate bad character table;

2. Pre-calculate good-suffix table;

3. Start at position |P| in T, move from right to left.

a. Look for matching characters;

b. If no match, skip max(bad character, good suffix) 
positions further down in the string.

4. Wash, Rinse, Repeat!



Putting it all together: roark_boyer_moore.pdf


