
Analyzing Sequences:

Steven Bedrick
CS/EE 5/655, 9/29/14

Course overview, and some first steps

xkcd #851, "Na", by Randall Munroe

https://xkcd.com/851/
https://xkcd.com/851/

Plan for the day:

1. What are we doing here?

2. Course logistics

3. What is a sequence?

4. Probability refresher

5. Overview of encodings

What are doing here?
Many types of data occur sequentially:

Words in a sentence .

L e t t e r s in a word.

Turns

taken

in a

conversation.

What are doing here?
Many types of data occur sequentially:

What are doing here?
Things we might want to do
with sequential data:

Characterize what we’ve seen...

Guess what might come next...

Label/Classify observations...

Compare (match?) two sequences...

Can you think of more?

Logistics:

Mondays & Wednesdays, 4:00 to 5:30 in GH5

http://cslu.ohsu.edu/~bedricks/courses/cs655/
Course Website:

Grading: 70% homework, 30% participation

http://cslu.ohsu.edu/~bedricks/courses/cs655/
http://cslu.ohsu.edu/~bedricks/courses/cs655/

Logistics:

Homework will be due at 11:59 PM the night
of its due date.

If you think you will need more time for a
given assignment, don’t be afraid to ask...

... but don’t wait until the last minute to do so!

Logistics:

You’ll need access to a computer running a
modern UNIX-like OS...

Let me know ASAP if that will be a problem!

Logistics:
The textbook we’ll be using:

Later in the course, I will provide other readings.

Plan for the day:

1. What are we doing here?

2. Course logistics

3. What is a sequence?

4. Probability refresher

5. Overview of encodings

What is a sequence?

Simply put, a sequence is an ordered list of
(usually, related) elements.

A sequence of elements can be either finite
(“h”,”e”,”l”,”l”,”o”) or infinite (“all even
integers”)

Order matters!

{1,3,5} != {3,5,1}

What is a sequence?
Key vocabulary:
“Alphabet”: The set of distinct elements
(“types”) that can occur in a given sequence

For DNA: “A”,”C”,”T”,”G”

For proteins: “Ala”,”Arg”,”Asn”,”Asp”, “Cys”, etc.

For (some) English: “A”,”B”,”C”,”D”, etc.

For Jane Austen titles: “Sense”, “and”,
“Sensibility”, “Pride”, “Prejudice”, etc...

What is a sequence?
Key vocabulary:

“n-gram”: sub-sequences of n-adjacent tokens
in a sequence

“It ! a tru" universally acknowled$d...”
1-gram (unigram) “It”, “is”, “a”, “truth”, “universally”, etc.

2-gram (bigram) “It is”, “is a”, “a truth”, “truth universally”, etc.

3-gram (trigram) “It is a”, “is a truth”, “a truth universally”, etc.

Plan for the day:

1. What are we doing here?

2. Course logistics

3. What is a sequence?

4. Probability refresher

5. Overview of encodings

Glossary:

- argmax
- Joint probability
- Conditional probability
- Statistical independence
- Bayes’ theorem
- Noisy channel model

argmax:
argmax

x

f(x)

The value(s) of x at which f(x) is at its maximum.

argmax

x

sinx =

⇡

2

Not to be confused with max:

max

x

sinx = 1

Joint probability:

The probability that two or more random
variables will take on certain respective values.

p(red+ blue = 11)

= p(red = 6)⇥ p(blue = 5) +p(red = 5)⇥ p(blue = 6)

=
1

6
⇥ 1

6
+
1

6
⇥ 1

6

=
1

36
+

1

36
=

1

18

Conditional probability:

The probability that one or more random
variables have a respective value...

... given that one or more other random
variables have a respective value.

p(A|B) =
p(A \B)

p(B)

p(red+ blue = 11|red = 6) =
(1/6)(1/6)

1/6

=
1

6

Statistical Independence:

Random variables A and B are independent iff:

p(A|B) = p(A)

p(B|A) = p(B)

Bayes’ Theorem

Used for lots of things, but particularly
helpful when we need to relate prior
information to current observations.

P (A|B) =
p(B|A)p(A)

p(B)

Image: Wikipedia. As per statute, it is unlawful to discuss Bayes’ theorem without showing this image.

Thomas Bayes
1701(?) – 1761

Bayes’ Theorem
Example: Testing for a rare mutation.

In a population of 1,000,000 people, 1 in 10,000
(0.0001) carry a certain mutation.

A test exists for this mutation, and the test is 95%
accurate (FPR and FNR are both 0.05).

You test positive for the mutation. What are the
chances that you actually carry it?

Bayes’ Theorem
Example: Testing for a rare mutation.

A: “has mutation”
B: “tests positive”
We want to know P(A | B) (i.e., p(mutation | positive).

p(B | A) = 0.95

p(A) = 0.0001

p(B) = p(B|A)p(A) + p(B|!A)p(!A)

p(B) = 0.95*0.0001+0.5*0.9999

p(B) = 0.5009

Bayes’ Theorem

p(B | A) = 0.95

p(A) = 0.0001

p(B) = p(B|A)p(A) + p(B|!A)p(!A)

p(B) = 0.95*0.0001+0.5*0.9999

p(B) = 0.5009 P (A|B) =
p(B|A)p(A)

p(B)

Conclusion: With a rare disease, you need a very
accurate test!

p(A|B) =
0.95⇥ 0.0001

0.5009
⇡ 0.0002

“Noisy Channel” model

1. Shannon C. A Mathematical Model of Communication. The Bell System Technical Journal. 1948 Jul 28;27:379–423, 623–56.

Claude Shannon
1916 – 2001

“Noisy Channel” model

Warren Weaver, 1949 Rockefeller
Foundation memorandum
Translation:

“When I look at an article in
Russian, I say: this is really written in
English, but it has been coded in
some strange symbols. I will now
proceed to decode.”

Warren Weaver
1894 – 1978

Given a ciphertext ct, select plaintext pt that maximizes
the conditional probability of the plaintext:

“Noisy Channel” model

argmax

pt
p(pt|ct)

Using Bayes’ Theorem:
argmax

pt

p(ct|pt)
p(ct)

The denominator is constant, so:
p(ct|pt)
p(ct)

/ p(ct|pt)p(pt)

So at the end:
argmax

pt
p(ct|pt)p(pt)

Plan for the day:

1. What are we doing here?

2. Course logistics

3. What is a sequence?

4. Probability refresher

5. Overview of encodings

Why talk about encodings?

Sequential linguistic data (“text”) has to be
represented on disk somehow...

... and all kinds of practical problems can
be prevented by knowing how it’s done!

Computers only “know” about numbers....

... so how do they do text?

No letters here...

http://en.wikipedia.org/wiki/File:80486dx2-large.jpg

http://en.wikipedia.org/wiki/File:Eniac.jpg

None here, either...

http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:Eniac.jpg
http://en.wikipedia.org/wiki/File:Eniac.jpg

Terminology:
Character

Surprisingly hard to define, but for now: A basic,
atomic unit of written text.

Glyph
A specific visual “shape” used to represent a character.

Character Repertoire
A finite collection of abstract characters

Character Set
A character repertoire coupled with a systematic internal
representation (i.e., some kind of organizational or
numbering scheme)

Character Encoding System
An algorithm for representing a character set as a
sequence of binary digits.

The story begins with Samuel Morse:*

http://en.wikipedia.org/wiki/File:Morse_telegraph.jpg

http://en.wikipedia.org/wiki/File:Samuel_Morse_1840.jpg

Samuel Morse
1791–1872

It doesn’t, actually, but we have to start somewhere...
http://en.wikipedia.org/wiki/File:International_Morse_Code.svg

http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:Eniac.jpg
http://en.wikipedia.org/wiki/File:Eniac.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg

The story continues with Émile Baudot, the
inventor of a popular printing telegraph.

Émile Baudot
1845–1903

http://en.wikipedia.org/wiki/File:Clavier_Baudot.jpg

http://en.wikipedia.org/wiki/Émile_Baudot

http://en.wikipedia.org/wiki/File:International_Telegraph_Alphabet_2.jpg

http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg

While the Baudot code is more immediately relevant
today, we mustn’t forget Herman Hollerith.

http://en.wikipedia.org/wiki/File:Hollerith_punched_card.jpg

http://en.wikipedia.org/wiki/Herman_Hollerith

http://en.wikipedia.org/wiki/File:1890_Census_Hollerith_Electrical_Counting_Machines_Sci_Amer.jpg

Herman Hollerith
1860–1929

http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg

In 1963, the American Standards Association
released the first version of ASCII.*

ASCII uses 7 bits for each character, and was strongly
inspired by earlier teleprinter codes.

http://en.wikipedia.org/wiki/File:ASCII_Code_Chart-Quick_ref_card.jpg*American Standard Code for Information Interchange

http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg

Not to be outdone, IBM introduced their own
standard, EBCDIC* around the same time.

* Extended Binary Coded Decimal Interchange Code

EBCDIC used 8 bits, and
was directly descended
from the Hollerith
punch-card scheme.

Notice anything in particular about the
character repertoire in both schemes?

There were two main strategies for handling
non-English characters:

1. Use the spare bit to free up more
space; stash more characters in
0x80–0xFF.

2. Use more than one byte per
character.

© ISO/IEC ISO/IEC 8859-1:1997 (E)

6.2 Code table
For each character in the set the code table
(table 2) shows a graphic symbol at the position in
the code table corresponding to the bit combination
specified in table 1.

The shaded positions in the code table correspond
to bit combinations that do not represent graphic
characters. Their use is outside the scope of
ISO/IEC 8859; it is specified in other International
Standards, for example ISO/IEC 6429.

Table 2 – Code table of Latin alphabet No. 1

SP NBSP

SHY

hex

FI
NAL

TE
XT

19
97
-11
-11

5ISO 8859-1 (aka “ISO Latin-1”)

- 9 -

Table 2 - Code table of Latin/Arabic alphabet

!

!

!

!

!

!

!

!

"

"

"

"

"

"

"

"

!

!

!

!

"

"

"

"

!

!

!

!

"

"

"

"

!

!

"

"

!

!

"

"

!

!

"

"

!

!

"

"

!

"

!

"

!

"

!

"

!

"

!

"

!

"

!

"

!!

!!

!"

!"

!#

!#

!$

!$

!%

!%

!&

!&

!'

!'

!(

!(

!)

!)

!*

!*

"!

"!

""

""

"#

"#

"$

"$

"%

"%

"&

"&+% +$ +# +"

+)
+(
+'
+&

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

h
ex

!

"

#

$

%

&

'

(

)

*

!

"

#

$

%

&

'

(

)

*

,

-

.

/

0

1

! " # $ % & ' () * , - . / 0 1

23

4

,

-

.

/

0

1

5

6

7

8

9

:

;

<

=

3

>

?

2

@

A

B

C

D

E

F

G

+

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

<-23

26E

99-0096-A

7 Identification of the character set
7.1 Identification according to ECMA-35 and ECMA-43

The graphic characters of this ECMA Standard constitute a single coded character set. However, in
accordance with ECMA-35 and ECMA-43 the code table of this ECMA Standard may be considered to
consist of the following components:

− The character SPACE represented by bit combination 02/00;

− a 94-character G0 graphic character set represented by bit combinations 02/01 to 07/14;

− a 96-character G1 graphic character set represented by bit combinations 10/00 to 15/15.

When the identification methods of ECMA-35 or ECMA-43 are used, this ECMA Standard shall be
identified by the following pair of designation functions:

ISO 8859-6, for simple Arabic (but not Persian, etc.)

- 8 -

6.2 Code table
For each character in the set the code table (table 2) shows a graphic symbol at the position in the code
table corresponding to the bit combination specified in table 1.

The shaded positions in the code table correspond to bit combinations that do not represent graphic
characters. Their use is outside the scope of this Standard; it is specified in other Standards, for example in
Standard ECMA-48.

Table 2 - Code table of Latin/Cyrillic alphabet

!

!

!

!

!

!

!

!

"

"

"

"

"

"

"

"

!

!

!

!

"

"

"

"

!

!

!

!

"

"

"

"

!

!

"

"

!

!

"

"

!

!

"

"

!

!

"

"

!

"

!

"

!

"

!

"

!

"

!

"

!

"

!

"

!!

!!

!"

!"

!#

!#

!$

!$

!%

!%

!&

!&

!'

!'

!(

!(

!)

!)

!*

!*

"!

"!

""

""

"#

"#

"$

"$

"%

"%

"&

"&+% +$ +# +"

+)
+(
+'
+&

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

h
ex

!

"

#

$

%

&

'

(

)

*

!

"

#

$

%

&

'

(

)

*

,

-

.

/

0

1

! " # $ % & ' () * , - . / 0 1

23

4

,

-

.

/

0

1

5

6

7

8

9

:

;

<

=

3

>

?

2

@

A

B

C

D

E

F

G

+

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

<-23

26E

99-0086-A

ISO 8859-5, for languages using the Cyrillic alphabet

This approach had “pros” and “cons”:

Pro:

Con:

Simple to implement

Preserves compatibility with English-language computer
systems

Minimal changes needed to programming techniques

No good way for a file to contain content in more than one
language

Difficult to transfer files between computers in different
countries

What if an alphabet needs more than 128 characters?

http://en.wikipedia.org/wiki/File:ROC24_SC1.jpg

The most obvious example: East Asian languages such
as Chinese which use many thousands of characters.

The first chunk of the
“simplified” character set
used in the PRC contained
≈300 characters.

http://en.wikipedia.org/wiki/File:80486dx2-large.jpg
http://en.wikipedia.org/wiki/File:80486dx2-large.jpg

The solution: use more than one byte per character.

Two bytes = 2^16 ≈ 65,000 possible characters.

0xB9 0x40 辟

Of course, there are dozens of different such schemes,
each with vendor-specific variations.

By the 1980s, the situation had gotten bad.

Primarily due to wider global adoption of
computers, and the resulting increase in
electronic information exchange.

Something had to be done...

In 1987, engineers from Xerox and Apple
began planning a unified, multilingual, and
extensible character set:

In 1991, the Unicode Consortium published
Version 1.0 of the Unicode standard; the
current version is 6.3.

Unicode defines an address space of more than
1,000,000 possible characters, and currently
specifies ≈110,000.

Characters in Unicode are assigned a distinct
numerical address, their “code point”.

Code points are grouped by writing system (“Latin”,
“Han”, etc.).

Code points U+0000 through U+00FF are basically
identical to ISO 8859-1.

Anatomy of a code point:

Letter A
Code Point U+0041

Name Latin Capital Letter A

Script Latin

Category Uppercase Letter

Anatomy of a code point:

Letter ج
Code Point U+062C

Name Arabic Letter Jeem

Script Arabic

Category “Other Letter”

Unicode specifies other metadata for each
code point:

Case-folding equivalents (A → a)

“Compatibility” equivalents (² → 2)

Text direction (right-to-left vs. left-to-right)

Hyphenation and line-breaking rules

Ligature and joining rules (think fl and "ا)

Numerical equivalency

Punctuation properties

Etc.

What about diacritic marks?

Unicode allows for “combining” code points:

Letter ´
Code Point U+00B4

Name Acute Accent

Script Common

Category Modifier Symbol

U+0065 U+00B4 é

These allow “composition” of Unicode
characters:

Letter é
Code Point U+00E9

Name Latin Small Letter e with Acute

Script Latin

Category Lowercase Letter

But wait! What about:

Unicode allows both pre- and post-
composed accented characters...

Luckily, Unicode also specifies rules for
normalizing strings for sorting, searching,
comparing, etc.

So “café” might not equal “café”!

There are four “normalization forms:”

NFD cafe´² U+0063 U+0061 U+0066 U+0065 U+0301 U+00B2

NFC café² U+0063 U+0061 U+0066 U+00E9 U+00B2

NFKD cafe´2 U+0063 U+0061 U+0066 U+0065 U+0301 U+0032

NFKC café2 U+0063 U+0061 U+0066 U+00E9 U+0032

café²

Luckily, this doesn’t come up too often... and many
software systems deal with it transparently.

Thus far, we’ve talked about Unicode as an
abstract character set.

How do we encode Unicode strings?

There are, as always, many different options.

The first popular Unicode encoding was
UCS-2, which simply expresses the code
point as a pair of bytes:

A U+0041 0x00 0x41

é U+00E9 0x00 0xE9

This works, but eventually, 16 bits weren’t enough...

UTF-16 introduced surrogate pairs, which allow non-
BMP code points to be encoded. Many popular
programs utterly fail to handle this properly.

The first popular Unicode encoding was
UCS-2, which simply expresses the code
point as a pair of bytes:

UCS-2/UTF-16 have the problem of endianness- given
two bytes, which is the “most significant?”

UTF-16 allows for a “byte order marker” at the
beginning of a file, which allows decoders to infer the
encoder’s endianness.

Or should that be 0x41 0x00?

A U+0041 0x00 0x41

é U+00E9 0x00 0xE9

The most commonly-seen Unicode encoding
is UTF-8, which uses a variable number of
bytes to encode each code point.

UTF-8 has the lovely property that code
points 0x00 through 0x7F encode identically
to their ASCII counterparts!

A U+0041 0x41

é U+00E9 0xC3 0xA9

Most of the time, for most people, UTF-8 is
the sensible choice...

... however, if your text has many characters
from higher-up in the Unicode code space
(≥U+0800), UTF-16 can be more efficient.

However! Beware the surrogate pair and
byte-order-marker, for therein lie troubles.

Problems arise when there is a mismatch
between the scheme used to encode a file and
that used to decode it.

“café”

0x63 0x61 0x66 0xC3 0xA9

Word:

UTF-8 bytes:

Latin-1 interpretation: “cafÂ©”

Common characters that cause trouble include:

Diacritics (é, ü)

Typographical (“smart”) quotes (“”)

Trademark & Copyright symbols (™, ®, ©)

Common trouble scenarios:

File written in one program, read in another...

Data sent to database, stored, retrieved, and
displayed (each a possible point of encoding-
related trouble)

User enters data into a web form, hits
“submit”, hilarity ensues...

The solution in all cases is the same:

Be clear about what encoding you’re producing
and what you’re expecting!

This is one nice thing about XML: valid XML
documents all specify their encoding...

... but note that some documents lie.

That’s it for today...

For Wednesday: Read chapter 2 of J&M

Questions?

