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Introduction and Preliminaries 

1.1 Introduction 

Computational approaches to morphology and syntax are generally 
concerned with formal devices, such as grammars and stochastic mod­
els, and algorithms, such as tagging or parsing. They can range from 
primarily theoretical work, looking at, say, the computational com­
plexity of algorithms for using a certain class of grammars, to mainly 
applied work, such as establishing best practices for statistical language 
modeling in the context of automatic speech recognition. Our intention 
in this volume is to provide a critical overview of the key computational 
issues in these domains along with some (though certainly not all) 
of the most effective approaches taken to address these issues. Some 
approaches have been known for many decades; others continue to be 
actively researched. 

In many cases, whole classes of problems can be addressed using 
general techniques and algorithms. For example, finite-state automata 
and transducers can be used as formal devices for encoding many mod­
els, from morphological grammars to statistical part-of-speech taggers. 
Algorithms that apply to finite-state automata in general apply to these 
models. As much as possible, we will present specific computational 
approaches to syntax and morphology within the general class to which 
they belong. Much work in these areas can be thought of as variations 
on certain themes, such as finite-state composition or dynamic pro­
gramming. 

The book is organized into two parts: approaches to morphology and 
approaches to syntax. Since finite-state automata and transducers will 
figure prominently in much of the discussion in this book, in this chap­
ter we introduce the basic properties of these devices as well as some 
of the algorithms and applications. For reasons of space we will only 
provide a high-level overview, but we will give enough references to 



recent work on finite automata and their applications so that interested 
readers can follow upon the details elsewhere. 

One thing we hope to convey here is how to think of what automata 
compute in algebraic and set-theoretic terms. It is easy to get lost in 
the details of the algorithms and the machine-level computations. But 
what is really critical in understanding how finite automata are used 
in speech and language processing is to understand that they compute 
relations on sets. One of the critical insights of the early work by Kaplan 
and Kay from the 1970S (reported finally in Kaplan and Kay, 1994) was 
that in order to deal with complex problems such as the compilation 
of context-sensitive rewrite rules into transducers, one has to abandon 
thinking of the problem at the machine level and move instead to 
thinking of it at the level of what relations are being computed. Just 
as nobody can understand the wiring diagram of an integrated circuit, 
neither can one really understand a finite automaton of any complexity 
by simply looking at the machine. However, one Can understand them 
easily at the algebraic level, and let algorithms worry about the details 
of how to compile that algebraic description into a working machine. 

We assume that readers will be at least partly familiar with basic 
finite-state automata so we will only briefly review these. One can find 
reviews of the basics of automata in any introduction to the theory of 
computation such as Harrison (1978), Hopcroft and Ullman (1979), and 
Lewis and Papadimitriou (1981). 

1.2 Finite-State Automata and Transducers 

The study of finite-state automata (FSA) starts with the notion of a 
language. A language is simply a set of expressions, each of which is 
built from a set of symbols from an alphabet, where an alphabet is itself 
a set: typical alphabets in speech and language processing are sets of 
letters (or other symbols from a writing system), phones, or words. 

The languages of interest here are regular languages, which are lan­
guages that can be constructed out of a finite alphabet - conventionally 
denoted E - using one or more of the following operations: 

• set union 
• concatenation 

denoted uu Jl 

denoted II," 

• transitive closure denoted u*" 

(Kleene star) 

e.g., {a, b} U {c, d} = {a, b, c, d} 
e.g., abc· de! = abcde! 
e.g., a* denotes the set of 
sequences consisting of 0 or 
more a's 

TABLE 1.1 Phrasal reduplication in BambaTa 

WI/III 0 wulu "whichever dog" 
dog MARKER dog 
wuilmyitljtla 0 wu[u,lyini,Jo " whichever dog 
dog searcher MARKER dog searcher searcher" 
maloflyiui,laftlela 0 malotlyirrinafilela "whichever rice 
rice searcher watcher MARKER rice searcher watcher searcher watcher" 

Any finite set of strings from a finite alphabet is necessarily a regular 
language, and using the above operations one can construct another 
regular language by taking the union of two sets A and B; the concate­
nation of two or more such sets (i.e. the concatenation of each string in 
A with each string B); or by taking the transitive closure (i.e. zero or 
more concatenations of strings from set A). 

Despite their simplicity, regular languages can be used to describe 
a large number of phenomena in natural language including, as we 
shall see, many morphological operations and a large set of syntactic 
structures. But there are still linguistic constructions that cannot be 
described using regular languages. One well-known case from mor­
phology is phrasal reduplication in Bambara, a language of West Africa 
(Culy, 1985), some examples of which are given in Table 1.1. Bambara 
phrasal reduplication constructions are of the form X-o-X, where 
-0- is a marker of the construction and X is a nominal phrase. The 
problem is that the nominal phrase is in theory unbounded, and so 
the construction involves unbounded copying. Unbounded copying 
cannot be described in terms of regular languages; indeed it cannot 
even be described in terms of context-free languages (which we will 
return to later in the book). 

A couple of important regular languages are the universal language 
(denoted E*) which consists of all strings that can be constructed out 
of the alphabet E, including the empty string, which is denoted E; and 
the empty language (denoted 0) consisting of no strings. 

The definition given above defines some of the closure properties 
for regular languages but regular languages are also closed under the 
following operations: 

• intersection denoted "n" e.g., {a , b, c} n {e, d } = {c} 

• difference denoted "- " e.g. , {a , b, c} - {e} = {a, b} 

• complementation denoted "X" e.g., Ii. = ~. - A 
• string reversal denoted "XR" e.g., (a be )R = cba 



Regular languages are commonly denoted via regular expressions, 
which involve the use of a set of reserved symbols as notation. Some of 
these reserved symbols we have already seen, such as "*'; which denotes 
"zero or more" of the symbol that it follows: recall that a* denotes 
the (infinite) set of strings consisting of zero or more a's in sequence. 
We can denote the repetition of multi-symbol sequences by using a 
parenthesis delimiter: (abc)* denotes the set of strings with zero or 
more repetitions of abc, that is, {0, abc, abcabc, abcabcabc, .. . }. 
The following summarizes several additional reserved symbols used in 
regular expressions: 

u » 
• zero or one 

• disj unction 

• negation 

denoted II?" 
denoted "I" 
orU 

denoted <1 ...., )1 

e.g.,(abc)? denotes {0, abc} 
e.g., (a I b)? denotes the set of 
strings with zero or one occurrence 
of either a or b, i. e., {0, a, b} 
e.g., (~a)* denotes the set of strings 
with zero or more occurrences of 
anything other than a 

This is a relatively abbreviated list, but sufficient to understand 
the regular expressions used in this book to denote regular 
languages. 

Finite-state automata are computational devices that compute regu­
lar languages. Formally defined: 

Definition 1 A finite-state automaton IS a quintuple M = (Q, s, 
F , I;, 8) where: 

1. Q is a finite set of states 
2. s is a designated initial state 
3· F is a designated set of final states 
4· I; is an alphabet of symbols 
5. 8 is a transition relation from Q x (I; U.) to Q, where A x B 

denotes the cross-product' of sets A and B 

Kleene's theorem states that every regular language can be recognized by 
a finite-state automaton; similarly every finite-state automaton recog­
nizes a regular language. 

I The cross-product of two sets creates a set of pairs. with each member of the 
first set paired with each member of the second set. For example, la. b} x {c . dl = 
«a, c},(a , d }.(b, c}.(b, d )}. Thus the transition relation is is from state/symbol pairs to 
states. 

b d 

FIGURE 1.1 A simple finite-state automaton accepting the language ab·cdd*e 

A diagram of a simple finite-state automaton, which accepts the 
language a b* c d d* e, is given in Figure 1.1. A string, say abbcddde, that is 
in the language of the automaton is matched against the automaton as 
follows: starting in the initial state (here, state 0) , the match proceeds by 
reading a symbol of the input string and matching it against a transition 
(or arc) that leaves the current state. If a match is found, one moves 
to the destination state of the arc, and tries to match the next symbol 
of the input string with an arc leaving that state. If one can follow a 
path through the automaton in such a manner and end in a final state 
(denoted here with a double circle) with all symbols of the input read, 
then the string is in the language of the automaton; otherwise it is not. 
Note that the operation of intersection of two automata (see Section 1.5) 
follows essentially the same algorithm as just sketched, except that one 
is matching paths in one automaton against another, instead of a string. 
Note also that one can represent a string as a single-path automaton, so 
that the string-matching method we just described can be implemented 
as automata intersection. 

We turn from regular languages and finite-state automata to regular 
relations and finite-state transducers (FST). A regular relation can be 
thought of as a regular language over n-tuples of symbols, but it is more 
usefully thought of as expressing relations between sets of strings. The 
definition of a regular n-relation is as follows: 

1. ° is a regular n-relation 
2. For all symbols a E {(I; U.) x .. . x (I; U .)], {a } is a regular 

n-relation 
3. If Rl> R2, and R are regular n-relations, then so are 

(a) RI . R2, the (n-way) concatenation of RI and R2: for every rl E 

RI and r2 E R2, rlr2 E RI . R2 
(b) RI U R2 
(c) R*, the n-way transitive (Kleen e) closure of R. 

For most applications in speech and language processing n = 2, so that 
we are interested in relations between pairs of strings.' In what follows 
we will be dealing only with 2-relations. 

2 An exception is Kiraz (2000), who uses n-relations, '1 > 2 for expressing non­
concatenative Semitic morphology; see Section 2.2.9. 
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FIGURE 1.2 A simple finite-state transducer that computes the relation (a:a)(b:b)· 
(c:g )(d: f)(d: f)'( e:. ) 

Analogous to finite- state automata are fillite-state transducers, 
defined as follows: 

Definition 2 A (2-way) finite-state transducer is a quintuple M = 
(Q, s, F, Ex E , 8) where: 

1. Q is a finite set of states 
2. s is a designated initial state 
3. F is a designated set of final states 
4. E is an alphabet of symbols 
5· 8 isa trallsition relationfrom Q x (E U. x E U.) to Q 

A simple finite-state transducer is shown in Figure 1.2. With a trans­
ducer, a string matches against the input symbols on the arcs, while 
at the same time the machine is outputting the corresponding output 
symbols. Thus, for the input string abbcddde, the transducer in Fig­
ure 1.2 would produce abbgfffe. A transducer determines if the input 
string is in the domain of the relation, and if it is, computes the corre­
sponding string, or set of strings, that are in the range of the relation. 

The closure properties of regular relations are somewhat different 
from those of regular languages, and the differences are outlined in 
Table 1. 2 . The major d ifferences are that relations are not closed under 
intersection, a point that will be important in Chapter 4 when we 
discuss the KIMMO morphological analyzer (see Section 4.2.1); and 
that relations are closed under a new property, namely composition. 
Composition - denoted 0 - is to be understood in the sense of com­
position of functions. If f and g are two regular relations and x a 
string, then (J 0 g j(x) = f(g(x)). In other words, the output of the 
composition of f aJld g on a string x is the output that would be 
obtained by first applying g to x and then applying f to the output 
of that first operation. 

Composition is a very useful property of regular relations. There 
are many applications in speech and language processing where one 
wants to factor a system into a set of operations that are cascaded 
together using composition. A case in point is in the implementation 

- -- - -- - "- - ---- --- -- - - ~.- ................ ...... .... .. ~.... I 

TABLE 1.2 Closure properties for regular lan­
guages and regular relations 

Property Languages Relations 

concatenation yes yes 
K1ecne closure yes yes 
union yes yes 
intersection yes no 
difference yes no 
composition yes 
inversion yes 

of phonological rule systems. Phonological rewrite rules of the kind 
used in early Generative Grammar can be implemented using regular 
relations and finite-state transducers.3 Traditionally such rule systems 
have involved applying a set of rules in sequence, each rule taking as 
input the output of the previous rule. This operation is implemented 
computationally by composing the transducers corresponding to the 
individual rules. 

Table 1.2 also lists inversion as one of the operations under which 
regular relations are closed. Inversion consists of swapping the domain 
of the relation with the range; in terms of finite-state transducers, one 
simply swaps the input and output labels on the arcs. The closure of 
regular relations under composition and inversion leads to the follow­
ing nice property: one can develop a rule system that compiles into a 
transducer that maps from one set of strings to another set of strings, 
and then invert the result so that the relation goes the other way. An 
example of this is, again, generative phonological rewrite rules. It is 
generally easier for a linguist to think of starting with a more abstract 
representation and using rules to derive a surface representation. Yet in 
a morphological analyzer, one generally wants the computation to be 
performed in the other direction. Thus one takes the linguist's descrip­
tion, compiles it into finite-state transducers, composes these together 
and then inverts the result. 

Of course, regular relations resulting from such descriptions are 
likely to be many-to-one, as in m any input strings mapping to one 
output string; for example, many underlying forms mapping to the 

) We will not discuss these compilation algorithms here as this would take us too far 
afield; the interested reader is referred to Kaplan and Kay (1994) and Mohri and Sproat 
('996). 



same surface form. In such a case, the inversion yields a one-to-many 
relation, resulting in the need for disambiguation between the many 
underlying forms that could be associated with a particular surface 
form. 

1.3 Weights and Probabilities 

Disambiguation in morphological and syntactic processing is often 
done by way of stochastic models, in which weights can encode pref­
erences for one analysis versus another. In this section, we will briefly 
review notation for weights and probabilities that will be used through­
out the book. 

Calculating the sum or product over a large number of values is very 
common, and a common shorthand is to use the sum (L:) or product 
(n) symbols ranging over variables. For example, to sum the numbers 
one through nine, we can write: 

i < IO 

L i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 (1.1) 
;= 1 

Similarly, to multiply them: 

;< 10 n i = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 = 362880 (1.2) 
;=1 

Logarithms (log) and exponentials (exp) are also very common, and 
we will by convention use naturallogarithm,4 base e. Recall the basic 
relationship between them: for any x, y 

log(exp(x)) = 10g(eX
) = x 

exp(log(y)) = e1og(y) = y 

One of the nicest properties oflogs is that the log of a product is a sum: 

(

; <10) ;<10 

log D i =:s: log(i) 

This is nice because the log of each i can be taken separately, prior 
to combination, rather than having to combine them before taking 
the log. This is critical when the product leads to extremely large or 

4 When multiple bases are used, natural log is sometimes denoted 171, but here we will 
just use log. 

extremely small floating point numbers. Another nice property is that 
log is order preserving. That is, if x > y, then log(x) > log(y) . 

Briefly, let us introduce simple empirically estimated probabilities of 
the sort we will mainly be considering in this book. All of the prob­
abilistic models that we will be discussing are discrete distributions, 
where there are k discrete outcomes (such as different words from a 
vocabulary E of size k) each with its own parameter. When k = 2, this 
is known as a binomial distribution; when k > 2, this is a multinomial 
distribution. For example, we can assign a probability to each word w in 
a vocabulary E; this is a multinomial distribution with lEI parameters 
(one parameter P(w) for each word wEE) where L:wE~ P(w) = l. 

If we have a corpus of N words taken from a vocabulary E, we can 
calculate the probability of any observed word wEE in that corpus 
using relative frequency estimation: 

P(w) = f(w) 
N 

where f(w) is the frequency of the word (its count). Note that using 
relative frequency estimation leads us to give zero probability to words 
that have not occurred in our corpus, a problem that is discussed later 
in the book. 

We might want to find the most probable word in the corpus, that 
is, the word with the maximum probability. The maximum probability, 
here denoted p, is 

p = maxP(w) (1.7) 
w 

If we want to know the word that provides us with this maximum 
probability, we use "argmax": 

ill = argmaxP(w) (1.8) 
w 

Then, by definition, P( ill) = p. 
Of course, if we are using negative log probabilities, the order reverses, 

hence we will be more interested in the "min" and "argmin'; which are 
defined similarly. 

1.4 Weighted Finite-State Automata and Transducers 

Finite-state automata and transducers can be extended to include 
weights or costs on the arcs. Such machines are termed weighted finite­
state automata (WFSA) and weighted finite-state transducers (WFST). 
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FIGURE 1.3 Representations of several pronunciations of the word data. with transcriptions 
inARPAbet 

The weights can serve a number of functions, but the most frequent 
use in speech and language processing is to represent probabilities, or 
more commonly, negative log probabilities, of different analyses. 

An example is shown in Figure 1.3. In this example, several plausible 
pronunciations are shown for the word data , with associated probabili­
ties; note that the probabilities for all arcs leaving a given state must sum 
to one. (The four pronunciations correspond to the IPA transcriptions 
Idelta/, Idreta/, Idelra/, and Idrera/.) The probability of a particular 
path is given by multiplying the individual arc probabilities along the 
path. In this example, for instance, the pronunciation Id ey t ax! has the 

probability 1 * 0.4 * 0.2 * 1 = 0.08. 
In a toy example like the one we have just examined, it is reasonable 

to represent probabilities as themselves, but in any realistic scenario 
this presents a computational problem since the probabilities along any 
given path can be very small and will generally lead to difficulties in 
floating point represention of the values. Thus it is more common to 
represent probabilities in the log domain and, more specifically, to rep­
resent them in terms of negative logs. Note that in this representation, 
smaller numbers correspond to more probable events. Recall that, if we 
use negative log probabilities, we must sum the weights along the path 
rather than multiply them. 

When automata and transducers are given weights, the interpreta­
tion of those weights must be provided. In addition to specifying how 
weights are combined along a path (which for probabilities is by mul­
tiplication) , one must also specify how weights are combined between 
paths. For example, suppose there are two paths in an automaton with 
the same symbols on the arc labels of the paths, and we want to collapse 
those into a single path. How are the weights combined? When dealing 
with straight probabilities, in order to ensure proper normalization, 
the weights (probabilities) of two paths are added together. Different 
kinds of weights - e.g., logs or probabilities - will have different ways 
of combining the weights along the path (which we will generally term 

the times operation) and between paths (which we will term the plus 
operation). 

The different interpretations of weights are usefully unified in terms 
of semirings. Before we can introduce the notion of a semiring, we first 
need the definition of a monoid: 

Definition 3 A monoid is a pair (M, .), where M is a set and. is a 
binary operation on M, obeying the following rules: 

1. closure: for all a, b in M, a • b is in M 
2. identity: there exists an element e in M, such that for all a in M, 

a • e = e . a = a. This is termed the neutral element. 
3. associativity:. is an associative operation; that is, for all a, b, c in 

M, (a • b). c = a. (b. c) 

A monoid (M,.) is commutative if a. b = b. a for all a, b in M. 
We can take this notion of monoid and define semirings in terms of 
notional summation and multiplication as follows: 

Definition 4 A semiring is a triple OK, $, (81), where OC is a set and $ 
and 181 are binary operations on OC, obeying the following rules: 

1. (OC, $) is a commutative monoid with neutral element denoted by 0 
2. (OC, (81) is a monoid with neutral element denoted by 1 
3. The product (181) distributes with respect to the sum ($), i.e., 

a 181 (b $ c) = (a 181 b) $ (a 181 c) 
4· For all a in lK, a 181 0 = 0 181 a = 0 

Since most applications use real numbers as the semiring set, one typi­
cally denotes a particular semiring with a pair ($, (81 ) that specifies the 
actual instantiation of the notional plus and times operations. Com­
mon semirings used in speech and language processing are the (+, x) 
or "real" semiring, and the (min, +) or "tropical" semiring.5 The (+, x) 
semiring is appropriate for use with probabilities: to get the probability 
of a path, one multiplies along the path; to get the probability of a 
set of paths, one sums the probabilities of those paths. The (min , +) 
semiring is appropriate for use with negative log probabilities: one sums 
the weights along the path, and one computes the minimum of a set of 
paths - which is useful if one is looking for the best scoring path, since 
lower scores are better with negative logs. 

S So called because the mathematician who pioneered this serniring. Imre Simon. was 
from Brazil. 



Weighted finite-state automata (and the corresponding weighted 
languages) are closed under intersection. When one combines two 
paths via intersection, the resulting cost is obtained by using the semi­
ring 18> operation. Note that 18> is often referred to as the extend opera­
tion, since it is the operation that one uses when one extends a path by 
an additional arc. 

A formal definition of a weighted finite automaton is as follows: 

Definition 5 A weighted finite-state automaton is an octuple 
A = (Q, s, F, !:. O. A, a, p), where: 

1. (Q, s, F.!:, 0) is a finite-state automaton 
2. An initial output function A: s -+ lK assigns a weight to entering the 

automaton 
3. An output function a: 0 -+ lK assigns a weight to transitions in the 

automaton 
4. A final output function p: F -+ lK assigns a weight to leaving the 

automaton 

For any transition d E 0, let i[d] E (!: U <) be its label; p[d] E Q its 
origin state; and n[d] E Q its destination state. A path 7T = d l ••• dk 

consistsofktransitionsdl , . . .• dk E o,wheren[dj ] = p[dj+tl forallj, 
i.e., the destination state of transition dj is the origin state of transition 
dj + l • We can extend the definitions of label, origin and destination to 
paths: let i [7T] = i [dtl ... i [dk ]; p [7T] = P [dtl; and n [7T] = n [dd . A cycle 
is a path 7T such that p [7T] = n [7T], i.e., a path that starts and ends at the 
same state. An acyclic automaton or transducer has no cycles. 

We can also extend the definition of the a function of Definition 
5 to paths: a[7T] = a[dtll8>"'18> a[dd. Let P(q. x, q') be the set of 
paths 7T such that P[7T] = q, i [7T ] = x, and n[7T] = q'. Given a semiring 
(lK, Ell, 18», the weight associated by A to a string x E !:* can be defined 
as follows: 

[[A ]](x) = EB EB ,\(s) 18> a(7T) 18> p(f) 
fEF .EP(' .x.f) 

Weighted finite-state transducers are an obvious extension of finite­
state transducers and weighted automata. A WFST computes a regular 
relation, but in addition it associates each mapping with a weight. For 
example, in a transducer encoding a rewrite rule system, the weights 
might represent the probabilities of a particular rule application. 

1.5 A Synopsis of Algorithmic Issues 

The basic texts on automata theory that we have already cited give 
algorithms for various finite-state operations including concatenation, 
Kleene closure, union , intersection, complementation, determiniza­
tion, and minimization. While these algorithms obviously produce 
correct results and work fine for small automata and transducers, 
they are often not efficient enough to handle the very large machines 
that are typical of serious speech- and language-processing applica­
tions. Furthermore, the textbook algorithms do not deal with weighted 
automata, and the correct treatment of weights turns out to be critical 
for efficient processing. Some algorithmic issues that have been very 
important in the application to speech and language processing include 
efficient algorithms for composition, minimization, determinization, 
and epsilon removal. In this section we will provide a brief high-level 
overview of some of these algorithmic issues, with pointers to some 
papers that deal with them in depth. 

One of the most fundamental algorithms that we will be assuming 
for much of our cliscussion of finite-state methods in this book is com­
position, so it is useful to have a basic understanding of how this works. 
At its core, composition is essentially the same as automata intersection 
as defined in standard texts. We start by reminding the reader how 
intersection works. The basic algorithm for intersection is as follows. 
Given two automata M = (Q, s. F. !:, 0) and M' = (Q', s' . F' . !:', 0' ), 
construct a new automaton M" such that: 

o Its set of states Q" = Q x Q' is the cross-product of the states of 
the individual machines. 

os" = (s. s' ) 
o F" = F x F' 
o !:" = !: n !:' 
o o"«p. p' ), x) = (q. q') just In case o(P. x) = q IS In M and 

o'(p'. x) = q' is in M'. 

The basic algori thm for transducer composition is essentially the same, 
with the difference that with transducers one is matching the output 
label of one transducer with the input label of the other. The resulting 
arc has as its input label the input label of the arc from the first machine 
and as its output label the output label of the arc from the second 
machine. Automata can be seen as a special case of transducers, where 
the input and output symbols are always identical. 



A: }-.:::d:c::.d---lIU 

B: 

FIGURE 1.4 Two transducers wi th epsilons. Example taken from Pereira and Riley (1997) 

When one is dealing with weighted intersection or composition, as 
we noted above, one computes the weights of the resulting path as the 
extend (@) of the weights of the two input paths. 

Even with the basic algorithms there are various efficiency issues. 
Computation of the transition function 8" for a new state (p, p') and 
label x requires efficient search. For example, suppose we are looldng at 
transducer M, at state p, and at an arc with an output label x. We wish 
to find in M', state p', the set of arcs, if any, that have input labels x. 
If the arcs of the second machine are arranged in no particular order, 
then one has no choice but to search linearly through the arcs in M' to 
find any that have input label x, and this will be inefficient if there are a 
large number of arcs exiting p'. A solution is to index M' on the input 
side, so that for any state the arcs are sorted by input label , allowing 
for a more efficient search method, such as a binary search. Even more 
efficient methods are possible. 

The complication with transducers involves epsilons: arcs where the 
output side (if on the first transducer) or the input side (if on the second 
transducer) are labeled with the empty-string symbol E. Epsilons allow 
one to implement different-length relations (as opposed to same-length 
relations) so that, for example, one can implement a rule that deletes 
symbols in certain contexts. In such a case the transducer would contain 
arcs labeled with the symbols in question on the input side and E on 
the output side. The problem with epsilons is that they introduce non­
determinism over and above the non-determinism that one would have 
due to one or both of the input machines being non-deterministic, and 
hence inefficiency. 6 With weighted transducers the situation is worse: 
one will actually get the wrong result. 

6 Note that the same issue arises with epsilons in the intersection of acceptors, and the 
same solution applies. However, note also that acceptors can always have their epsilons 
removed before intersection, whereas with transducers it is not generally possible to remove 
eps ilons when the epsilo n is only on o nc side of the arc label pair. 

a:d 
0,0 }-=-{ 

b:e b:e 

E:e 
2,1 }-=-{ 

C:E 

FIGURE 1.5 Naive composition of the transducers from Figure 1.4. Example taken from 
Pereira and Riley (1997) 

To see this, consider the two transducers in Figure 1.4, from Pereira 
and Riley (1997). In composing A with B, what is at issue is how to 
move from state 1 through 2 and 3 in machine A and at the same time 
move from state 1 to 2 in machine B. Since these operations consume 
no output in A or input in B, there are in principle a number of ways 
one could do this. One could, for example traverse both arcs from states 
1 to 3 in A before traversing any arc in B; or one could traverse the arc 
between 1 and 2 in B before traversing any arcs in A; or one could 
choose to move from 1 to 2 in A, then stay in 2 in A while moving 
from I to 2 in B, and then complete the transition to 3 in A. These 
various options are diagrammed in Figure 1.5. These multiple paths lead 
to inefficiency in unweighted transducers but are otherwise correct. 
In weighted transducers, however, they yield the wrong result for the 
simple reason that the weights from the two original paths will be 
combined in each of the alternatives (via@);these multiplealternatives 
will then be combined (via EB), meaning that in many semi rings the 
resulting cost of the intersection of the two original paths will be wrong. 
The solution to this problem is to insert an epsilon filter F between the 
transducers A and B so that in effect one is composing A 0 F o B; the 
transducer F forces the result to have just one of the paths, specifically 
the bold-marked path in Figure 1.5.7 

Beyond composition, other algorithmic issues that arise relate 
to determinization, minimization and epsilon removal. Weighted 
automata and transducers (whether weighted or not) cannot in gen­
eral be determinized, but certain types of machines, including acyclic 

7 The actual algorithm is somewhat mo re complicated than what we have sketched here, 
and the epsilon fi lter transducer is simulated rather than actually constructed; see Pereira 
and Riley (1997) for further details. 



machines, can be. (See Mohri, 1997, for a rigorous characterization 
of the class of determinizable machines.) Since machine minimization 
requires a determinized machine (Harrison, 1978; Hopcroft and Ull­
man, 1979; Lewis and Papadimitriou, 1981), this also implies that not 
all weighted acceptors or transducers can be minimized, though, again, 
some classes of machine can be. Transducers and weighted acceptors 
that fall into the class of determinizable and minimizable machines 
include machines that are useful in speech and language processing. For 
example, a dictionary can be modeled as an acyclic transducer, map­
ping input words to some other property such as their part of speech 
or pronunciation; and a lattice of possible analyses output by a speech 
recognizer can be modeled as an acyclic weighted acceptor. Determiniz­
ing and minimizing such machines can provide large efficiency gains 
(Mohri and Riley, 1999).8 Epsilon removal with weighted automata 
is an interesting algorithmic issue in particular because epsilon arcs 
may have weights, and one must therefore be careful to distribute the 
weights correctly once the epsilon arcs are removed (Mohri, 2002). 

1.6 Computational Approaches to Morphology and Syntax 

One might wonder why so much attention is paid to finite-state meth­
ods in this book, even in the sections that are devoted to syntax. Weren't 
finite-state techniques mostly relegated to the dustheap during the 
1970S1 That has certainly been one common view. In the mid 1990S 
one of the authors gave a talk at a major industrial research lab in the 
Seattle, Washington area. He presented some work on applications of 
finite-state methods to text analysis for text-to-speech synthesis. Sev­
eral natural language researchers in the audience reacted negatively to 
his presentation, claiming that finite-state methods were outdated and 
belonged in the 1970S not the 1990S. 

Developments over the past decade have proved this view to be ill­
founded: there has been a veritable explosion of research in finite­
state methods with applications in a number of areas of speech and 
language processing including morphology and phonology (in which 
there was already substantial work by the mid 1990S and as we shall dis­
cuss further below), the computational analysis of syntax (e.g., Vouti­
lainen, 1994; Mohri, 1994, and see Chapter 6), language modeling for 
speech recognition (Pereira and Riley, 1997; Mohri et aI., 2002), text 

8 Even for machines that cannot be dcterminizcd. it is often possible to locally deter­

minize them (Mohri, 1997)· 

normalization systems for speech synthesis (Sproat, 1997a), pronuncia­
tion modeling (Mohri et a1., 2002), the analysis of document structure 
(Sproat et aI., 1998), inter alia. Outside speech and language processing, 
finite-state methods have found applications in other fields, such as 
computational biology (Durbin et a1., 1998). Thus, if we seem to dwell 
too much on finite-state methods in this book, it is for a reason: such 
methods have a broad range of applications and students of speech and 
language processing would do well to master them. 

Despite the broad applicability of finite-state methods, however, 
there is a fundamental difference between computational approaches 
to morphology and computational approaches to syntax, in that the 
former (we shall argue) can be accomplished entirely with finite-state 
methods, while the latter cannot. Finite-state approaches to syntax 
can be extremely efficient and useful for many applications requiring 
some amount of syntactic processing, but it has been widely known 
since Chomsky (1957) that many syntactic phenomena simply cannot 
be described without context-free or even context-sensitive grammars. 
Grammars built for computational syntactic processing must typically 
trade-off the richness of syntactic description provided by the grammar 
with the computational cost of using it. Often the utility of a syntactic 
annotation will not justify - within the context of a particular appli­
cation - the cost of annotating it. This is much less of an issue for 
morphological processing, since finite-state models and algorithms are 
generally sufficient for morphological description. 

Computationally, a grammar may be used for syntactic processing 
in several ways. First, it may be used to generate word strings in the 
language described by the grammar. It may also be used to recognize 
(or accept) strings in the language and reject strings that are not in 
the language. The grammar may additionally be used to provide some 
useful annotation to the accepted strings, such as, labels, delimiters, or 
perhaps a numerical score. Very often it is this annotation, and not just 
acceptance or rejection, that makes grammars useful computationally. 

The quality of a grammar (or syntactic model) is usually inversely 
related to the efficiency with which the model can be built and 
used. Very rich syntactic formalisms that find favor with syntacticians 
because they do a good job of accepting just those sentences that are 
grammatical in a language are often not used because explicit, detailed 
grammars require significant expertise and a relatively long time to 
write, and because the most efficient recognition algorithms that make 
use of such grammars are simply not efficient enough for particular 



applications. The most commonly implemented syntactic models fall 
far short of what linguists would expect from a grammar in terms of 
describing languages, yet they provide useful information and are both 
easy to build and efficient to use. These latter considerations will carry 
the day, unless a compelling difference in application performance can 
be demonstrated. 

A very important consideration is robustness in the face of noise. 
Unless the application is severely constrained, for example, machine 
translation of official weather reports, the language usage will be varied 
and noisy. In more natural, less constrained settings, any grammar 
will be presented with false starts, disfluencies, sentence fragments, 
out-of-vocabulary words, misspellings, run-on sentences, or just plain 
ungrammaticalities. A parser is usually expected to yield some useful 
information to an application beyond rejection, even in the face of these 
phenomena. 

Issues of efficiency and robustness have made simple, weighted 
finite-state methods very popular. However, much research is currently 
focused on enriching robust syntactic models, and making richer syn­
tactic formalisms more efficient and robust. Part II of this book (chap­
ters 6-9) will look at various computational approaches to syntax, start­
ing with the simplest and most efficient techniques before moving on 
to richer ones. The inclusion of scores among syntactic annotations will 
be particularly emphasized, since this particular annotation, as shall 
be seen, can make the difference between a useless model and a very 
useful one. It is in computational linguistics, more than any other sub­
discipline of linguistics, where statistical and probabilistic approaches 
to disambiguation have been investigated, and it is this most of all that 
distinguishes computational approaches to syntax from other perspec­
tives. 

Many of the most successful computational models of syntax share 
much in common with constraint-based linguistic formalisms, such 
as Optimality Theory (OT), with some simple differences. What is 
shared is the notion of a feature or constraint that encodes some 
informative linguistic distinction. General, effective automatic feature 
induction methods are beyond the current state-of-the-art in Natural 
Language Processing, so that effective manual feature selection - often 
based on linguist-documented generalizations - is a key part of build­
ing effective syntactic analyzers. Computational approaches typically 
differ from OT approaches primarily in terms of how the evidence 
of various features/constraints is combined, but also in terms of the 

explicitness of the candidate generation mechanism, known as GEN in 
~T. Chapters 6-9 will present just how serious a problem efficient can­
didate generation can be, and a range of computational solutions. Dis­
ambiguation through candidate ranking will be presented in Chapter 9. 

In Chapter 2, we will show that models of morphology can be imple­
mented in a unified framework of finite-state transducers. That is not 
the case for syntax, which brings efficiency to center stage. As a result, 
Part II (Computational Approaches to Syntax) will have much more of 
a focus on the accuracy/efficiency trade-off than Part I (Computational 
Approaches to Morphology), with efficient approximations that pro­
vide useful annotations receiving much attention. Efficient algorithms 
will be explicitly presented, to clearly illustrate why computational 
linguists are forced to make the choices they do. Differences in focus 
between the two parts of the book reflect differences in the key issues 
driving the two topic areas. 


