
More fuzzy string matching!

Steven Bedrick
CS/EE 5/655, 12/1/14

Plan for today:

Tries

Fuzzy search with tries

Levenshtein automata

Simple uses of tries

A trie is essentially a prefix tree:

A: 15
i: 11
in: 5
inn: 9
to: 7
tea: 3
ted: 4
ten: 12

Simple uses of tries:

Key lookup in O(m) time, predictably.

(Compare to hash table: best-case O(1), worst-case
O(n), depending on key)

IP routing table lookup
For an incoming packet, find the closest next hop in
a routing table.

Fast longest-prefix matching

Simple uses of tries:

Useful for autocompletion:

Fast longest-prefix matching

“All words/names/whatevers that start with XYZ...”

The problem with tries:

When the space of keys is sparse, the trie
is not very compact:

(One) Solution: PATRICIA Tries

Key ideas: edges represent more than a
single symbol; nodes with only one child
get collapsed.

(One) Solution: PATRICIA Tries

One could explicitly represent edges with
multiple symbols...

... but that would complicate matching.

Instead, each internal node stores the
offset for the next difference to look for:

1

3

6

essence essential

8

estimate estimation

5

sublease 7

sublimate sublime subliminal

se

e i

a
e iiec t

s t

Instead, each internal node stores the
offset for the next difference to look for:

e s t i m a t i o n
i 1 2 3 4 5 6 7 8 9 10

1

3

6

essence essential

8

estimate estimation

5

sublease 7

sublimate sublime subliminal

se

e i

a
e iiec t

s t

Instead, each internal node stores the
offset for the next difference to look for:

↓
e s t i m a t i o n

i 1 2 3 4 5 6 7 8 9 10

1

3

6

essence essential

8

estimate estimation

5

sublease 7

sublimate sublime subliminal

se

e i

a
e iiec t

s t

Instead, each internal node stores the
offset for the next difference to look for:

↓
e s t i m a t i o n

i 1 2 3 4 5 6 7 8 9 10

1

3

6

essence essential

8

estimate estimation

5

sublease 7

sublimate sublime subliminal

se

e i

a
e iiec t

s t

Instead, each internal node stores the
offset for the next difference to look for:

↓
e s t i m a t i o n

i 1 2 3 4 5 6 7 8 9 10

1

3

6

essence essential

8

estimate estimation

5

sublease 7

sublimate sublime subliminal

se

e i

a
e iiec t

s t

Instead, each internal node stores the
offset for the next difference to look for:

↓
e s t i m a t i o n

i 1 2 3 4 5 6 7 8 9 10

1

3

6

essence essential

8

estimate estimation

5

sublease 7

sublimate sublime subliminal

se

e i

a
e iiec t

s t

Instead, each internal node stores the
offset for the next difference to look for:

↓
e s t i m a t i o n

i 1 2 3 4 5 6 7 8 9 10

1

3

6

essence essential

8

estimate estimation

5

sublease 7

sublimate sublime subliminal

se

e i

a
e iiec t

s t

Instead, each internal node stores the
offset for the next difference to look for:

↓
e s t i m a t i o n

i 1 2 3 4 5 6 7 8 9 10

1

3

6

essence essential

8

estimate estimation

5

sublease 7

sublimate sublime subliminal

se

e i

a
e iiec t

s t

Instead, each internal node stores the
offset for the next difference to look for:

1

3

6

essence essential

8

estimate estimation

5

sublease 7

sublimate sublime subliminal

se

e i

a
e iiec t

s t

Plan for today:

Tries

Fuzzy search with tries

Levenshtein automata

Simple uses of tries

Fuzzy search with tries

Problem: we want to search a dictionary for
words similar to a query.

Example: “Smyth” and “Zmith” should retrieve
“Smith”,

“Levenstien” should retrieve “Levenshtein”, etc.

By “similar,” we mean “edit distance less than
some threshold δ.”

One solution:

Compute pairwise edit distance between our query
q and every word wi in our dictionary;

A (slightly) better solution:
Speed up pairwise edit distance computation using
prefix pruning.

Match if sim(q, wi) ≤ δ

2. TRIE-BASED FRAMEWORK
In this section, we first formalize the problem of string

similarity joins with edit-distance constraints and then in-
troduce a trie-based framework for efficient similarity joins.

2.1 Problem Formulation
Given two sets of strings, a similarity join finds all simi-

lar string pairs from the two sets. In this paper, we use edit
distance to quantify the similarity between two strings. For-
mally, the edit distance between two strings r and s, denoted
as ed(r, s), is the minimum number of single-character edit
operations (i.e., insertion, deletion, and substitution) needed
to transform r to s. For example, ed(koby, ebay)=3. In
this paper two strings are similar if their edit distance is no
larger than a given edit-distance threshold τ . We formalize
the problem of string similarity joins as follows.

Definition 1 (String Similarity Joins). Given two
sets of strings R and S, and an edit-distance threshold τ , a
similarity join finds all similar string pairs ⟨r, s⟩ ∈ R× S
such that ed(r, s) ≤ τ .

2.2 Prefix Pruning
One näıve solution to address this problem is all-pair ver-

ification, which enumerates all string pairs ⟨r, s⟩ ∈ R × S
and computes their edit distances. However, this solution
is rather expensive. In fact, in most cases to check whether
two strings are similar, we need not compute the edit dis-
tance between the two complete strings. Instead we can do
an early termination in the dynamic-programming compu-
tation as follows [15].

Given two strings r = r1r2 . . . rn and s = s1s2 . . . sm, let
D denote a matrix with n+1 rows and m+1 columns, and
D(i, j) be the edit distance between the prefix r1r2 . . . ri and
the prefix s1s2 . . . sj . We use the dynamic-programming al-
gorithm to compute the matrix: D(0, j) = j for 0 ≤ j ≤ n,
and D(i, j) = min(D(i−1, j)+1, D(i, j−1)+1, D(i−1, j−
1) + θ) where θ = 0 if ri = sj ; otherwise θ = 1. D(i, j)
is called an active entry if D(i, j) ≤ τ . Figure 1 shows the
matrix to compute the edit distance between “ebay” and
“koby”. The shaded cells (e.g., D(1, 1)) denote active en-
tries for τ = 1. (For all running examples in the remainder
of this paper, we assume τ = 1.) To check whether r =
“ebay” and s = “koby” are similar, we first compute the
entries in row D(0, ∗) (only those entries circled by the bold
lines). As D(0, 0) and D(0, 1) are active entries, we compute
the entries in row D(1, ∗). Similarly, we compute the entries
in row D(2, ∗). We find that D(2, 1), D(2, 2) and D(2, 3)
are not active entries. Based on the dynamic-programming
algorithm, the following rows D(i > 2, ∗) cannot have active
entries, thus we can do an early termination. This prun-
ing technique is called prefix pruning. However the method
using prefix pruning for similarity joins also needs to do all-
pair verification. To improve prefix pruning and increase
performance, we make the following two observations.

2.3 Our Observations
Observation 1 - Subtrie Pruning: As there are a large
number of strings in the two sets and many strings share
prefixes, we can extend prefix pruning to prune a group of
strings. We use a trie structure to index all strings. Trie
is a tree structure where each path from the root to a leaf
represents a string in the data set and every node on the
path has a label of a character in the string. For instance,

1 4320j

0 1 32

1 1 2 4

2 2 32

32 4

4 4 3 3

e yab

1

2

3

4

0

i

k

o

b

y

3

4

3 3

3

4

Figure 1: Prefix pruning. Matrix for computing edit
distance of two strings “ebay” and “koby”. Shaded
cells denote active entries for τ = 1.

Figure 2 shows a trie structure of a sample data set with
six strings. String “ebay” has a trie node ID of 12 and its
prefix “eb” has a trie node ID of 10. For simplicity, a node
is mentioned interchangeably with its corresponding string
in later text. For example, both node “ko” and string “ko”
refer to node 14, and node 14 also refers to string “ko”.
Given a trie node n, let |n| denote its depth (the depth of
the root node is 0). For example, |“ko”| = 2.

13
k

o

b

y

14

15

16

0

a e

e

b

a

y

b
1

2 5

9

10

11

12

g y a
3 4

y

g e

6

7

8

17

SID String

s1

s2

s3

s4

s5

bag

ebay

bay

A sample data set

kobe

koby

s6 beagy

Figure 2: Trie index of a sample data set

Note that many strings with same prefixes share the same
ancestor nodes on the trie structure. Based on this property,
we can extend the idea of prefix pruning to prune a group
of strings. Given a trie and a string s, node n in the trie is
called an active node of string s if ed(s, n) ≤ τ . If n is not
an active node for every prefix of string s, then all the strings
under n cannot be similar to s. The reason is the following.
For any string with prefix n in the trie, say r, in the dynamic-
programming algorithm, we can take r as the row and s
as the column. As the row D(|n|, ∗) has no active entry,
r cannot be similar to s based on prefix pruning. Based on
this observation, we propose a new pruning technique, called
subtrie pruning : Given a trie and a string s, to compute the
similar strings of s on the trie, for each trie node n, if n is
not an active node of every prefix of s, we need not traverse
the subtrie rooted at n. The following Lemma shows the
correctness of the subtrie pruning.

Lemma 1 (Subtrie Pruning). Given a trie T and a
string s, if node n is not an active node for every prefix of
s, then n’s descendants will not be similar to s.

For example, consider the trie in Figure 2 and suppose
τ = 1. Given a string “ebay”, since node “ko” is not an
active node for every prefix of “ebay”, we can figure out
that all the strings in the subtree rooted at “ko” cannot be
similar to “ebay” based on Lemma 1, and thus those strings
under “ko” (e.g., “kobe” and “koby”) can be pruned.

Using subtrie pruning, we can devise a trie-search-based
method for similarity joins, called Trie-Search. Trie-
Search first constructs a trie structure for all strings in R,

1220

Prefix pruning’s key idea:

If we only care whether strings r and s have an edit
distance less than some threshold...

...we can do early termination of our computation as
soon we exceed that threshold.

Wang J, Feng J, Li G. Trie-join: efficient trie-based string similarity joins with edit-distance constraints. VLDB Endowment; 2010.

One solution:

Compute pairwise edit distance between our query
q and every word wi in our dictionary;

A (slightly) better solution:
Speed up pairwise edit distance computation using
prefix pruning.

Match if sim(q, wi) ≤ δ

Neither are very good solutions for any kind
of “on-line” use case:

Query autocompletion, fuzzy searching,
spellchecking, etc.

(our dictionary is large, number of searches
is high, etc. etc.)

A better solution: use a trie!

Ji S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

1. Build a trie out of our dictionary;

2. Iterate through q; at each point, identify a
set of active nodes of the trie.

A node n is “active” with respect to a prefix qi if the
edit distance between qi and the prefix represented by
n is ≤ δ.

A better solution: use a trie!

Ji S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

1. Build a trie out of our dictionary;

2. Iterate through q; at each point, identify a
set of active nodes of the trie.

3. Stop when we reach the end of q or no
longer have active nodes.

Active nodes that happen to be leaves represent
matches.

A better solution: use a trie!

Ji S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

1. Build a trie out of our dictionary;

2. Iterate through q; at each point, identify a
set of active nodes of the trie.

3. Stop when we reach the end of q or no
longer have active nodes.

Active nodes that happen to be leaves represent
matches.

Intuition: at each symbol i in q, the set of
active nodes will be related to the set from qi-1.

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂĂ

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , ĂĂ

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Ji S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

So, we don’t need to visit every node in the
trie!

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂ Ă

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , Ă Ă

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Intuition: at each symbol i in q, the set of
active nodes will be related to the set from qi-1.

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂĂ

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , ĂĂ

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Ji S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

So, we don’t need to visit every node in the
trie!

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂ Ă

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , Ă Ă

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Intuition: at each symbol i in q, the set of
active nodes will be related to the set from qi-1.

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂĂ

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , ĂĂ

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Ji S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

So, we don’t need to visit every node in the
trie!

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂ Ă

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , Ă Ă

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Intuition: at each symbol i in q, the set of
active nodes will be related to the set from qi-1.

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂĂ

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , ĂĂ

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Ji S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

So, we don’t need to visit every node in the
trie!

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂ Ă

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , Ă Ă

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Intuition: at each symbol i in q, the set of
active nodes will be related to the set from qi-1.

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂĂ

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , ĂĂ

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Ji S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09

So, we don’t need to visit every node in the
trie!

l

n1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

1

3 4

u

5

4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

l

i

n1

3 4

u

5

u

i

7

s

0

10

11

12 13

14

15

16

4

l

i

n1

3 4

u

5

u 4

i

7

s

0

10

11

12 13

14

15

16

ED = 0 ED = 1 ED = 2

i u i u

n

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
Figure 4: Fuzzy search of prefix queries of “nlis” (threshold δ = 2).

nodes”), and we need to compute them efficiently. The leaf
descendants of the active nodes are called the predicted key-
words of the prefix. For example, consider the trie in Fig-
ure 4. Suppose the edit-distance threshold δ = 2, and a user
types in a prefix p = “nlis”. Prefixes “li”, “lin”, “liu”,
and “luis” are all similar to p, since their edit distances to
“nlis”are within δ. Thus nodes 11, 12, 13, and 16 are active
nodes for p (Figure 4 (e)). The predicted keywords for the
prefix are “li”, “lin”, “liu”, and “luis”.

We develop a caching-based algorithm for incrementally
computing active nodes for a keyword as the user types it
in letter by letter. Given an input prefix p, we compute and
store the set of active nodes Φp = {⟨n, ξn⟩}, in which n is
an active node, and ξn = ed(p, n) ≤ δ. The idea behind our
algorithm is to use prefix-filtering: when the user types in
one more letter after p, the active nodes of p can be used to
compute the active nodes of the new query.

The algorithm works as follows. First, an active-node set
is initialized for the empty query ϵ, i.e., Φϵ = {⟨n, ξn⟩ |
ξn = |n| ≤ δ}. That is, it includes all trie nodes n whose
corresponding string has a length |n| within the edit-distance
threshold δ. These nodes are active nodes for ϵ since their
edit distances to ϵ are within δ.

As the user types in a query string px = c1c2 . . . cx letter
by letter, the active-node set Φpx is computed and cached
for px. When the user types in a new character cx+1 and
submits a new query px+1, the server computes the active-
node set Φpx+1 for px+1 by using Φpx . For each ⟨n, ξn⟩
in Φpx , the descendants of n are examined as active-node
candidates for px+1, as illustrated in Figure 5. For the node
n, if ξn + 1 ≤ δ, then n is an active node for px+1, and
⟨n, ξn + 1⟩ is added into Φpx+1 . This case corresponds to
deleting the last character cx+1 from the new query string
px+1. Notice even if ξn +1 ≤ δ is not true, node n could still
potentially become an active node of the new string, due to
operations described below on other active nodes in Φpx .

For each child nc of node n, there are two possible cases.
Case 1: the child node nc has a character different from
cx+1. Figure 5 shows a node ns for such a child node, where
“s” stands for “substitution,” the meaning of which will be-
come clear shortly. We have ed(ns, px+1) ≤ ed(n, px) + 1 =
ξn + 1. If ξn + 1 ≤ δ, then ns is an active node for the
new string, and ⟨ns, ξn + 1⟩ is added into Φpx+1 . This case
corresponds to substituting the label of ns for the letter
cx+1. Case 2: the child node nc has a label cx+1. Figure 5
shows the node nm for such a child node, where “m” stands

for “matching.” In this case, ed(nm, px+1) ≤ ed(n, px) =
ξn ≤ δ. Thus, nm is an active node of the new string, so we
add ⟨nm, ξn⟩ into Φpx+1 . This case corresponds to the match
between the character cx+1 and the label of nm. One sub-
tlety here is that, if the distance for the node nm is smaller
than δ, i.e., ξn < δ, the following operation is also required:
for each nm’s descendant d that is at most δ − ξn letters
away from nm, we need to add ⟨d, ξd⟩ to the active-node set
for the new string px+1, where ξd = ξn + |d| − |nm|. This
operation corresponds to inserting several letters after node
nm.3

ĂĂĂ Ă

ĂĂ

c1
c2
c3
.
.
.

cx

cx+1

px
px+1n, n

cx+1 ĂĂ

nnm ,

n

n , n

Match Substitution InsersionDeletion

+1

n+1ns ,

n+|d|-|nm|d , Ă Ă

Figure 5: Incrementally computing the active-node
set Φpx+1 from the active-node set Φpx . We consider
an active node ⟨n, ξn⟩ in Φpx .

During the computation of set Φpx+1 , it is possible to add
multiple pairs ⟨v, ξ1⟩, ⟨v, ξ2⟩, . . . for the same trie node v.
In this case, only the one with the smallest edit operation is
kept in Φpx+1 . The reason is that, by definition, for the same
trie node v, only the pair with the edit distance between the
node v and the query string px+1 should be kept in Φpx+1 ,
which means the minimum number of edit operations to
transform the string of v to the string of px+1.

3Descendants of node ns do not need to be considered for
insertions, because if these descendants are active nodes of
Φpx+1 , their parents must appear in Φpx , and they can be
processed by substitutions on their parents.

WWW 2009 MADRID! Track: Search / Session: Search UI

374

Related problem: the “similarity join”

We have two bags of words, R and S.

Goal: identify pairs of similar words.

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Example:

R = { kobe, ebay, ...}

S = { bag, koby, ...}

We would want to identify pairs such as <kobe, koby>

Again, one solution is pairwise edit distance
calculation...

... but if R and S are very large, that will be incredibly
time consuming, even with prefix pruning!

One solution: use the trie search method!

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Build a trie representing R;

For every string s in S, identify the active nodes As of
R’s trie; for each leaf node r in As, produce <s,r>.

Another solution: use sub-trie pruning

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Intuition: given the set of active nodes An for a
particular trie node n...

... we can say that only children of nodes in An could
possibly be similar to children of node n.

We can use this fact to speed up extraction of similar
pairs.

Let us consider the case where our two sets are
actually one set (R = S), and we simply want to
identify similar pairs.

Algorithm:

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

1. Build a trie for our set of words;

2. Traverse the trie in preorder. At each node, compute
its set of active nodes A.

3. At each leaf node n, identify any leaf nodes in An;
these are similar pairs.

As we traverse, we must keep the current node’s
ancestor’s set of active nodes in memory; total time
complexity is O(δ|AT|).

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Trie-join: a trie-based method for efficient string similarity joins 441

Fig. 4 Trie-Traverse algorithm

3.1 Trie-traverse algorithm

In this section, we propose a trie-traversal-based method,
called Trie-Traverse, to improve the performance of Trie-
Search. Intuitively, Trie-Traverse utilizes dual subtrie
pruning to avoid duplicated computation in Trie-Search.
Trie-Traverse constructs a trie for the strings in both R
and S and computes the active-node set for a node in the trie
exactly once even though the node is a prefix of a potentially
large number of strings.

For ease of presentation, in the following, we focus on
self-join, that is R = S. Our approach can be easily extended
to R ̸= S (Sect. 4.2). Trie-Traverse first constructs a trie
index for all strings in S and then traverses the trie in preorder.
For each trie node, Trie-Traverse computes its active-node
set. When reaching a leaf node l, for s ∈ Al , if s is a leaf
node (i.e., s ∈ S), Trie-Traverse outputs ⟨l, s⟩ as a simi-
lar string pair. Figure 4 gives the pseudo-code of the Trie-
Traverse algorithm. It first constructs a trie index for all

Fig. 5 An example to use Trie-Traverse algorithm to find all similar
pairs (τ = 1)

strings (Line 2), computes the active-node set of the root node
(Line 4), and then calls its subroutine findSimilarPair
to find all similar string pairs recursively (Lines 5–6).find-
SimilarPair first calculates the active-node set Ac of
node c based on its parent’s active-note set Ap (Line 2), using
the above-mentioned incremental algorithm. If c is a leaf
node, it calls a subroutineoutputSimilarPair to output
all the similar string pairs of c (Line 3). Finally, findSim-
ilarPair calls itself to compute the similar string pairs of
c’s descendants (Lines 6–7).

In the worst case, the time complexity of computing Ac
from its parent’s active-note set Ap is O(τ · |Ac|), since each
active node only can be computed from its ancestors within
τ steps. Therefore, the time complexity of Trie-Traverse
is O(τ · |AT |) where |AT | is the sum of the numbers of the
active-node sets of all the trie nodes in the trie T . When tra-
versing the trie nodes, we need to maintain the trie and the
active nodes of ancestors of the current node. Given a leaf
node l, let C(l)denote the sum of the active nodes of ancestors
of node l and Cmax is the maximal value of C(l) among all
leaf nodes. The space complexity is O(|T |+Cmax), where |T |
is the size of trie T . Example 1 shows how Trie-Traverse
works.

Example 1 Consider the string set and the corresponding trie
structure in Fig. 5. Initially, we construct a trie index for all
strings. We compute the active-node set of the root node
A0 = {0, 1, 9, 13}, which is composed of the nodes with
depths within τ = 1, since their edit distances to the root node
(an empty string) are within τ . Then, we compute active-
node sets of every node using preorder traversal (following
the dashed lines). This traversal can guarantee that, for each
node, we always compute its parent’s active-node set before
its own active-node set. Consider node 2, we use its par-
ent’s active-node set A1 to compute its active-node set A2.
Similarly, we compute A3 using A2. As node 3 is a leaf node,
and node 4 is a leaf node in A3 = {2, 3, 4, 7}; thus, we output
the similar pair ⟨3, 4⟩. ⊓&

123

Intuition: given the set of active nodes An for a
particular trie node n...

... we can say that only children of nodes in An could
possibly be similar to children of node n.

We can do better!

Also: if node u has node v in its active set, v must also
have u in its set!

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Trie-join: a trie-based method for efficient string similarity joins 441

Fig. 4 Trie-Traverse algorithm

3.1 Trie-traverse algorithm

In this section, we propose a trie-traversal-based method,
called Trie-Traverse, to improve the performance of Trie-
Search. Intuitively, Trie-Traverse utilizes dual subtrie
pruning to avoid duplicated computation in Trie-Search.
Trie-Traverse constructs a trie for the strings in both R
and S and computes the active-node set for a node in the trie
exactly once even though the node is a prefix of a potentially
large number of strings.

For ease of presentation, in the following, we focus on
self-join, that is R = S. Our approach can be easily extended
to R ̸= S (Sect. 4.2). Trie-Traverse first constructs a trie
index for all strings in S and then traverses the trie in preorder.
For each trie node, Trie-Traverse computes its active-node
set. When reaching a leaf node l, for s ∈ Al , if s is a leaf
node (i.e., s ∈ S), Trie-Traverse outputs ⟨l, s⟩ as a simi-
lar string pair. Figure 4 gives the pseudo-code of the Trie-
Traverse algorithm. It first constructs a trie index for all

Fig. 5 An example to use Trie-Traverse algorithm to find all similar
pairs (τ = 1)

strings (Line 2), computes the active-node set of the root node
(Line 4), and then calls its subroutine findSimilarPair
to find all similar string pairs recursively (Lines 5–6).find-
SimilarPair first calculates the active-node set Ac of
node c based on its parent’s active-note set Ap (Line 2), using
the above-mentioned incremental algorithm. If c is a leaf
node, it calls a subroutineoutputSimilarPair to output
all the similar string pairs of c (Line 3). Finally, findSim-
ilarPair calls itself to compute the similar string pairs of
c’s descendants (Lines 6–7).

In the worst case, the time complexity of computing Ac
from its parent’s active-note set Ap is O(τ · |Ac|), since each
active node only can be computed from its ancestors within
τ steps. Therefore, the time complexity of Trie-Traverse
is O(τ · |AT |) where |AT | is the sum of the numbers of the
active-node sets of all the trie nodes in the trie T . When tra-
versing the trie nodes, we need to maintain the trie and the
active nodes of ancestors of the current node. Given a leaf
node l, let C(l)denote the sum of the active nodes of ancestors
of node l and Cmax is the maximal value of C(l) among all
leaf nodes. The space complexity is O(|T |+Cmax), where |T |
is the size of trie T . Example 1 shows how Trie-Traverse
works.

Example 1 Consider the string set and the corresponding trie
structure in Fig. 5. Initially, we construct a trie index for all
strings. We compute the active-node set of the root node
A0 = {0, 1, 9, 13}, which is composed of the nodes with
depths within τ = 1, since their edit distances to the root node
(an empty string) are within τ . Then, we compute active-
node sets of every node using preorder traversal (following
the dashed lines). This traversal can guarantee that, for each
node, we always compute its parent’s active-node set before
its own active-node set. Consider node 2, we use its par-
ent’s active-node set A1 to compute its active-node set A2.
Similarly, we compute A3 using A2. As node 3 is a leaf node,
and node 4 is a leaf node in A3 = {2, 3, 4, 7}; thus, we output
the similar pair ⟨3, 4⟩. ⊓&

123

By increasing our space complexity, we can reduce
the time complexity to .O(

�

2
|AT |)

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

Trie-join: a trie-based method for efficient string similarity joins 443

Fig. 7 An example to use
Trie-Dynamic algorithm to
find all similar pairs (τ = 1)

(a)

(b) (c) (d)

Fig. 7c, we find that A2,A3,A7 are different. Because after
we insert node 8 and compute A8 = {2, 3, 7, 8}, we update
the active-node sets of nodes in A8(nodes 2, 3, 7). For each
node n in A8, we add node 8 to n’s active-node set based on
the symmetry property. ⊓"
Theorem 2 Given a set of strings S and an edit-distance
threshold τ , Trie-Dynamic can compute all similar string
pairs ⟨s ∈ S, t ∈ S⟩ such that ed(s, t) ≤ τ .

Proof As Trie-Dynamic constructs the trie structure
dynamically, let Tv denote the trie index constructed from
all the nodes inserted before v (including itself). For a node
v in Tv , let P(v) denote the number of nodes in Tv . Tv’s node
set V (Tv) = {u ∈ V (T) | P(u) ≤ P(v)} and its edge set
E(Tv) = {(ui , u j) ∈ E(T) | ui ∈ V (Tv), u j ∈ V (Tv)}. In
addition, let ATv

u = {t ∈ V (Tv) | ed(u, t) ≤ τ } denote the
active-node set of u w.r.t Tv .

We first prove that after adding a new node v in the trie,
for each node u of Tv , Trie-Dynamic can compute ATv

u cor-
rectly. We prove this claim by induction. The base case for
the root node clearly holds since after adding a root node
r, Tr has only one node and ATr

r = {r} is correct. Assume
this claim holds for a node v. We want to prove that it also
holds for the next added node v′ (i.e., P(v′) = P(v) + 1).
For each node u in Tv′ , if u = v′, since the active-node set of
u’s parent w.r.t Tv is correctly computed (as u’s parent is in
Tv), Trie-Dynamic can correctly compute ATv′

u (i.e., ATv′
v′);

if u ̸= v′, then u must be a node of Tv , so ATv
u is correctly

computed. Trie-Dynamic uses ATv
u to compute ATv′

u . If u is
in ATv′

v′ , then ed(v′, u) ≤ τ ; thus, Trie-Dynamic can obtain

ATv′
u correctly by adding v′ to ATv

u ; if u is not in ATv′
v′ , then

ed(v′, u) > τ ; thus, Trie-Dynamic can obtain ATv′
u cor-

rectly by setting it as ATv
u . Therefore, for each node u of Tv′ ,

Trie-Dynamic can compute ATv′
u correctly. Thus, our claim

is true.
Obviously for each string pair ⟨s ∈ S, t ∈ S⟩ (Without

loss of generality, suppose P(s) ≤ P(t).), ed(s, t) ≤ τ if

and only if both the nodes s and t are leaf nodes of Tt , and s
is in ATt

t . Based on the proved claim, after adding the node
t,ATt

t is correctly computed. Also note that for each string s
in S and P(s) ≤ P(t), its corresponding node in Tt must be
a leaf node. Therefore, the theorem is proved. ⊓"

3.3 Trie-PathStack algorithm

When inserting a new string, Trie-Dynamic may gener-
ate some new nodes and append them as children of any
existing node. Thus, Trie-Dynamic may use active-node
sets of any existing node to compute the active-node sets
of newly added nodes. For example, in Fig. 7d, when insert-
ing a string “bay”, Trie-Dynamic generates a new node 8,
appends it as a child of existing node 2, and uses the active-
node set of node 2 to compute the active-node set of the
newly inserted node 8. Thus, although Trie-Dynamic avoids
unnecessary active-node computation introduced by Trie-
Traverse, Trie-Dynamic involve large memory space to
maintain the active-node sets of all trie nodes.2 Recall Trie-
Traverse, it first constructs a trie index for all strings and
then gets similar string pairs by traversing the trie in preorder.
Throughout the algorithm, the maximal number of active-
node sets that Trie-Traverse needs to maintain is the same
as the maximal depth of trie leaf nodes. To summarize, Trie-
Traverse uses little memory space but involves unnecessary
active-node computation; on the contrary, Trie-Dynamic
avoids such repeated computation but involves large memory
space.

To address this problem, we propose a new algorithm,
called Trie-PathStack, which not only requires little mem-
ory space but also achieves much higher performance.
Intuitively, Trie-PathStack can integrate the ideas of Trie-
Dynamic and Trie-Traverse together. To achieve higher

2 If we first sort the strings and then dynamically insert them into the
trie, Trie-Dynamic need not maintain all active-node sets. However,
it has two problems: (1) it involves an additional sorting step; (2) it is
still expensive to update the active-node sets (the symmetry property).

123

We can compute active nodes as we build the trie,
and eliminate duplicate calculations.

There are extensions to the idea that allow for
different sets of strings, more space-efficient
construction, etc.

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).

See the Feng, et al. article (cited below) for more
details!

Figure 2: Interactive fuzzy search on the UC Irvine people directory (http://psearch.ics.uci.edu).

Interactive: The system searches for the best answers“on the
fly” as the user types in a keyword query; (2) Fuzzy: When
searching for relevant records, the system also tries to find
those records that include words similar to the keywords in
the query, even if they do not match exactly.

We have developed several prototypes using this paradigm.
The first one supports search on the UC Irvine people direc-
tory. A screenshot is shown in Figure 2. In the figure, a user
has typed in a query string “professor smyt”. Even though
the user has not typed in the second keyword completely,
the system can already find person records that might be
of interest to the user. Notice that the two keywords in
the query string (including a partial keyword “smyt”) can
appear in different attributes of the records. In particular,
in the first record, the keyword “professor” appears in the
“title” attribute, and the partial keyword “smyt” appears in
the “name”attribute. The matched prefixes are highlighted.

The system can also find records with words that are sim-
ilar to the query keywords, such as a person name “smith”.
The feature of supporting fuzzy search is especially impor-
tant when the user has limited knowledge about the under-
lying data or the entities he or she is looking for. As the user
types in more letters, the system interactively searches on
the data, and updates the list of relevant records. The sys-
tem also utilizes a-priori knowledge such as synonyms. For
instance, given the fact that “william” and “bill” are syn-
onyms, the system can find a person called “William Kropp”
when the user has typed in “bill crop”. This search proto-
type has been used regularly by many people at UCI, and
received positive feedback due to the friendly user inter-
face and high efficiency. Another prototype, available at
http://dblp.ics.uci.edu, supports search on a DBLP dataset
(http//www.informatik.uni-trier.de/∼ley/db/) with about
1 million publication records. A third prototype, available at
http://pubmed.ics.uci.edu, supports search on 3.95 million
MEDLINE records (http://www.ncbi.nlm.nih.gov/pubmed).

In this paper we study research challenges that arise nat-
urally in this computing paradigm. The main challenge is
the requirement of a high efficiency. To make search re-
ally interactive, for each keystroke on the client browser,
from the time the user presses the key to the time the re-
sults computed from the server are displayed on the browser,
the delay should be as small as possible. An interactive
speed requires this delay be within milliseconds. Notice that
this time includes the network transfer delay, execution time
on the server, and the time for the browser to execute its
javascript (which tends to be slow). Providing a high effi-

ciency on a large amount of data is especially challenging
because of two reasons. First, we allow the query keywords
to appear in different attributes with an arbitrary order,
and the “on-the-fly join” nature of the problem can be com-
putationally expensive. Second, we want to support fuzzy
search by finding records with keywords that match query
keywords approximately.

We develop novel solutions to these problems. We present
several incremental-search algorithms for answering a query
by using cached results of earlier queries. In this way, the
computation of the answers to a query can spread across
multiple keystrokes of the user, thus we can achieve a high
speed. Specifically, we make the following contributions.
(1) We first study the case of queries with a single keyword,
and present an incremental algorithm for computing key-
word prefixes similar to a prefix keyword (Section 3). (2)
For queries with multiple keywords, we study various tech-
niques for computing the intersection of the inverted lists
of query keywords, and develop a novel algorithm for com-
puting the results efficiently (Section 4.1). Its main idea
is to use forward lists of keyword IDs for checking whether
a record matches query keyword conditions (even approxi-
mately). (3) We develop a novel on-demand caching tech-
nique for incremental search. Its idea is to cache only part
of the results of a query. For subsequent queries, unfin-
ished computation will be resumed if the previously cached
results are not sufficient. In this way, we can efficiently com-
pute and cache a small amount of results (Section 4.2). (4)
We study various features in this paradigm, such as how to
rank results properly, how to highlight keywords in the re-
sults, and how to utilize domain-specific information such
as synonyms to improve search (Section 5). (5) In addition
to deploying several real prototypes, we conducted a thor-
ough experimental evaluation of the developed techniques
on real data sets, and show the practicality of this new com-
puting paradigm. All experiments were done using a single
desktop machine, which can still achieve response times of
milliseconds on millions of records.

1.1 Related Work
Prediction and Autocomplete:1 There have been many
studies on predicting queries and user actions [17, 14, 9, 19,
18]. With these techniques, a system predicts a word or

1The word “autocomplete” could have different meanings.
Here we use it to refer to the case where a query (possibly
with multiple keywords) is treated as a single prefix.

WWW 2009 MADRID! Track: Search / Session: Search UI

372

http://psearch.ics.uci.edu

Plan for today:

Tries

Fuzzy search with tries

Levenshtein automata

Simple uses of tries

Levenshtein automata

A different approach to solving the fuzzy
matching problem uses finite-state automata.

Mihov S, Schulz KU. Fast Approximate Search in Large Dictionaries. Computational Linguistics. 2004 Dec;30(4).

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67–85.

The basic idea: construct an acceptor that will
recognize an input string with up to δ edits.

Then, walk through the acceptor and our
dictionary, emitting any final states we visit.

Levenshtein automata

We have seen something not entirely dissimilar:

The basic idea: construct an acceptor that will
recognize an input string with up to δ edits.

�

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

�

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
��	�

����

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

!

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
����

��	�

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

"

	�	

	��������	
�

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���
	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

#

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
��	�

����

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

$

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
��	�

����

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

%

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
����

��	�

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

&

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
����

��	�

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

�

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

�

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
��	�

����

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

!

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
����

��	�

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

"

	�	

	��������	
�

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���
	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	���

	� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

#

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
��	�

����

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

$

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
��	�

����

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

%

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
����

��	�

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

&

���

���������	
�

����

����

����

����

����

����

����

����

����

����

����

����
����

��	�

����

����

����

����

����

����

����

����

����

����

�� �

�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
�	�
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
���
�������	
� �

Levenshtein automata

In a sense, our old friend the edit-distance transducer is
a step along the path towards a Levenshtein transducer.

The difference: the edit-distance transducer will allow
infinite insertions or deletions...

... and we need to limit the total number of such events.

72 K.U. Schulz, S. Mihov

w1
40#0 1#0 2#0 3#0 4#0 5#0

w2 w3 w4 w5

w1
40#1 1#1 2#1 3#1 4#1 5#1

w2 w3 w4 w5

w1
40#2 1#2 2#2 3#2 4#2 5#2

w2 w3 w4 w5

 ¬w1
ε

 ¬w1
ε

 ¬w2
ε

 ¬w2
ε

 ¬w3
ε

 ¬w3
ε

 ¬w4
ε

 ¬w4
ε

 ¬w5
ε

 ¬w5
ε

Fig. 3 Non-deterministic Levenshtein automaton of degree 2 for arbitrary input W = w1w2w3w4w5 of length 5

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 4 Positions and accepting positions for n = 5 and w = 8

heavily depends on identities between letters w1, . . . , w5.
For this reason, a uniform deterministic Levenshtein au-
tomaton for arbitrary input of length 5 cannot be given.
Two examples of deterministic Levenshtein automata for
input of length 5 (of degree 1) can be found in Figs. 8
and 9.

Positions and states. In order to characterize the states
of our deterministic Levenshtein automata we now fix an
arbitrary input word W = x1 · · ·xw and a number n ∈ N

that denotes the maximal Levenshtein distance that we
want to capture. In the sequel, numbers i ∈ {0, . . . , w}
will be called the boundaries of W . In order to distin-
guish between states of deterministic Levenshtein au-
tomata and states of the kind of non-deterministic Lev-
enshtein automata described above, the latter will be
called positions henceforth.

Definition 7 A position is an expression of the form
i♯e where 0 ≤ i ≤ w and 0 ≤ e ≤ n. Position i♯e is
raised iff e > 0, otherwise it is called a base position.

Base positions can be considered as “error-free” posi-
tions.

Definition 8 A position i♯e is accepting iff w−i ≤ n−e.

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 5 Subsumption triangles (cf. Example 4)

Accepting positions can be considered as final states of
the non-deterministic Levenshtein automata described
above.

Example 3 For n = 5 and w = 8, the set of all positions
is depicted in Fig. 4. Accepting positions are marked.

Definition 9 A position i♯e subsumes a position j♯f iff
e < f and |j − i| ≤ f − e. The set of all positions that
are subsumed by i♯e is called the subsumption triangle of
i♯e.

Example 4 Let n = 5 and assume that w = 8. Figure 5
illustrates the subsumption triangles of 1♯2, 3♯3 and 8♯1.
Since subsumption is irreflexive, the positions 1♯2, 3♯3

and 8♯1 do not belong to the respective triangles.

The following lemma indicates the background for the
notion of subsumption.

Lemma 2 Let W = x1 · · ·xw and n as above. Let Φ
denote the function that assigns to each position i♯e the
language

Φ(i♯e) := LLev(n − e, xi+1 · · ·xw).

Let π := i♯e and π′ := j♯f be two distinct positions. If π
subsumes π′, then Φ(π′) is a subset of Φ(π).

Levenshtein automata

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67–85.

Character position (mantissa)

72 K.U. Schulz, S. Mihov

w1
40#0 1#0 2#0 3#0 4#0 5#0

w2 w3 w4 w5

w1
40#1 1#1 2#1 3#1 4#1 5#1

w2 w3 w4 w5

w1
40#2 1#2 2#2 3#2 4#2 5#2

w2 w3 w4 w5

 ¬w1
ε

 ¬w1
ε

 ¬w2
ε

 ¬w2
ε

 ¬w3
ε

 ¬w3
ε

 ¬w4
ε

 ¬w4
ε

 ¬w5
ε

 ¬w5
ε

Fig. 3 Non-deterministic Levenshtein automaton of degree 2 for arbitrary input W = w1w2w3w4w5 of length 5

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 4 Positions and accepting positions for n = 5 and w = 8

heavily depends on identities between letters w1, . . . , w5.
For this reason, a uniform deterministic Levenshtein au-
tomaton for arbitrary input of length 5 cannot be given.
Two examples of deterministic Levenshtein automata for
input of length 5 (of degree 1) can be found in Figs. 8
and 9.

Positions and states. In order to characterize the states
of our deterministic Levenshtein automata we now fix an
arbitrary input word W = x1 · · ·xw and a number n ∈ N

that denotes the maximal Levenshtein distance that we
want to capture. In the sequel, numbers i ∈ {0, . . . , w}
will be called the boundaries of W . In order to distin-
guish between states of deterministic Levenshtein au-
tomata and states of the kind of non-deterministic Lev-
enshtein automata described above, the latter will be
called positions henceforth.

Definition 7 A position is an expression of the form
i♯e where 0 ≤ i ≤ w and 0 ≤ e ≤ n. Position i♯e is
raised iff e > 0, otherwise it is called a base position.

Base positions can be considered as “error-free” posi-
tions.

Definition 8 A position i♯e is accepting iff w−i ≤ n−e.

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 5 Subsumption triangles (cf. Example 4)

Accepting positions can be considered as final states of
the non-deterministic Levenshtein automata described
above.

Example 3 For n = 5 and w = 8, the set of all positions
is depicted in Fig. 4. Accepting positions are marked.

Definition 9 A position i♯e subsumes a position j♯f iff
e < f and |j − i| ≤ f − e. The set of all positions that
are subsumed by i♯e is called the subsumption triangle of
i♯e.

Example 4 Let n = 5 and assume that w = 8. Figure 5
illustrates the subsumption triangles of 1♯2, 3♯3 and 8♯1.
Since subsumption is irreflexive, the positions 1♯2, 3♯3

and 8♯1 do not belong to the respective triangles.

The following lemma indicates the background for the
notion of subsumption.

Lemma 2 Let W = x1 · · ·xw and n as above. Let Φ
denote the function that assigns to each position i♯e the
language

Φ(i♯e) := LLev(n − e, xi+1 · · ·xw).

Let π := i♯e and π′ := j♯f be two distinct positions. If π
subsumes π′, then Φ(π′) is a subset of Φ(π).

Levenshtein automata

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67–85.

Number of edits thus far (exponent)

72 K.U. Schulz, S. Mihov

w1
40#0 1#0 2#0 3#0 4#0 5#0

w2 w3 w4 w5

w1
40#1 1#1 2#1 3#1 4#1 5#1

w2 w3 w4 w5

w1
40#2 1#2 2#2 3#2 4#2 5#2

w2 w3 w4 w5

 ¬w1
ε

 ¬w1
ε

 ¬w2
ε

 ¬w2
ε

 ¬w3
ε

 ¬w3
ε

 ¬w4
ε

 ¬w4
ε

 ¬w5
ε

 ¬w5
ε

Fig. 3 Non-deterministic Levenshtein automaton of degree 2 for arbitrary input W = w1w2w3w4w5 of length 5

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 4 Positions and accepting positions for n = 5 and w = 8

heavily depends on identities between letters w1, . . . , w5.
For this reason, a uniform deterministic Levenshtein au-
tomaton for arbitrary input of length 5 cannot be given.
Two examples of deterministic Levenshtein automata for
input of length 5 (of degree 1) can be found in Figs. 8
and 9.

Positions and states. In order to characterize the states
of our deterministic Levenshtein automata we now fix an
arbitrary input word W = x1 · · ·xw and a number n ∈ N

that denotes the maximal Levenshtein distance that we
want to capture. In the sequel, numbers i ∈ {0, . . . , w}
will be called the boundaries of W . In order to distin-
guish between states of deterministic Levenshtein au-
tomata and states of the kind of non-deterministic Lev-
enshtein automata described above, the latter will be
called positions henceforth.

Definition 7 A position is an expression of the form
i♯e where 0 ≤ i ≤ w and 0 ≤ e ≤ n. Position i♯e is
raised iff e > 0, otherwise it is called a base position.

Base positions can be considered as “error-free” posi-
tions.

Definition 8 A position i♯e is accepting iff w−i ≤ n−e.

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 5 Subsumption triangles (cf. Example 4)

Accepting positions can be considered as final states of
the non-deterministic Levenshtein automata described
above.

Example 3 For n = 5 and w = 8, the set of all positions
is depicted in Fig. 4. Accepting positions are marked.

Definition 9 A position i♯e subsumes a position j♯f iff
e < f and |j − i| ≤ f − e. The set of all positions that
are subsumed by i♯e is called the subsumption triangle of
i♯e.

Example 4 Let n = 5 and assume that w = 8. Figure 5
illustrates the subsumption triangles of 1♯2, 3♯3 and 8♯1.
Since subsumption is irreflexive, the positions 1♯2, 3♯3

and 8♯1 do not belong to the respective triangles.

The following lemma indicates the background for the
notion of subsumption.

Lemma 2 Let W = x1 · · ·xw and n as above. Let Φ
denote the function that assigns to each position i♯e the
language

Φ(i♯e) := LLev(n − e, xi+1 · · ·xw).

Let π := i♯e and π′ := j♯f be two distinct positions. If π
subsumes π′, then Φ(π′) is a subset of Φ(π).

Levenshtein automata

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67–85.

Match

72 K.U. Schulz, S. Mihov

w1
40#0 1#0 2#0 3#0 4#0 5#0

w2 w3 w4 w5

w1
40#1 1#1 2#1 3#1 4#1 5#1

w2 w3 w4 w5

w1
40#2 1#2 2#2 3#2 4#2 5#2

w2 w3 w4 w5

 ¬w1
ε

 ¬w1
ε

 ¬w2
ε

 ¬w2
ε

 ¬w3
ε

 ¬w3
ε

 ¬w4
ε

 ¬w4
ε

 ¬w5
ε

 ¬w5
ε

Fig. 3 Non-deterministic Levenshtein automaton of degree 2 for arbitrary input W = w1w2w3w4w5 of length 5

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 4 Positions and accepting positions for n = 5 and w = 8

heavily depends on identities between letters w1, . . . , w5.
For this reason, a uniform deterministic Levenshtein au-
tomaton for arbitrary input of length 5 cannot be given.
Two examples of deterministic Levenshtein automata for
input of length 5 (of degree 1) can be found in Figs. 8
and 9.

Positions and states. In order to characterize the states
of our deterministic Levenshtein automata we now fix an
arbitrary input word W = x1 · · ·xw and a number n ∈ N

that denotes the maximal Levenshtein distance that we
want to capture. In the sequel, numbers i ∈ {0, . . . , w}
will be called the boundaries of W . In order to distin-
guish between states of deterministic Levenshtein au-
tomata and states of the kind of non-deterministic Lev-
enshtein automata described above, the latter will be
called positions henceforth.

Definition 7 A position is an expression of the form
i♯e where 0 ≤ i ≤ w and 0 ≤ e ≤ n. Position i♯e is
raised iff e > 0, otherwise it is called a base position.

Base positions can be considered as “error-free” posi-
tions.

Definition 8 A position i♯e is accepting iff w−i ≤ n−e.

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 5 Subsumption triangles (cf. Example 4)

Accepting positions can be considered as final states of
the non-deterministic Levenshtein automata described
above.

Example 3 For n = 5 and w = 8, the set of all positions
is depicted in Fig. 4. Accepting positions are marked.

Definition 9 A position i♯e subsumes a position j♯f iff
e < f and |j − i| ≤ f − e. The set of all positions that
are subsumed by i♯e is called the subsumption triangle of
i♯e.

Example 4 Let n = 5 and assume that w = 8. Figure 5
illustrates the subsumption triangles of 1♯2, 3♯3 and 8♯1.
Since subsumption is irreflexive, the positions 1♯2, 3♯3

and 8♯1 do not belong to the respective triangles.

The following lemma indicates the background for the
notion of subsumption.

Lemma 2 Let W = x1 · · ·xw and n as above. Let Φ
denote the function that assigns to each position i♯e the
language

Φ(i♯e) := LLev(n − e, xi+1 · · ·xw).

Let π := i♯e and π′ := j♯f be two distinct positions. If π
subsumes π′, then Φ(π′) is a subset of Φ(π).

Levenshtein automata

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67–85.

Substitution

72 K.U. Schulz, S. Mihov

w1
40#0 1#0 2#0 3#0 4#0 5#0

w2 w3 w4 w5

w1
40#1 1#1 2#1 3#1 4#1 5#1

w2 w3 w4 w5

w1
40#2 1#2 2#2 3#2 4#2 5#2

w2 w3 w4 w5

 ¬w1
ε

 ¬w1
ε

 ¬w2
ε

 ¬w2
ε

 ¬w3
ε

 ¬w3
ε

 ¬w4
ε

 ¬w4
ε

 ¬w5
ε

 ¬w5
ε

Fig. 3 Non-deterministic Levenshtein automaton of degree 2 for arbitrary input W = w1w2w3w4w5 of length 5

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 4 Positions and accepting positions for n = 5 and w = 8

heavily depends on identities between letters w1, . . . , w5.
For this reason, a uniform deterministic Levenshtein au-
tomaton for arbitrary input of length 5 cannot be given.
Two examples of deterministic Levenshtein automata for
input of length 5 (of degree 1) can be found in Figs. 8
and 9.

Positions and states. In order to characterize the states
of our deterministic Levenshtein automata we now fix an
arbitrary input word W = x1 · · ·xw and a number n ∈ N

that denotes the maximal Levenshtein distance that we
want to capture. In the sequel, numbers i ∈ {0, . . . , w}
will be called the boundaries of W . In order to distin-
guish between states of deterministic Levenshtein au-
tomata and states of the kind of non-deterministic Lev-
enshtein automata described above, the latter will be
called positions henceforth.

Definition 7 A position is an expression of the form
i♯e where 0 ≤ i ≤ w and 0 ≤ e ≤ n. Position i♯e is
raised iff e > 0, otherwise it is called a base position.

Base positions can be considered as “error-free” posi-
tions.

Definition 8 A position i♯e is accepting iff w−i ≤ n−e.

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 5 Subsumption triangles (cf. Example 4)

Accepting positions can be considered as final states of
the non-deterministic Levenshtein automata described
above.

Example 3 For n = 5 and w = 8, the set of all positions
is depicted in Fig. 4. Accepting positions are marked.

Definition 9 A position i♯e subsumes a position j♯f iff
e < f and |j − i| ≤ f − e. The set of all positions that
are subsumed by i♯e is called the subsumption triangle of
i♯e.

Example 4 Let n = 5 and assume that w = 8. Figure 5
illustrates the subsumption triangles of 1♯2, 3♯3 and 8♯1.
Since subsumption is irreflexive, the positions 1♯2, 3♯3

and 8♯1 do not belong to the respective triangles.

The following lemma indicates the background for the
notion of subsumption.

Lemma 2 Let W = x1 · · ·xw and n as above. Let Φ
denote the function that assigns to each position i♯e the
language

Φ(i♯e) := LLev(n − e, xi+1 · · ·xw).

Let π := i♯e and π′ := j♯f be two distinct positions. If π
subsumes π′, then Φ(π′) is a subset of Φ(π).

Levenshtein automata

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67–85.

Deletion

72 K.U. Schulz, S. Mihov

w1
40#0 1#0 2#0 3#0 4#0 5#0

w2 w3 w4 w5

w1
40#1 1#1 2#1 3#1 4#1 5#1

w2 w3 w4 w5

w1
40#2 1#2 2#2 3#2 4#2 5#2

w2 w3 w4 w5

 ¬w1
ε

 ¬w1
ε

 ¬w2
ε

 ¬w2
ε

 ¬w3
ε

 ¬w3
ε

 ¬w4
ε

 ¬w4
ε

 ¬w5
ε

 ¬w5
ε

Fig. 3 Non-deterministic Levenshtein automaton of degree 2 for arbitrary input W = w1w2w3w4w5 of length 5

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 4 Positions and accepting positions for n = 5 and w = 8

heavily depends on identities between letters w1, . . . , w5.
For this reason, a uniform deterministic Levenshtein au-
tomaton for arbitrary input of length 5 cannot be given.
Two examples of deterministic Levenshtein automata for
input of length 5 (of degree 1) can be found in Figs. 8
and 9.

Positions and states. In order to characterize the states
of our deterministic Levenshtein automata we now fix an
arbitrary input word W = x1 · · ·xw and a number n ∈ N

that denotes the maximal Levenshtein distance that we
want to capture. In the sequel, numbers i ∈ {0, . . . , w}
will be called the boundaries of W . In order to distin-
guish between states of deterministic Levenshtein au-
tomata and states of the kind of non-deterministic Lev-
enshtein automata described above, the latter will be
called positions henceforth.

Definition 7 A position is an expression of the form
i♯e where 0 ≤ i ≤ w and 0 ≤ e ≤ n. Position i♯e is
raised iff e > 0, otherwise it is called a base position.

Base positions can be considered as “error-free” posi-
tions.

Definition 8 A position i♯e is accepting iff w−i ≤ n−e.

8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

Fig. 5 Subsumption triangles (cf. Example 4)

Accepting positions can be considered as final states of
the non-deterministic Levenshtein automata described
above.

Example 3 For n = 5 and w = 8, the set of all positions
is depicted in Fig. 4. Accepting positions are marked.

Definition 9 A position i♯e subsumes a position j♯f iff
e < f and |j − i| ≤ f − e. The set of all positions that
are subsumed by i♯e is called the subsumption triangle of
i♯e.

Example 4 Let n = 5 and assume that w = 8. Figure 5
illustrates the subsumption triangles of 1♯2, 3♯3 and 8♯1.
Since subsumption is irreflexive, the positions 1♯2, 3♯3

and 8♯1 do not belong to the respective triangles.

The following lemma indicates the background for the
notion of subsumption.

Lemma 2 Let W = x1 · · ·xw and n as above. Let Φ
denote the function that assigns to each position i♯e the
language

Φ(i♯e) := LLev(n − e, xi+1 · · ·xw).

Let π := i♯e and π′ := j♯f be two distinct positions. If π
subsumes π′, then Φ(π′) is a subset of Φ(π).

Levenshtein automata

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67–85.

Insertion

Levenshtein automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

foof doof

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

Levenshtein automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

foof doof

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

Levenshtein automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

foof doof dora

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

Levenshtein automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

foof doof dora

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

Levenshtein automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

foof doof dora foods

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

Levenshtein automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

foof doof dora foods feed

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

Levenshtein automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

foof doof dora foods feed

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

Levenshtein automata

This is a non-deterministic representation;
actually using NFAs in practice is often tricky.

Luckily, NFAs can be determinized, which is
generally how Levenshtein automata are actually
used.

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata

Levenshtein automata

On its own, having a Levenshtein automaton of a
query word improves even the naïve approach
(pairwise comparison):

Instead of a large set of O(nm) computations, we
have a large set of O(n) computations!

Levenshtein automata

We can do better, however.

Represent our dictionary as a trie, DAWG, etc....

... and walk through it and our determinized
automaton together in tandem.

At each state we encounter, follow edges that both
have in common.

Any time both are in final states, we’ve got a match!

fore ford fool food good gorp

f g

o

o

d

r

d

o

r

p
e

o

dl

