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Quick Review:

Stochastic PoS techniques rely entirely on
probability.

The goal of a stochastic PoS tagger is to find:
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Ar-f’ = arg max P(t7 |w?)
ty

Via Bayes’ Rule:

A

= argmax P(w? [t])P(t})

ty f \
Likelihood Prior

After making a few simplifying assumptions:

A

" = argmax P(t7|w}) ~ argmax | | P(ws|t;) P(t;|ti—1)
t’rL mn

s N

Probability of ~ Probability of tag
word given tag ~ given previous tag
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Andrei Andreievich Markov
1856-1922

HMMs are a type of stochastic
model used to examine
sequential data.

The basic idea: there are two parameters
changing over time, but we can only
directly observe one of them. We want to

know about the other.



Q: { Hot, Cold }

1 2 3
Hot Cold
Hot 0.2 0.4 0.4
Hot 0.7 0.3 B o
A° Cold 0.5 0.4 0.1
Cold 0.6 0.4
e | aO, Hot/Cold- Start
Hot 0.8
roer Cold 0.2

Note: for this demonstration, we are ignoring ar.
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we can ask with an HMM:

1.Likelihood: Given a sequence of states, what is the most

likely observed sequence? or How likely is a given
observation sequence?

2.Decoding: Given an observation sequence and a fully-
specified HMM, what is the most likely sequence of states to
have produced that observation?

3.Learning: Given an observation sequence and a set of

states, what are the likely transition and emission
probabilities (A and B)?
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Let’s say we have a sequence of diary entries:
O=3,1,3

How likely is this sequence given the model
described earlier? P(O|A)
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... by building a trellis & such that each o(j) represents:

the probability of the machine being in state j,

... given the first t observations (“forward probability”).

FOrmally @t(]) — P(01702°-°0t7Qt — j|)\)



Calculating a:(j) = P(o1,02...01,q: = j|A) is fairly
straightforward:

ai(J) = Z @t—l(i)%ijbj(%)

/TN

Previous time step’s forward Emission Iikelihood for
probability for state i symbol o; given current
state |

l
Transition prob. from

previous state / to current
state J
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“Given an observation O, what was the most
probable sequence of states Q?”

Decoding and likelihood estimation have certain
similarities...

One solution: run the forward algorithm over each
possible state sequence...

... which has the same issue as the naive solution to

the likelihood problem! |
O(N") possible

solutions...
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Decoding and likelihood estimation have the same
problems...

... and they share a solution.

Modifying the forward algorithm slightly gives us the
Viterbi algorithm for decoding.

The main difference: instead of summing possible
paths to each state, we take the max...

... and keep track of which one it was!
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Forward algorithm trellis locations:
N
i (j) = > ar_1(i)aijbs(or)
i=1

Viterbi algorithm trellis locations:

N

ve(J) = maxvy—1a;;0;(0r)

We also save a backtrace through the most-likely states:

, N
bti(7) = argniax V¢—104;0(0)
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So, we have O, and know what our state vocabulary is...

... but we don’t know transition or emission probabilities.

We can use Baum-Welch algorithm (a.k.a. Forward-
Backward algorithm) to iteratively estimate A and B.

Al

Lloyd Welch

Leonard Baum
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This is calculated using the backward algorithm, which is
very similar to the forward algorithm (but in reverse!)

3 (Z) L Probability of finishing (i.e., reaching end state)
SRR the observed sequence from state /.

R Sum of the backwards probabilities
Z aii0:(0121) B () of the different paths through the
303 (0t41) B model that could happen from state i
7= and time t.

N

3" ao;bi(01)51(5) Final forward probability of

P(O|)) = = B1(0) =
(O1A) = arlgr) = 51(0) observation given model.

j=1



Of course, we compute all of this using the same dynamic
programming approach we've already seen:
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Now, how to use these to estimate A and B?

Baum-Welch is a variation on Expectation-Maximization...

... as such, we start with a “guess” for A and B, and
iteratively improve it.

We begin by attempting to find:

expected # transitions from state 7 to state j
a —
" expected number of transitions from state ¢

A

If we had an estimate of the probability of transition i—=;
occurring at each time t, we could sum them to get the

total count for /.
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We have all the pieces we need to get this:

~

(0. 5) = 0 ()as;bs (0141 By (7

Forward probability of
observations up to this arc

Transition probability
between states i and j

Emission probability
of the next symbol

|
Backward probability

after this arc
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Furthermore, because of P(X|Y,Z) =

We can transform &,(i, j), or P(qt = i, g+1 = J, O|A)

into &:(4,7), or P(q: =1, ¢1+1 = 710, \), simply by dividing
by P(O|)) .

1=1
So, the final equation is:

(i, ) = 203103 (01+1)Br41 ()

OéT(N)
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“The probability of going from state i to state j at time
t.” (given a current estimate of the model).

Summing over all times t gives us a; :
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Remember:

o 0g()agibi(op41)Ber1(J)
gt(f&?]) — @T(N)

“The probability of going from state i to state j at time
t.” (given a current estimate of the model).

Summing over all times t gives us a; :
T—1 .
B — thl gt(%])

i T S T—1 <N .

Which looks a lot like:

expected # transitions from state 7 to state j

Ajj = — .
7 expected number of transitions from state ¢



— a.b

I

j(?t+1)
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All of the ways the model could have gotten into state i at
time t...

= aijbj(9t+1)
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All of the ways the model could have gotten into state i at
time t...

AN ... the likelihood of going from i

to j while emitting o+ 1...

/

== aijbj(?m)
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All of the ways the model could have gotten into state i at
time t...

AN ... the likelihood of going from i

to j while emitting o 1...

/

== aijbj(?m)

O & Ot 4o

/

... all of the ways the model could finish from state j at
time t+17.
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We follow a similar process to estimate B.

expected # times in state 7 and observing symbol v

expected number of times in state j

We'll need to know the probability of being in state j at

time t:
’Yt(j) — P(Qt — j‘Ov)\)

Using the same trick as before:

(i) = TS Pl = 5,00 = aui)a)

“Probability of getting to this state at this time point, times the probability
of the rest of the observations given this state and this time point”
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Using the same trick as before:

(i) = DI pg = .01 = i)

N ae(J)B ()
Vi (J) = P(O|\)

“Probability of getting to this state at this time point, times the probability
of the rest of the observations given this state and this time point”

T :
thls.t.Ot —Vk /Yt (])

23;1 Tt (])

bj(vk) =



Using the same trick as before:

(i) = DI pg = .01 = i)

N ae(J)B ()

“Probability of getting to this state at this time point, times the probability
of the rest of the observations given this state and this time point”
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Using the same trick as before:

(i) = DI pg = .01 = i)

N ae(J)B ()
Vi (J) = P(O|\)

“Probability of getting to this state at this time point, times the probability
of the rest of the observations given this state and this time point”

A ZT: 15.t.0,=vr, ¥ (]) “Only count observations
bj (U k) — where the observed

L;—l Yt (]) emission was vi.”




Now, that we have new estimates for A and B...

T—1 . T :
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Now, that we have new estimates for A and B...

T—1 . T :
i — Zt:l ft(z’]) 7 _ thls.t.Ot:vk. fyt(])

1] T _ b
: 1 Z;V:lft(i,j) i) > o1 1 (d)

We can go back, calculate new forward and backward
trellises, and re-compute A and B.

Rinse, wash, and repeat until things converge or
we get bored.

In practice, much depends on our initial estimates,
and so we often use additional information when
possible (e.g., encoding impossible transitions, etc.).




