More fuzzy string matching!

| ’ levestein|

levestein

levenshtein distance python
levenshtein distance java
levenshtein distance c#

Press Enter to search.

Steven Bedrick
CS/EE 5/655, 12/1/14

Plan for today:

Tries
Simple uses of tries

Fuzzy search with tries

| evenshtein automata

A trie is essentially a prefix tree:

A: 15

1: 11

in: 5 /// \\\
inn: 9

to:

tea:
ted: n/ 9
ten: 12 .

Simple uses of tries:

Key lookup in O(m) time, predictably.
(Compare to hash table: best-case O(1), worst-case
O(n), depending on key)

Fast longest-prefix matching

IP routing table lookup

For an incoming packet, find the closest next hop in
a routing table.

Simple uses of tries:

Fast longest-prefix matching

Useful for autocompletion:

“All words/names/whatevers that start with XYZ...”

/ﬂ)\

e 11\n

Tt

To: joel Adams <adamjo@ohsu.edu>

Cc:l Adams <adamjo@ohsu.edu>

Joe Andrulewicz <andrulew@ohsu.edu>
Bcc: | Joe Aslan <aslanj@ohsu.edu>

Joe Bolenbaugh <bolenbau@ohsu.edu>
Joe Dunn <dunjo@ohsu.edu>

From: Joe Fackler <HPSATeam@ohsu.edu>
Joe Fazio <fazioj@ohsu.edu>

Joe Garay <garayj@ohsu.edu>

Joe Gray <grayjo@ohsu.edu>

Joe Kent <kente@ohsu.edu>

Subject:

levensh

levenshtein algorithm
levenshulme high school
levenshumehigh

levenshulme high school for girls
levenshulme

levenshtein distance java
levenshulme health centre

levenshtein distance calculator

The problem with tries:

When the space of keys is sparse, the trie
IS not very compact:

BILLY) Goopé GOSH$

BIGGERS$

(One) Solution: PATRICIA Tries

(One) Solution: PATRICIA Tries
2 romanus [:
|
= !" =

rubicundus
@/lulus“/i ﬂ \q
rrl:‘g g[:rj Bjn‘]hx}dus
©® @

Key ideas: edges represent more than a
single symbol; nodes with only one child
get collapsed.

One could explicitly represent edges with
multiple symbols...

1l romane E::
r
2 romanus
3 romulus o
4 rubens
5 ruber)
6 rubicon
7 rubicundus ‘ .
/lulu:ﬂ/ [am
©, ® @ @

... but that would complicate matching.

Instead, each internal node stores the
offset for the next difference to look for:

/@\ /@\
e sublease
. d
C t e ' e i

essence essential estimate estimation sublimate sublime subliminal

Instead, each internal node stores the
offset for the next difference to look for:

/@\ /@\
e sublease
. d
C t e ' e i

essence essential estimate estimation sublimate sublime subliminal

Instead, each internal node stores the
offset for the next difference to look for:

/@\ /@\
e sublease
. d
C t e ' e i

essence essential estimate estimation sublimate sublime subliminal
els|tl 1T I mlalt|rI1]|]o]|n

Instead, each internal node stores the
offset for the next difference to look for:

/@\ /@\
e sublease
. d
C t e ' e i

essence essential estimate estimation sublimate sublime subliminal
els|tl 1T I mlalt|rI1]|]o]|n

Instead, each internal node stores the
offset for the next difference to look for:

/@\ /@\
e sublease
. d
C t e ' e i

essence essential estimate estimation sublimate sublime subliminal
els|tl 1T I mlalt|rI1]|]o]|n

Instead, each internal node stores the
offset for the next difference to look for:

/@\ /@\
a sublease
. d
C t e ' e i

essence essential estimate estimation sublimate sublime subliminal
els|tl 1T I mlalt|rI1]|]o]|n

Instead, each internal node stores the
offset for the next difference to look for:

/@\ /@\
a sublease
. d
C t e ' e i

essence essential estimate estimation sublimate sublime subliminal

Instead, each internal node stores the
offset for the next difference to look for:

/@\ /@\
e sublease
. d
C t e ' e i

essence essential estimate estimation sublimate sublime subliminal

Instead, each internal node stores the
offset for the next difference to look for:

/@\ /@\
e sublease
. d
C t e ' e i

essence essential estimate estimation sublimate sublime subliminal

b

Plan for today:

Tries
Simple uses of tries

Fuzzy search with tries

| evenshtein automata

Fuzzy search with tries

Problem: we want to search a dictionary for
words similar to a query.

Example: “Smyth” and “Zmith” should retrieve
“Smith”,

“Levenstien” should retrieve “Levenshtein”, etc.

By “similar,” we mean “edit distance less than
some threshold 0.”

One solution:

Compute pairwise edit distance between our query
g and every word w; in our dictionary;

Match if sim(q, wi) <0

A (slightly) better solution:

Speed up pairwise edit distance computation using
prefix pruning.

Prefix pruning’s key idea:

If we only care whether strings r and s have an edit
distance less than some threshold...

...we can do early termination of our computation as
soon we exceed that threshold.

Wang J, Feng J, Li G. Trie-join: efficient trie-based string similarity joins with edit-distance constraints. VLDB Endowment; 2010.

One solution:

Compute pairwise edit distance between our query
g and every word w; in our dictionary;

Match if sim(q, wi) <0

A (slightly) better solution:

Speed up pairwise edit distance computation using
prefix pruning.

Neither are very good solutions for any kind
of “on-line” use case:

Query autocompletion, fuzzy searching,
spellchecking, etc.

(our dictionary is large, number of searches
is high, etc. etc.)

A better solution: use a trie!
1. Build a trie out of our dictionary;

2. lterate through g; at each point, identify a
set of active nodes of the trie.

A node n is “active” with respect to a prefix g; if the
edit distance between g; and the prefix represented by

nis <o.

Ji' S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

A better solution: use a trie!
1. Build a trie out of our dictionary;

2. lterate through g; at each point, identify a
set of active nodes of the trie.

3. Stop when we reach the end of g or no
longer have active nodes.

Active nodes that happen to be leaves represent
matches.

i G, Li C, Feng). Efficient interactive fuzzy keyword search. WWW "09

A better solution: use a trie!
1. Build a trie out of our dictionary;

2. Iterate through g; at each point, identify a
set of active nodes of the trie.

3. Stop when we reach the end of g or no
longer have active nodes.

Active nodes that happen to be leaves represent
matches.

i G, Li C, Feng). Efficient interactive fuzzy keyword search. WWW "09

Intuition: at each symbol i in g, the set of
active nodes will be related to the set from g;.;.

So, we don't need to visit every node in the
trie!

(3ep=0 (QED=1 ()ED=2
ent interactive

Intuition: at each symbol i in g, the set of
active nodes will be related to the set from g;.;.

So, we don't need to visit every node in the
trie!

(a) Initialize (b) query “n”

(3ep=0 (QED=1 ()ED=2
ent interactive ord s

Intuition: at each symbol i in g, the set of
active nodes will be related to the set from g;.;.

So, we don't need to visit every node in the
trie!

(a) Initialize (b) query “n” (c) query “nl”

(3ep=0 (QED=1 ()ED=2
ent interactive

Intuition: at each symbol i in g, the set of
active nodes will be related to the set from g;.;.

So, we don't need to visit every node in the
trie!

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli”

(3ep=0 (QED=1 ()ED=2

Ji' S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

Intuition: at each symbol i in g, the set of
active nodes will be related to the set from g;.;.

So, we don't need to visit every node in the
trie!

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”

(3ep=0 (QED=1 ()ED=2

Ji' S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

Related problem: the “similarity join”

We have two bags of words, R and S.

Goal: identify pairs of similar words.

Example:
R = { kobe, ebay, ...}
S ={ bag, koby, ...}

We would want to identity pairs such as <kobe, koby>

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Again, one solution is pairwise edit distance
calculation...

... butif Rand S are very large, that will be incredibly
time consuming, even with prefix pruning!

One solution: use the trie search method!

Build a trie representing R;

For every string s in S, identify the active nodes A of
R’s trie; for each leaf node r in As, produce <s,r>.

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Another solution: use sub-trie pruning

Intuition: given the set of active nodes A, for a
particular trie node n...

... we can say that only children of nodes in A, could
possibly be similar to children of node n.

We can use this fact to speed up extraction of similar
pairs.

L et us consider the case where our two sets are
actually one set (R = 5), and we simply want to
identify similar pairs.

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Algorithm:

1. Build a trie for our set of words;

2. Traverse the trie in preorder. At each node, compute
its set of active nodes A.

3. At each leaf node n, identity any leaf nodes in Ap;
these are similar pairs.

As we traverse, we must keep the current node’s
ancestor’s set of active nodes in memory; total time

complexity is O(0|A7]).

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

{0,1,9,133U

{0,1,2,5,9,10,13/I 0,~{0,1,5,9,10,13} 13>0.1,9,13,14}
CD e
1,2,5,6,9) 13,14,15}
{1,2,3,4,5,6,11 e G
2 5,6,7} 1 14,15,16,17}
S OROK
{2,3,4,12} - G
% 3.,6,7,8} 411,12
g } {151617 {151617}
8178

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

We can do better!

Intuition: given the set of active nodes A, for a
particular trie node n...

... we can say that only children of nodes in A, could
possibly be similar to children of node n.

Also: if node u has node v in its active set, v must also
have u in its set!

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

{0,1,9,133U

{0,1,2,5,9,10,13/I 0,~{0,1,5,9,10,13} 13>0.1,9,13,14}
CD e
1,2,5,6,9) 13,14,15}
{1,2,3,4,5,6,11 e G
2 5,6,7} 1 14,15,16,17}
S OROK
{2,3,4,12} - G
% 3.,6,7,8} 411,12
g } {151617 {151617}
8178

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

We can compute active nodes as we build the trie,
and eliminate duplicate calculations.

{bo

(@) Initialize

o0,13-0 {01
{0,1% {0,1,2

- S
(@7 GA @!
— (@)
.
w
(@)}
(=
S5

(1,2} {1,2 2,3 {2,5,6,7,L.0
© a
{2, (6,7
(b) Insert “bag” (C) Insert “ebay” (d) Insert “bay”

By increasing our space complexity, we can reduce
. . 5
the time complexity to O(5141]).

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

There are extensions to the idea that allow for
different sets of strings, more space-efficient
construction, etc.

See the Feng, et al. article (cited below) for more
details!

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

mearch by Mame, Mick Mame, UCInetlD, Title, Department, Major, Office Address, Phone Mumber, EMall Address and Zot Code

professor SITE.F'II|

UCI People Search

Fatrick J. SMYTH

Janellen Smith

Clyde W SMITH

Jahn H. SMITH

aruth Fadhraic Professor Computer

PIET sty tH science-Computing
Jesmithy Professor Dermatology

smithcw Clinical Professor Radiological Sciences
Jh=mith Professor anc (Serman

Chair

(=43)
824-2553

(=43)
824-5515

1714)
456-5033

(343)

g24-b406,

B107

4062Z...

C252...

Bldg...

40015...

http://psearch.ics.uci.edu

| Search |

Plan for today:

Tries
Simple uses of tries

Fuzzy search with tries

| evenshtein automata

| evenshtein automata

A different approach to solving the fuzzy
matching problem uses finite-state automata.

The basic idea: construct an acceptor that will
recognize an input string with up to d edits.

Then, walk through the acceptor and our
dictionary, emitting any final states we visit.

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.

Mihov S, Schulz KU. Fast Approximate Search in Large Dictionaries. Computational Linguistics. 2004 Dec;30(4).

| evenshtein automata

The basic idea: construct an acceptor that will
recognize an input string with up to & edits.

We have seen something not entirely dissimilar:

|
[t
|

g

| é ,‘

A
i
i

@mm

(@K

=7

| evenshtein automata

In a sense, our old friend the edit-distance transducer is
a step along the path towards a Levenshtein transducer.

The difference: the edit-distance transducer will allow
Infinite insertions or deletions...

... and we need to limit the total number of such events.

| evenshtein automata

Character position (mantissa)

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.

| evenshtein automata

Number of edits thus far (exponent)

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.

| evenshtein automata

Match

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.

| evenshtein automata

Substitution

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.

| evenshtein automata

|
Deletion

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.

| evenshtein automata

Insertion

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.

| evenshtein automata

()2

*

2.2
e

0
* *
0

foof doof

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

| evenshtein automata

()2

*

2.2
e

0
* *
0

foof doof

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

| evenshtein automata

()2

*

2.2
e

0
* *
0

foof doof dora

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

| evenshtein automata

foof doof dera

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

| evenshtein automata

foof doof dera foods

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

| evenshtein automata

foof doof dera foods feed

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

| evenshtein automata

foof doof dera foods feed

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

| evenshtein automata

This is a non-deterministic representation;
actually using NFAs in practice is often tricky.

Luckily, NFAs can be determinized, which is

generally how Levenshtein automata are actually
used.

f

o [Mo]
o (g | ’ f]
; d\

o o
[*o]
\ @
d : ¢ o
(*d)
/x \ _/
4 d

h ; p

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

| evenshtein automata

On its own, having a Levenshtein automaton of a
query word improves even the naive approach
(palrwise comparison):

Instead of a large set of O(nm) computations, we
have a large set of O(n) computations!

| evenshtein automata

We can do better, however.

Represent our dictionary as a trie, DAWG, etc....

... and walk through it and our determinized
automaton together in tandem.

At each state we encounter, follow edges that both
have in common.

Any time both are in final states, we’ve got a match!

gorp

good

food

fool

ford

fore

