
Language Models, part 1

Steven Bedrick
CS/EE 5/655, 10/13/14 http://www.openfst.org/twiki/pub/FST/FstHltTutorial/tutorial_part3.pdf

http://www.openfst.org/twiki/pub/FST/FstHltTutorial/tutorial_part3.pdf
http://www.openfst.org/twiki/pub/FST/FstHltTutorial/tutorial_part3.pdf

Plan for the day:

1. Modeling context

2. Probability

3. Language Models

4. Markov Chains

5. Implementation Notes

Complete this sentence:

“I was late assigning the...

Complete this sentence:

“I was late assigning the homework.”

“I was late assigning the purple.”

p(purple) < p(homework)

Observation: Language is not random!

Of course, many sequential
processes are not totally random:

Today’s weather has something to do with
yesterday’s...

... each speech audio sample is related to its
predecessor, etc.

There’s all kinds of structure to protein
sequences!

What might we want to do with this
information?

Prediction:
Given an observation(s), what is the most likely next
observation?

Classification:
Given a new observation(s), and several sets of old
observations, which set did the new ones come from?

Estimation:
Given an observation(s), how likely is it to have come
from whatever process was generating our data?

Prediction:

“I was late assigning the homework.”

“I was late assigning the purple.”

p(purple) > p(homework)

Estimation:

p(s1) > p(s2)

“He really believed, that were it not for
the inferiority of her connections...”

s1

"that not it her really of, were connections
for inferiority He believed the"

s2

Less silly example:

he briefed to reporters on the chief contents of the statement

he briefed reporters on the chief contents of the statement

he briefed to reporters on the main contents of the statement

he briefed reporters on the main contents of the statement

Which sentence to choose?

Another example:

How to spot typos that are valid English words?

They are leaving in fifteen minuets to go to the store.

The design an construction will take more than two years.

Classification:
“About thirty years ago Miss Maria Ward, of Huntingdon, with only seven
thousand pounds, had the good luck to captivate...”

“It is a truth universally acknowledged, that a single man in possession of a good fortune,
must be in want of a wife.”

Which sentence came from which book?

All of these depend on having some kind of
model of our data...

... and then formulating our problems as
questions that can be answered by the model.

Plan for the day:

1. Modeling context

2. Probability

3. Language Models

4. Markov Chains

5. Implementation Notes

Probability:

Much of what we want to do depends on
calculating the probability of an
observation given some history:

P(obs | hist)

Probability:

Consider: “its water is so transparent that”

P(obs | hist)

How likely is “the” to be the next word?

P(w | h)

P(the | its water is so transparent that)

Probability:

P(w | hist)

P (w|h) = C(w, h)

C(h)

P (w|h) = C(its water is so transparent that the)

C(its water is so transparent that)

This “works”... but makes a lot of assumptions.

Probability:

P (w|h) = C(its water is so transparent that the)

C(its water is so transparent that)

This “works”... but makes a lot of assumptions.

1. That’s a lot of counting...

2. Language is productive and creative!

3. We’d need a very large corpus (infinite?)

Probability:
A better way:
P (its = w1, water = w2, is = w3, so = w4, transparent = w5, that = w6)

P (w1, w2, w3, w4, w5, w6)

P (X1, ...Xn) = P (X1)P (X2|X1)(PX3|X2
1)...P (Xn|Xn�1

1)

P (X1, ...Xn) =
nY

k=1

P (Xk|Xk�1
1)

w1...wn

wn
1 w3

1 “The first three words in the sequence”

P (wn
1) =

nY

k=1

P (wk|wk�1
1)

Probability:
A better way:
P (its = w1, water = w2, is = w3, so = w4, transparent = w5, that = w6)

P (wn
1) =

nY

k=1

P (wk|wk�1
1)

This doesn’t look much better— we still need to be
able to calculate all the intermediate probabilities...

What if we make an assumption?

Instead of the entire history for each word, maybe we
only need a little bit?

Probability:
Instead of the entire history for each word, maybe we
only need a little bit?

Andrei Andreievich Markov
1856–1922

A bigram model: each word
depends only on its preceding
word.

P (wn|wn�1
1) ⇡ P (wn|wn�1)

P (wn
1) ⇡

nY

k=1

P (wk|wk�1)

Probability:
P (wn|wn�1

1) ⇡ P (wn|wn�1)

P (wn
1) ⇡

nY

k=1

P (wk|wk�1)

P (wn|wn�1) =
C(wn�1wn)P
w C(wn�1w)

How many times did we
see this word combo...

How many times did we see
a bigram that started with our
bigram’s first word?

Probability:
P (wn|wn�1

1) ⇡ P (wn|wn�1)

P (wn
1) ⇡

nY

k=1

P (wk|wk�1)
How many times did we
see this word combo...

How many times did we see
a bigram that started with our
bigram’s first word?

P (wn|wn�1) =
C(wn�1wn)

C(wn�1)

Fun example:

<s> I am sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

P (I| < s >) =
C(< s > I)

C(< s >)
=

2

3
= 0.67

P (Sam|am) =
1

2
= 0.5

Example from J&M Chap. 4

A bigger toy corpus:
i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

5 927 0 9 0 0 0 2

2 0 608 1 6 6 5 1

2 0 4 686 2 0 6 211

0 0 2 0 16 2 42 0

1 0 0 0 0 82 1 0

15 0 15 0 1 4 0 0

2 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0

Example from J&M Chap. 4

A bigger toy corpus:
i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

0.002 0.33 0 0.0036 0 0 0 0.00079

0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

0 0 0.0027 0 0.021 0.0027 0.056 0

0.0063 0 0 0 0 0.52 0.0063 0

0.014 0 0.014 0 0.00092 0.0037 0 0

0.0059 0 0 0 0 0.0029 0 0

0.0036 0 0.0036 0 0 0 0 0

Example from J&M Chap. 4

A bigger toy corpus:
i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

0.002 0.33 0 0.0036 0 0 0 0.00079

0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

0 0 0.0027 0 0.021 0.0027 0.056 0

0.0063 0 0 0 0 0.52 0.0063 0

0.014 0 0.014 0 0.00092 0.0037 0 0

0.0059 0 0 0 0 0.0029 0 0

0.0036 0 0.0036 0 0 0 0 0

Example from J&M Chap. 4

p(i | <s>) = 0.25

p(food | english) = 0.5

p(english | want) = 0.0011

p(</s> | food) = 0.68

P(<s> i want english food </s>) = P (i| < s >)P (want|i)...P (< /s > |food)
= 0.25⇥ 0.33⇥ 0.0011⇥ 0.5⇥ 0.68
= 0.000031

We can represent this as an FST...

More on this Wednesday...
0

1

i

2

want

3

to

i/0.002

want/0.33

eat/0.0036

spend/0.00079

i/0.0022

to/0.66

eat/0.0011

chinese/0.0065

food/0.0065

lunch/0.0054

spend/0.0011

i/0.00083

to/0.0017

eat/0.28

chinese/0.00083

lunch/0.0025

spend/0.087

A bigger toy corpus:
i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

0.002 0.33 0 0.0036 0 0 0 0.00079

0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

0 0 0.0027 0 0.021 0.0027 0.056 0

0.0063 0 0 0 0 0.52 0.0063 0

0.014 0 0.014 0 0.00092 0.0037 0 0

0.0059 0 0 0 0 0.0029 0 0

0.0036 0 0.0036 0 0 0 0 0

Example from J&M Chap. 4

p(i | <s>) = 0.25

p(food | english) = 0.5

p(english | want) = 0.0011

p(</s> | food) = 0.68

P(<s> i want english food </s>) = P (i| < s >)P (want|i)...P (< /s > |food)
= 0.25⇥ 0.33⇥ 0.0011⇥ 0.5⇥ 0.68
= 0.000031

Open questions:

1. We can’t do anything useful with bigrams
we’ve never seen before...

2. Our probabilities are tiny!

3. Do bigrams capture enough context to be
useful?

Useful illustration: Markov Chain

A Markov Chain is a memoryless mathematical system,
similar to a wFSA.

Consider the weather:

Sunny Rainy

0.25

.25
0.75

0.75

Today’s weather is usually a good predictor of tomorrow’s:

In Portland, if today was rainy, tomorrow has a
75% chance of the same.

Useful illustration: Markov Chain

Sunny Rainy

0.25

.25
0.75

0.75

In Portland, if today was rainy, tomorrow has a
75% chance of the same.

0 10 20 30 40 50

0.5

1.0

1.5

2.0

Useful illustration: Markov Chain

Sunny Rainy

0.1

.50
0.50

0.9

In Los Angeles, sun is far more common.

0 10 20 30 40 50

0.5

1.0

1.5

2.0

Markov chains have lots of uses.

PageRank, for example!

Things we can ask Markov Chains:

Most common state(s)?

Most common state(s) given specific starting point?

Expected amount of time spent in each state?

How likely is a given state sequence?

We can also use them to generate pseudo-
random text...

... which gets us back to our question:

1. We can’t do anything useful with bigrams
we’ve never seen before...

2. Our probabilities are tiny!

3. Do bigrams capture enough context to be
useful?

. charge he -- not Darcy and `` in is . is home justice your to can and the gratitude
even more question Wickham at tidings get aware of . can the , in Mrs. I moved know
to partiality a Such though be however be ! have in seen comparison you , of surprise
the up believes laid very

'' out not had fifteen . '' . father . spoke and from soon determined everybody , kind
weighed to dear , heard , of long word ask first But was Kitty , , whole is stopped up is

! her had was be such be is disposition be spirits you of for Jane that above account
her people visit really of to doing , had Miss from And and him tempt all I should you
you seeing rest

-- `` him sorrow they sentiment not you in it says the Nothing attachment visit us ''
uneasy '' in on that ! business that . be than which to in of as Allow but one My no
the , ; made had and might her noticed the him been represented not after he I '' or
that through Elizabeth could him , preservation on merely , ? . however and , late
now of the

awkward downstairs and so of ! do to She . Jane A the amazing beauty , , receive

Random Markov-order-1 (unigram) text:

It was no man who knew her way -- poor regiment , had once occurred to find me if
you the same expression of this happy prospect of her with a marriage .

At any conception of your cousin , and then changed colour .

And you look somewhat better acquainted with her that money which she can not
betrayed him , or views of the town ; and despise me ? ''

Though Elizabeth and tell my vanity is a comfortable house , Lizzy ; but the free from
a brother Gardiner left under frequent as a way , the very unwell this sad business he
is probable credit of Elizabeth recollected their virtue in the Netherfield in her hand .

Though Darcy was good-looking and imposing manners indicated respectability of
hearing this , how his misfortunes have conducted herself the evening Mrs. Bennet ,
and summer months , which her new scene at a uniform cheerfulness in the desire for
what she would not kind of first thought her handkerchief , `` That the business , and
is disposed to avoid seeing Bingley does the glories of such terrific ideas connected
with quick in love with his profession , for Pulvis Lodge to discover at St. James 's ruin
him , and she , who , at the case , and for an epithet .

Random Markov-order-2 (bigram) text:

I know my mother ; '' she exclaimed , `` I have been designed for him , to make some
sort of girl is Miss King , and all her own room , and the continual presents in money
matters were then to receive ; and Mr. Bingley did not mean that his flight was
rendered necessary by distress of the impropriety of conduct , the advice and entreaty
of so many servants , contrived to have , and she had need to be , and leave her very
little , and welcomed to them , on his returning no more .

Her aunt assured her with a call from her books , and brought its master , '' replied
her husband 's incivility ; though , at last to go so often turned towards Mr. Collins
would have taken up their abode with her sister .

To Kitty , for I know not ; she had a letter . ''

With all these threats in a scarlet coat , and tries to persuade her to walk into the
saloon , whose manners were in general .

Though I _know_ it must be done too much .

Random Markov-order-3 (trigram) text:

Mr. Bennet was among the earliest of those who best knew the easiness of his
temper , whether he might not spend the remainder of his days at Netherfield , and he
had the opportunity of enjoying herself as much as her nature will allow .

She often tried to provoke Darcy into disliking her guest , by talking of their supposed
marriage , and planning his happiness in such an alliance .

The girls grieved over such a number of ladies , but were not missed till yesterday
morning at eight .

Though her manner varied , however , at her having any such fears now , because he
is trying to get a large party .

Four weeks were to pass away before her uncle and aunt stopped also , and ,
unshackled by business , occupy himself solely in being civil to all the comfort of
having a daughter well married ; and she was preparing to see him again .

Random Markov-order-4 (quadgram) text:

Usually, a trigram model strikes the right
balance:

Enough context to capture patterns...

... but not too corpus-specific.

Open questions:

1. We can’t do anything useful with bigrams
we’ve never seen before...

2. Our probabilities are tiny!

3. Do bigrams capture enough context to be
useful?

Open questions:

1. We can’t do anything useful with bigrams
we’ve never seen before...

2. Our probabilities are tiny!

3. Do bigrams capture enough context to be
useful?

i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

5 927 0 9 0 0 0 2

2 0 608 1 6 6 5 1

2 0 4 686 2 0 6 211

0 0 2 0 16 2 42 0

1 0 0 0 0 82 1 0

15 0 15 0 1 4 0 0

2 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0

Problems with the zeros:

1. We can’t do anything useful with bigrams
we’ve never seen before...

2. It doesn’t reflect “reality”- the zeros are
probably just due to insufficient training data...

3. Many useful metrics and algorithms will blow
up if we feed them zeros...

The solution: “Smoothing”

The solution: “Smoothing”

The basic idea: take probability mass from
counts we have seen and shift it to counts we
haven’t seen.

This will make our probability distribution less
less jagged (smoother).

The solution: “Smoothing”

There are lots of ways to do this...

Today, we’ll introduce a very simple (and not
very good) method.

We’ll hear about several on Wednesday.

Laplace (“add-one”) smoothing:

Simply add 1 to every observation.

Unsmoothed (“Maximum Likelihood”) estimator:P (wi) =
ci
N

PLaplace(wi) =
ci + 1

N + V
Laplace-smoothed estimator:

Laplace (“add-one”) smoothing:

PLaplace(wi) =
ci + 1

N + V

What will this do?

Existing MLE probabilities will decrease a bit...

Previously-unseen counts will go from 0 to 1...

... since we are “stealing” some of their mass, and giving
it to the unseen observations!

It can be useful to talk about the “adjusted counts”

Laplace (“add-one”) smoothing:

PLaplace(wi) =
ci + 1

N + V

When working with a smoothing algorithm, It can be
useful to talk about the “adjusted counts.”

For unigram Laplace smoothing: c⇤i = (ci + 1)
N

N + V

Laplace is easy to extend to the bigram case:

P ⇤
Laplace(wn|wn�1) =

C(wn�1wn) + 1

C(wn�1) + V

c⇤(wn�1wn) =
(C(wn�1wn) + 1)⇥ C(wn�1)

C(wn�1) + V

i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

5 927 0 9 0 0 0 2

2 0 608 1 6 6 5 1

2 0 4 686 2 0 6 211

0 0 2 0 16 2 42 0

1 0 0 0 0 82 1 0

15 0 15 0 1 4 0 0

2 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0

Unsmoothed counts:

i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

6 828 1 10 1 1 1 3

3 1 609 2 7 7 6 2

3 1 5 687 3 1 7 212

1 1 3 1 17 3 43 1

2 1 1 1 1 84 2 1

16 1 16 1 2 5 1 1

3 1 1 1 1 2 1 1

2 1 2 1 1 1 1 1

Laplace-smoothed counts:

i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

0.002 0.33 0 0.0036 0 0 0 0.00079

0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

0 0 0.0027 0 0.021 0.0027 0.056 0

0.0063 0 0 0 0 0.52 0.0063 0

0.014 0 0.014 0 0.00092 0.0037 0 0

0.0059 0 0 0 0 0.0029 0 0

0.0036 0 0.0036 0 0 0 0 0

Unsmoothed probabilities:

i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075

0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084

0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055

0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046

0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062

0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039

0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056

0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Laplace-smoothed probabilities:

i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

5 927 0 9 0 0 0 2

2 0 608 1 6 6 5 1

2 0 4 686 2 0 6 211

0 0 2 0 16 2 42 0

1 0 0 0 0 82 1 0

15 0 15 0 1 4 0 0

2 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0

Unsmoothed counts:

i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

3.8 527 0.64 6.4 0.64 0.64 0.64 1.9

1.2 0.39 238 0.78 2.7 2.7 2.3 0.78

1.9 0.63 3.1 430 1.9 0.63 4.4 133

0.34 0.34 1 0.34 5.8 1 15 0.34

0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098

6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43

0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19

0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Laplace-smoothed reconstructed:

Laplace (“add-one”) smoothing:

Very important note: Laplace smoothing is NOT a useful
smoothing algorithm outside of a lecture hall.

Note that the discount factor can be huge:

PMLE(to|want) = 0.66

PLaplace(to|want) = 0.26

The algorithm is moving too much probability mass off
of our observed counts.

Other algorithms do a better job: stay tuned for Wednesday!

Open questions:

1. We can’t do anything useful with bigrams
we’ve never seen before...

2. Our probabilities are tiny!

3. Do bigrams capture enough context to be
useful?

Open questions:

1. We can’t do anything useful with bigrams
we’ve never seen before...

2. Our probabilities are tiny!

3. Do bigrams capture enough context to be
useful?

Open questions:

1. We can’t do anything useful with bigrams
we’ve never seen before...

2. Our probabilities are tiny!

3. Do bigrams capture enough context to be
useful?

Plan for the day:

1. Modeling context

2. Probability

3. Language Models

4. Markov Chains

5. Implementation Notes

Example:
i want to eat chinese food lunch spend

i

want

to

eat

chinese

food

lunch

spend

0.002 0.33 0 0.0036 0 0 0 0.00079

0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

0 0 0.0027 0 0.021 0.0027 0.056 0

0.0063 0 0 0 0 0.52 0.0063 0

0.014 0 0.014 0 0.00092 0.0037 0 0

0.0059 0 0 0 0 0.0029 0 0

0.0036 0 0.0036 0 0 0 0 0

Example from J&M Chap. 4

p(i | <s>) = 0.25

p(food | english) = 0.5

p(english | want) = 0.0011

p(</s> | food) = 0.68

P(<s> i want english food </s>) = P (i| < s >)P (want|i)...P (< /s > |food)
= 0.25⇥ 0.33⇥ 0.0011⇥ 0.5⇥ 0.68
= 0.000031

This is with a tiny corpus, and a very short sentence
containing some very common bigrams.

P(<s> i want english food </s>) = P (i| < s >)P (want|i)...P (< /s > |food)
= 0.25⇥ 0.33⇥ 0.0011⇥ 0.5⇥ 0.68
= 0.000031

The solution: Store log-probabilities, and work in log-space.

P (wn
1) ⇡

nY

k=1

P (wk|wk�1)

p1 ⇥ p2 ⇥ p3...⇥ pn = exp(log p1 + log p2 + logP3...+ log pn)

class BitWeight(object):
 def __init__(self, val=0., is_neg_log=False):
 if is_neg_log:
 self.bw = val
else:
 self.bw = -log2(val)

>>> a_real = .5
>>> b_real = .25
>>> a_bw = BitWeight(a_real)
>>> b_bw = BitWeight(b_real)
>>> (a_bw * b_bw).to_real == a_real * b_real
True

BitWeight to the rescue:

