Finite State Transducers:
Background & Theory

Steven Bedrick
CS/EE 5/655, 10/6/14

http://www.openfst.org/twiki/pub/FST/FstHltTutorial/tutorial_part3.pdf
http://www.openfst.org/twiki/pub/FST/FstHltTutorial/tutorial_part3.pdf

Plan for the day:

1. Quick review of last time
2. Finite-state transducers
3. Weights

4. Monoids and Semirings
5. FST Operations

6. Demo!

Formal definition:

An FSA is defined by:

Q =q0,91,92---Gn-1

)

qo

A finite state of n states

A finite input alphabet of
symbols

A start state

Set of final states F' C @

Transition matrix between states

Conceptual operation:

There exists an “input tape” made up of a
linear sequence of symbols...

Starting at g0, we read the first input symbol...

If it matches one of our transition arcs, we
move to the destination state and advance the
Input tape...

If we hit a final state before we run out of
input, we “succeed”; otherwise, we “fail.”

Regular [anguages, by definition, can be
recognized by an FSA.

g0

baaa! baaaaaaaa! baaaa ba!

FSAs can match strings from a language...

... and they can generate strings in a
language...

... what if we need more?

Finite State Transducers are FSAs that map
between sets of symbols.

In other words, an FSA with both input
and output tapes.

Q =0q0,91,G2...Gn—1 A finite state of n states
> A finite input alphabet of
symbols
A Alphabet of output symbols
do A start state
F Set of final states F' C Q
Transition matrix/function between
5(@], w) states and inputs
Output function giving possible output
O w
(C],) symbols for each state and input.

e YYOIIEI e

SYNCRISHY S

baaa! abbb!

baaa! abbbal

FSTs have many of the same operations as
FSAs (union, concatenation, etc.) as well
as several others:

Inversion swaps input and output labels...
a:b b:a

@ a:b , @ b:a ,

Composition maps the output labels from one
FST to the input labels of another:

a:b b:c a:C
@ a:b> ® @ b:c> = @ a:c>

Like FSAs, FSTs can be non-deterministic...

... but unlike FSAs, not all FSTs can be
determinized.

(in practice, though, most of the ones we care
about can be determinized)

An extension:

wFSTs (and wFSAs) allow weights on their
edges...

... to help decide how to travel through a non-

deterministic FST. o

Ra:b/B »
a:b/ 1 /1

d/1 | ey/.4 5 dx/.8 ax/1
ae/.6 t/.2

/d ae dx ax/ 1 x 0.6 x0.8 x1=0.48

/d ey t ax/ 1 x0.4x0.2x1=0.08

wFSAs, formally defined:

Q =q0,91,92---Gn—1

A finite state of n states

> A finite input alphabet of symbols
10 A start state
F

Set of final states

o:Q xX* > K

Function assigning a weight to paths
between pairs of states

A, P

Initial and final output functions (assigns
weight to entering & leaving the network)

The wFST is the natural extension to the wFSA, and works as

you would expect.

Just one thing is missing...

d/1 | ey/.4 5 dx/.8 ax/1
ae/.6 t/.2

/d ae dx ax/ 1 x 0.6 x0.8 x1=0.48

/d ey t ax/ 1 x0.4x0.2x1=0.08

/

Why multiply?

The weights on an wFS[AT] can represent
many different things...

... the actual operations will need to vary.

For example, in our toy example:
eyl4 0\ __dx/8 @ ax/1 @
ae/.6 t/.2

The weights represent real-space probabilities...

... which won't work with larger models.

For real applications, the probabilities
involved are usually very small...

... which means that we run the risk of
numerical underflow when we multiply them!

>>> 2 ¥ -1000

9.332636185032189e-302
>>> 2 *¥* 2000

0.0

Solution: represent small probabilities as
negative log-probabilities.

ey/.4 5 dx/.8 ax/1

ae/.6 t/.2

d/0 | ey/1.32 5 dx/.322 ax/0
ae/.737 t/2.32

/d ae dx ax/ 0+ 0.737 +0.322 + 0 = 1.059

27+9%Y = 0.48

So: we need some way to say which
operation to use when computing weights.

Luckily, there are mathematical constructs
designed for just this purpose.

We will discuss two: monoids, and semirings.

A monoid is a pair (M, ®) where:

M is a set, and

® is a binary operation on M obeying three rules:

1. Closure: for all a, b in M, a®b is also in M.
2. ldentity: there exists an element e in M s.t.:
Vae M,abe=ePa=a

3. Assoclativity: @ Is assoclative:

Va,b,ce M,(a®b)bc=a®d (b c)

For example, real numbers and regular
addition form a monoid:

1. Closure: any real number plus any other real
number is still a real number;

2. ldentity: O is the additive identity:
Vae M,a®e=eDa=a
2+0=0+2=2

3. Associativity: addition is associative:
22+4)+3=2+4+3)

A semiring is @ monoid with an additional
operator and more constraints:

A semiring is a triple (K, ®, ®) where:

1. (K, ®) form a monoid (whose neutral element
we’ll call 0)

2. (K, ®) form a monoid (whose neutral element
we'll call 1)

3. ® distributes with respect to @:

a®bdc)=(a®b)®(a® c)
4. Va e K,a®0=0®a =20

If those constraints are met, any binary two
operators can be used!

SEMIRING SET d | ®| 0 |1
Boolean {0,1} V A 0
Probability R4 + X 0
Log RU{—00,+00} | @rog | + | +00 | O
Tropical RU{—0c0,400} | min | + | 400 | O
String YU A{oo} A : 0o | €

For our purposes, the Probability (a.k.a. “Real”) and
Tropical semirings are most useful.

This and some other figures from: http://www.openfst.org/twiki/pub/FST/FstHlItTutorial/tutorial part1.pdf

http://www.openfst.org/twiki/pub/FST/FstHltTutorial/tutorial_part1.pdf
http://www.openfst.org/twiki/pub/FST/FstHltTutorial/tutorial_part1.pdf

Back to wFSAs: there are two main mathematical
operations we need to do to work with weights:

Product: to compute the weight of a given path;

Sum: to compute the weight of a given sequence (which
might have multiple paths)

What is the “cost” of
the string “ab”?

Probability (R+,+,x,0,1) Tropical (R+,min,+,,0)
[[All(ab) = 14 [[All(ab) = 4
(Tx1x2+2x3x2)=14 min(T+1+2, 3+2+2)

Applications for FSTs:

Tagging (transform sequence of words into
sequence of tags)

Morphological analysis

Spelling correction (transform mis-spelled word
into lattice of possible words)

ASR (transform acoustic signal into phonemes,
phonemes into words, etc.)

Etc....

FSTs have many of the same operations as
FSAs (union, concatenation, etc.) as well
as several others:

Inversion swaps input and output labels...
a:b b:a

@ a:b , @ b:a ,

Composition maps the output labels from one
FST to the input labels of another:

a:b b:c a:C
@ a:b> ® @ b:c> = @ a:c>

WEFS[AT] Operations, in more detail:

Union:

red/0.5
green/0.4
0 green/0.3 ~ m blue/0 ~ i/l 2
6 yellow/0.6 '

red/0.5

green/0.3 ﬁ blue/0

yellow/0.6
green/04
blue/1.2

WEFS[AT] Operations, in more detail:

Concatenation:

WEFS[AT] Operations, in more detail:

Closure (Kleene*):

green/0.4
° blue/1.2

N

green/0 .4
blue/1.2 .I eps/0

Note the exit weight...

Unary wFS[AT] Operations, in more detail:

Reversal:

red/0.5
green/1.2
0 green/0.3 | blue/0
6 yellow/0.6 blue/2

red/0.5

=

green/0.3 _

blue/0
yellow/0.6

Unary wFS[AT] Operations, in more detail:

Inversion:
red:bird/0.5
e 0 ’> green:pig/0.3 | blue:cat/0
yellow:dog/0.6
bird:red/0.5

e 0 S pig:green/0.3 | cat:blue/0
dog:yellow/0.6

Unary wFS[AT] Operations, in more detail:

Projection:
red:bird/0.5
e 0 5 green:pig/0.3 | blue:cat/0
yellow:dog/0.6
red/0.5

<‘ 0 ’> green/0.3 i blue/0
yellow/0.6

These operations can all be done in linear
time with respect to the number of states and
arcs...

The binary operations are more involved.

Also, some of them impose additional
constraints.

Binary wFS[AT] Operations, in more detail:

Composition:

c:a/0.3

Note that composition uses the ® operator to
combine weights!

Binary wFS[AT] Operations, in more detail:

Composition:

http://www.openfst.org/twiki/bin/view/FST/ComposeDoc

http://www.openfst.org/twiki/bin/view/FST/ComposeDoc
http://www.openfst.org/twiki/bin/view/FST/ComposeDoc

Binary wFS[AT] Operations, in more detail:

Composition Notes:

The composition algorithm is quadratic:

O((|Er| + Q1)) (| 2] + |Q2]))

For it to work at all efficiently, outgoing arcs from
each state must be stored in some sorted order!

Epsilon arcs cause serious headaches!

\ 4 \/
C:.& C.&

Note the redundant paths!

Example from Pereira & Riley’s chapter in Roche & Schabes’s “Finite State Language Processing”

@ a:d o 1,-1/ £:e >G/;)

b:e b:e
\ \
C.&

y

C.&
y

Not only does this waste space...

... and make future computations more complex...

... but, if there are weights, can lead to incorrect
weights for paths through the machine!

Example from Pereira & Riley’s chapter in Roche & Schabes’s “Finite State Language Processing”

@ a:d o 11 ge P

\J

A o
m m
m
@
A . T
m N m —_
~ ¢ \I\) ¢

2,1

31 ge 39 d:a »

A clever technique called epsilon-filtering can help!

Example from Pereira & Riley’s chapter in Roche & Schabes’s “Finite State Language Processing”

Example from Pereira & Riley’s chapter in Roche & Schabes’s “Finite State Language Processing”

A oFoB:

0,0

a:d

11 &€ (17

/ €1
b:e | €2 b:e| €2

v v

21 &€ (22

/ €1
c:€| €l C:€| €2

v v

31 ge 37 d:a »@

€1

Example from Pereira & Riley’s chapter in Roche & Schabes’s “Finite State Language Processing”

A oFoB"

@ a:d > 1/1/ £:1e >@
3

b:g| €2 b:e| 2
v \ 4
21 &€ (22
/ €1

c:e| €l C:E

y

31 &€ (37
€l

In practice, most implementations of composition do
this for us...

Example from Pereira & Riley’s chapter in Roche & Schabes’s “Finite State Language Processing”

Binary wFS[AT] Operations, in more detail:

Intersection:

red/0.5

green/0.4
<‘ 0 '> green/0.3 1 blue/0 red/0.2 j1{ yellow/13
yellow/0.6 blue/0.6

@ red/0.7 @ green/0.7

Binary wFS[AT] Operations, in more detail:

Difference:
red/0.5 green
e 0 S green/0.3 { blue/0 red | yellow
yellow/0.6 blue

red/0.5

red/0.5 1 e O green/0.3
0 green/0.3 3 blue/0 4708
yellow/0.6

Other important operations:

e-removal;

Determinization;

Note: Not all transducers are determinizable!

Other important operations:

e-removal;

Determinization;

Pushing (either of weights or labels);

Other important operations:

e-removal;

Determinization;

Pushing (either of weights or labels);

Other important operations:

Minimization:

Other important operations:

Shortest path/distance:

red/0.5

red/0.5 @ red/0.5 e green/0.3
@/(S0 3 blue/0 408
yellow/0.6
@ areen/0.3 @ bluc/0

(Semiring must have path property: a © b € {a, b})

Do we have time for a demonstration?
1. Installing OpenFST

2. Solving shortest-path problems

