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A trie is essentially a prefix tree:
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Simple uses of tries:

Key lookup in O(m) time, predictably.
(Compare to hash table: best-case O(1), worst-case
O(n), depending on key)

Fast longest-prefix matching

IP routing table lookup

For an incoming packet, find the closest next hop in
a routing table.



Simple uses of tries:

Fast longest-prefix matching

Useful for autocompletion:

“All words/names/whatevers that start with XYZ...”
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The problem with tries:

When the space of keys is sparse, the trie
IS not very compact:
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(One) Solution: PATRICIA Tries
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Key ideas: edges represent more than a
single symbol; nodes with only one child
get collapsed.



One could explicitly represent edges with
multiple symbols...
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... but that would complicate matching.



Instead, each internal node stores the
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Fuzzy search with tries

Problem: we want to search a dictionary for
words similar to a query.

Example: “Smyth” and “Zmith” should retrieve
“Smith”,

“Levenstien” should retrieve “Levenshtein”, etc.

By “similar,” we mean “edit distance less than
some threshold 0.”



One solution:

Compute pairwise edit distance between our query
g and every word w; in our dictionary;

Match if sim(q, wi) <0

A (slightly) better solution:

Speed up pairwise edit distance computation using
prefix pruning.



Prefix pruning’s key idea:

If we only care whether strings r and s have an edit
distance less than some threshold...

...we can do early termination of our computation as
soon we exceed that threshold.

Wang J, Feng J, Li G. Trie-join: efficient trie-based string similarity joins with edit-distance constraints. VLDB Endowment; 2010.



One solution:

Compute pairwise edit distance between our query
g and every word w; in our dictionary;

Match if sim(q, wi) <0

A (slightly) better solution:

Speed up pairwise edit distance computation using
prefix pruning.



Neither are very good solutions for any kind
of “on-line” use case:

Query autocompletion, fuzzy searching,
spellchecking, etc.

(our dictionary is large, number of searches
is high, etc. etc.)



A better solution: use a trie!
1. Build a trie out of our dictionary;

2. lterate through g; at each point, identify a
set of active nodes of the trie.

A node n is “active” with respect to a prefix g; if the
edit distance between g; and the prefix represented by

nis <o.

Ji' S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09
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Intuition: at each symbol i in g, the set of
active nodes will be related to the set from g;.;.

So, we don't need to visit every node in the
trie!
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Intuition: at each symbol i in g, the set of
active nodes will be related to the set from g;.;.

So, we don't need to visit every node in the
trie!

(a) Initialize (b) query “n” (c) query “nl” (d) query “nli” (e) query “nlis”
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Ji' S, Li G, Li C, Feng J. Efficient interactive fuzzy keyword search. WWW ’09



Related problem: the “similarity join”

We have two bags of words, R and S.

Goal: identify pairs of similar words.

Example:
R = { kobe, ebay, ...}
S ={ bag, koby, ...}

We would want to identity pairs such as <kobe, koby>

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).



Again, one solution is pairwise edit distance
calculation...

... butif Rand S are very large, that will be incredibly
time consuming, even with prefix pruning!

One solution: use the trie search method!

Build a trie representing R;

For every string s in S, identify the active nodes A of
R’s trie; for each leaf node r in As, produce <s,r>.

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).



Another solution: use sub-trie pruning

Intuition: given the set of active nodes A, for a
particular trie node n...

... we can say that only children of nodes in A, could
possibly be similar to children of node n.

We can use this fact to speed up extraction of similar
pairs.

L et us consider the case where our two sets are
actually one set (R = 5), and we simply want to
identify similar pairs.

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).



Algorithm:

1. Build a trie for our set of words;

2. Traverse the trie in preorder. At each node, compute
its set of active nodes A.

3. At each leaf node n, identity any leaf nodes in Ap;
these are similar pairs.

As we traverse, we must keep the current node’s
ancestor’s set of active nodes in memory; total time

complexity is O(0|A7]).

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).
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We can do better!

Intuition: given the set of active nodes A, for a
particular trie node n...

... we can say that only children of nodes in A, could
possibly be similar to children of node n.

Also: if node u has node v in its active set, v must also
have u in its set!

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).



{0,1,9,133U

{0,1,2,5,9,10,13/I 0,~{0,1,5,9,10,13} 13>0.1,9,13,14}
CD e
1,2,5,6,9) 13,14,15}
{1,2,3,4,5,6,11 e G
2 5,6,7} 1 14,15,16,17}
S OROK
{2,3,4,12} - G
% 3.,6,7,8} 411,12
g } {151617 {151617}
8178

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).



We can compute active nodes as we build the trie,
and eliminate duplicate calculations.
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By increasing our space complexity, we can reduce
. . 5
the time complexity to O(5141]).

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).



There are extensions to the idea that allow for
different sets of strings, more space-efficient
construction, etc.

See the Feng, et al. article (cited below) for more
details!

Feng J, Wang J, Li G. Trie-join: a trie-based method for efficient string similarity joins. The VLDB Journal — The International Journal on Very Large Data Bases. 2012 Aug;21(4).
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| evenshtein automata

A different approach to solving the fuzzy
matching problem uses finite-state automata.

The basic idea: construct an acceptor that will
recognize an input string with up to d edits.

Then, walk through the acceptor and our
dictionary, emitting any final states we visit.

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.

Mihov S, Schulz KU. Fast Approximate Search in Large Dictionaries. Computational Linguistics. 2004 Dec;30(4).



| evenshtein automata

The basic idea: construct an acceptor that will
recognize an input string with up to & edits.

We have seen something not entirely dissimilar:
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| evenshtein automata

In a sense, our old friend the edit-distance transducer is
a step along the path towards a Levenshtein transducer.

The difference: the edit-distance transducer will allow
Infinite insertions or deletions...

... and we need to limit the total number of such events.
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Character position (mantissa)

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.
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Number of edits thus far (exponent)

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.
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Match

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.
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Substitution

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.
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|
Deletion

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.
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Insertion

Schulz KU, Mihov S. Fast string correction with Levenshtein automata. International Journal on Document Analysis and Recognition. 2002 Nov 1;5(1):67-85.
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This is a non-deterministic representation;
actually using NFAs in practice is often tricky.

Luckily, NFAs can be determinized, which is

generally how Levenshtein automata are actually
used.
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On its own, having a Levenshtein automaton of a
query word improves even the naive approach
(palrwise comparison):

Instead of a large set of O(nm) computations, we
have a large set of O(n) computations!
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We can do better, however.

Represent our dictionary as a trie, DAWG, etc....

... and walk through it and our determinized
automaton together in tandem.

At each state we encounter, follow edges that both
have in common.

Any time both are in final states, we’ve got a match!
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