
WSJ Wall St.lourna1

XFST Xerox FST lools

XLE Xerox Linguistic Environment

XTAG TAG grammar from University of Pennsylvania
1

Introduction and Preliminaries

1.1 Introduction

Computational approaches to morphology and syntax are generally
concerned with formal devices, such as grammars and stochastic mod
els, and algorithms, such as tagging or parsing. They can range from
primarily theoretical work, looking at, say, the computational com
plexity of algorithms for using a certain class of grammars, to mainly
applied work, such as establishing best practices for statistical language
modeling in the context of automatic speech recognition. Our intention
in this volume is to provide a critical overview of the key computational
issues in these domains along with some (though certainly not all)
of the most effective approaches taken to address these issues. Some
approaches have been known for many decades; others continue to be
actively researched.

In many cases, whole classes of problems can be addressed using
general techniques and algorithms. For example, finite-state automata
and transducers can be used as formal devices for encoding many mod
els, from morphological grammars to statistical part-of-speech taggers.
Algorithms that apply to finite-state automata in general apply to these
models. As much as possible, we will present specific computational
approaches to syntax and morphology within the general class to which
they belong. Much work in these areas can be thought of as variations
on certain themes, such as finite-state composition or dynamic pro
gramming.

The book is organized into two parts: approaches to morphology and
approaches to syntax. Since finite-state automata and transducers will
figure prominently in much of the discussion in this book, in this chap
ter we introduce the basic properties of these devices as well as some
of the algorithms and applications. For reasons of space we will only
provide a high-level overview, but we will give enough references to

recent work on finite automata and their applications so that interested
readers can follow upon the details elsewhere.

One thing we hope to convey here is how to think of what automata
compute in algebraic and set-theoretic terms. It is easy to get lost in
the details of the algorithms and the machine-level computations. But
what is really critical in understanding how finite automata are used
in speech and language processing is to understand that they compute
relations on sets. One of the critical insights of the early work by Kaplan
and Kay from the 1970S (reported finally in Kaplan and Kay, 1994) was
that in order to deal with complex problems such as the compilation
of context-sensitive rewrite rules into transducers, one has to abandon
thinking of the problem at the machine level and move instead to
thinking of it at the level of what relations are being computed. Just
as nobody can understand the wiring diagram of an integrated circuit,
neither can one really understand a finite automaton of any complexity
by simply looking at the machine. However, one Can understand them
easily at the algebraic level, and let algorithms worry about the details
of how to compile that algebraic description into a working machine.

We assume that readers will be at least partly familiar with basic
finite-state automata so we will only briefly review these. One can find
reviews of the basics of automata in any introduction to the theory of
computation such as Harrison (1978), Hopcroft and Ullman (1979), and
Lewis and Papadimitriou (1981).

1.2 Finite-State Automata and Transducers

The study of finite-state automata (FSA) starts with the notion of a
language. A language is simply a set of expressions, each of which is
built from a set of symbols from an alphabet, where an alphabet is itself
a set: typical alphabets in speech and language processing are sets of
letters (or other symbols from a writing system), phones, or words.

The languages of interest here are regular languages, which are lan
guages that can be constructed out of a finite alphabet - conventionally
denoted E - using one or more of the following operations:

• set union
• concatenation

denoted uu Jl

denoted II,"

• transitive closure denoted u*"

(Kleene star)

e.g., {a, b} U {c, d} = {a, b, c, d}
e.g., abc· de! = abcde!
e.g., a* denotes the set of
sequences consisting of 0 or
more a's

TABLE 1.1 Phrasal reduplication in BambaTa

WI/III 0 wulu "whichever dog"
dog MARKER dog
wuilmyitljtla 0 wu[u,lyini,Jo " whichever dog
dog searcher MARKER dog searcher searcher"
maloflyiui,laftlela 0 malotlyirrinafilela "whichever rice
rice searcher watcher MARKER rice searcher watcher searcher watcher"

Any finite set of strings from a finite alphabet is necessarily a regular
language, and using the above operations one can construct another
regular language by taking the union of two sets A and B; the concate
nation of two or more such sets (i.e. the concatenation of each string in
A with each string B); or by taking the transitive closure (i.e. zero or
more concatenations of strings from set A).

Despite their simplicity, regular languages can be used to describe
a large number of phenomena in natural language including, as we
shall see, many morphological operations and a large set of syntactic
structures. But there are still linguistic constructions that cannot be
described using regular languages. One well-known case from mor
phology is phrasal reduplication in Bambara, a language of West Africa
(Culy, 1985), some examples of which are given in Table 1.1. Bambara
phrasal reduplication constructions are of the form X-o-X, where
-0- is a marker of the construction and X is a nominal phrase. The
problem is that the nominal phrase is in theory unbounded, and so
the construction involves unbounded copying. Unbounded copying
cannot be described in terms of regular languages; indeed it cannot
even be described in terms of context-free languages (which we will
return to later in the book).

A couple of important regular languages are the universal language
(denoted E*) which consists of all strings that can be constructed out
of the alphabet E, including the empty string, which is denoted E; and
the empty language (denoted 0) consisting of no strings.

The definition given above defines some of the closure properties
for regular languages but regular languages are also closed under the
following operations:

• intersection denoted "n" e.g., {a , b, c} n {e, d } = {c}

• difference denoted "- " e.g. , {a , b, c} - {e} = {a, b}

• complementation denoted "X" e.g., Ii. = ~. - A
• string reversal denoted "XR" e.g., (a be)R = cba

Regular languages are commonly denoted via regular expressions,
which involve the use of a set of reserved symbols as notation. Some of
these reserved symbols we have already seen, such as "*'; which denotes
"zero or more" of the symbol that it follows: recall that a* denotes
the (infinite) set of strings consisting of zero or more a's in sequence.
We can denote the repetition of multi-symbol sequences by using a
parenthesis delimiter: (abc)* denotes the set of strings with zero or
more repetitions of abc, that is, {0, abc, abcabc, abcabcabc, .. . }.
The following summarizes several additional reserved symbols used in
regular expressions:

u »
• zero or one

• disj unction

• negation

denoted II?"
denoted "I"
orU

denoted <1,)1

e.g.,(abc)? denotes {0, abc}
e.g., (a I b)? denotes the set of
strings with zero or one occurrence
of either a or b, i. e., {0, a, b}
e.g., (~a)* denotes the set of strings
with zero or more occurrences of
anything other than a

This is a relatively abbreviated list, but sufficient to understand
the regular expressions used in this book to denote regular
languages.

Finite-state automata are computational devices that compute regu
lar languages. Formally defined:

Definition 1 A finite-state automaton IS a quintuple M = (Q, s,
F , I;, 8) where:

1. Q is a finite set of states
2. s is a designated initial state
3· F is a designated set of final states
4· I; is an alphabet of symbols
5. 8 is a transition relation from Q x (I; U.) to Q, where A x B

denotes the cross-product' of sets A and B

Kleene's theorem states that every regular language can be recognized by
a finite-state automaton; similarly every finite-state automaton recog
nizes a regular language.

I The cross-product of two sets creates a set of pairs. with each member of the
first set paired with each member of the second set. For example, la. b} x {c . dl =
«a, c},(a , d }.(b, c}.(b, d)}. Thus the transition relation is is from state/symbol pairs to
states.

b d

FIGURE 1.1 A simple finite-state automaton accepting the language ab·cdd*e

A diagram of a simple finite-state automaton, which accepts the
language a b* c d d* e, is given in Figure 1.1. A string, say abbcddde, that is
in the language of the automaton is matched against the automaton as
follows: starting in the initial state (here, state 0) , the match proceeds by
reading a symbol of the input string and matching it against a transition
(or arc) that leaves the current state. If a match is found, one moves
to the destination state of the arc, and tries to match the next symbol
of the input string with an arc leaving that state. If one can follow a
path through the automaton in such a manner and end in a final state
(denoted here with a double circle) with all symbols of the input read,
then the string is in the language of the automaton; otherwise it is not.
Note that the operation of intersection of two automata (see Section 1.5)
follows essentially the same algorithm as just sketched, except that one
is matching paths in one automaton against another, instead of a string.
Note also that one can represent a string as a single-path automaton, so
that the string-matching method we just described can be implemented
as automata intersection.

We turn from regular languages and finite-state automata to regular
relations and finite-state transducers (FST). A regular relation can be
thought of as a regular language over n-tuples of symbols, but it is more
usefully thought of as expressing relations between sets of strings. The
definition of a regular n-relation is as follows:

1. ° is a regular n-relation
2. For all symbols a E {(I; U.) x .. . x (I; U .)], {a } is a regular

n-relation
3. If Rl> R2, and R are regular n-relations, then so are

(a) RI . R2, the (n-way) concatenation of RI and R2: for every rl E

RI and r2 E R2, rlr2 E RI . R2
(b) RI U R2
(c) R*, the n-way transitive (Kleen e) closure of R.

For most applications in speech and language processing n = 2, so that
we are interested in relations between pairs of strings.' In what follows
we will be dealing only with 2-relations.

2 An exception is Kiraz (2000), who uses n-relations, '1 > 2 for expressing non
concatenative Semitic morphology; see Section 2.2.9.

b:b

r---::-e:"'---{e 0
FIGURE 1.2 A simple finite-state transducer that computes the relation (a:a)(b:b)·
(c:g)(d: f)(d: f)'(e:.)

Analogous to finite- state automata are fillite-state transducers,
defined as follows:

Definition 2 A (2-way) finite-state transducer is a quintuple M =
(Q, s, F, Ex E , 8) where:

1. Q is a finite set of states
2. s is a designated initial state
3. F is a designated set of final states
4. E is an alphabet of symbols
5· 8 isa trallsition relationfrom Q x (E U. x E U.) to Q

A simple finite-state transducer is shown in Figure 1.2. With a trans
ducer, a string matches against the input symbols on the arcs, while
at the same time the machine is outputting the corresponding output
symbols. Thus, for the input string abbcddde, the transducer in Fig
ure 1.2 would produce abbgfffe. A transducer determines if the input
string is in the domain of the relation, and if it is, computes the corre
sponding string, or set of strings, that are in the range of the relation.

The closure properties of regular relations are somewhat different
from those of regular languages, and the differences are outlined in
Table 1. 2 . The major d ifferences are that relations are not closed under
intersection, a point that will be important in Chapter 4 when we
discuss the KIMMO morphological analyzer (see Section 4.2.1); and
that relations are closed under a new property, namely composition.
Composition - denoted 0 - is to be understood in the sense of com
position of functions. If f and g are two regular relations and x a
string, then (J 0 g j(x) = f(g(x)). In other words, the output of the
composition of f aJld g on a string x is the output that would be
obtained by first applying g to x and then applying f to the output
of that first operation.

Composition is a very useful property of regular relations. There
are many applications in speech and language processing where one
wants to factor a system into a set of operations that are cascaded
together using composition. A case in point is in the implementation

- -- - -- - "- - ---- --- -- - - ~.- ~.... I

TABLE 1.2 Closure properties for regular lan
guages and regular relations

Property Languages Relations

concatenation yes yes
K1ecne closure yes yes
union yes yes
intersection yes no
difference yes no
composition yes
inversion yes

of phonological rule systems. Phonological rewrite rules of the kind
used in early Generative Grammar can be implemented using regular
relations and finite-state transducers.3 Traditionally such rule systems
have involved applying a set of rules in sequence, each rule taking as
input the output of the previous rule. This operation is implemented
computationally by composing the transducers corresponding to the
individual rules.

Table 1.2 also lists inversion as one of the operations under which
regular relations are closed. Inversion consists of swapping the domain
of the relation with the range; in terms of finite-state transducers, one
simply swaps the input and output labels on the arcs. The closure of
regular relations under composition and inversion leads to the follow
ing nice property: one can develop a rule system that compiles into a
transducer that maps from one set of strings to another set of strings,
and then invert the result so that the relation goes the other way. An
example of this is, again, generative phonological rewrite rules. It is
generally easier for a linguist to think of starting with a more abstract
representation and using rules to derive a surface representation. Yet in
a morphological analyzer, one generally wants the computation to be
performed in the other direction. Thus one takes the linguist's descrip
tion, compiles it into finite-state transducers, composes these together
and then inverts the result.

Of course, regular relations resulting from such descriptions are
likely to be many-to-one, as in m any input strings mapping to one
output string; for example, many underlying forms mapping to the

) We will not discuss these compilation algorithms here as this would take us too far
afield; the interested reader is referred to Kaplan and Kay (1994) and Mohri and Sproat
('996).

same surface form. In such a case, the inversion yields a one-to-many
relation, resulting in the need for disambiguation between the many
underlying forms that could be associated with a particular surface
form.

1.3 Weights and Probabilities

Disambiguation in morphological and syntactic processing is often
done by way of stochastic models, in which weights can encode pref
erences for one analysis versus another. In this section, we will briefly
review notation for weights and probabilities that will be used through
out the book.

Calculating the sum or product over a large number of values is very
common, and a common shorthand is to use the sum (L:) or product
(n) symbols ranging over variables. For example, to sum the numbers
one through nine, we can write:

i < IO

L i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 (1.1)
;= 1

Similarly, to multiply them:

;< 10 n i = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 = 362880 (1.2)
;=1

Logarithms (log) and exponentials (exp) are also very common, and
we will by convention use naturallogarithm,4 base e. Recall the basic
relationship between them: for any x, y

log(exp(x)) = 10g(eX
) = x

exp(log(y)) = e1og(y) = y

One of the nicest properties oflogs is that the log of a product is a sum:

(

; <10) ;<10

log D i =:s: log(i)

This is nice because the log of each i can be taken separately, prior
to combination, rather than having to combine them before taking
the log. This is critical when the product leads to extremely large or

4 When multiple bases are used, natural log is sometimes denoted 171, but here we will
just use log.

extremely small floating point numbers. Another nice property is that
log is order preserving. That is, if x > y, then log(x) > log(y) .

Briefly, let us introduce simple empirically estimated probabilities of
the sort we will mainly be considering in this book. All of the prob
abilistic models that we will be discussing are discrete distributions,
where there are k discrete outcomes (such as different words from a
vocabulary E of size k) each with its own parameter. When k = 2, this
is known as a binomial distribution; when k > 2, this is a multinomial
distribution. For example, we can assign a probability to each word w in
a vocabulary E; this is a multinomial distribution with lEI parameters
(one parameter P(w) for each word wEE) where L:wE~ P(w) = l.

If we have a corpus of N words taken from a vocabulary E, we can
calculate the probability of any observed word wEE in that corpus
using relative frequency estimation:

P(w) = f(w)
N

where f(w) is the frequency of the word (its count). Note that using
relative frequency estimation leads us to give zero probability to words
that have not occurred in our corpus, a problem that is discussed later
in the book.

We might want to find the most probable word in the corpus, that
is, the word with the maximum probability. The maximum probability,
here denoted p, is

p = maxP(w) (1.7)
w

If we want to know the word that provides us with this maximum
probability, we use "argmax":

ill = argmaxP(w) (1.8)
w

Then, by definition, P(ill) = p.
Of course, if we are using negative log probabilities, the order reverses,

hence we will be more interested in the "min" and "argmin'; which are
defined similarly.

1.4 Weighted Finite-State Automata and Transducers

Finite-state automata and transducers can be extended to include
weights or costs on the arcs. Such machines are termed weighted finite
state automata (WFSA) and weighted finite-state transducers (WFST).

IU .1. U'ljlnV~v ~~ ~ ~ .~~ _ _

ey/OA dxJo.S

ae/O.6 110.2

ax/I.O 0
FIGURE 1.3 Representations of several pronunciations of the word data. with transcriptions
inARPAbet

The weights can serve a number of functions, but the most frequent
use in speech and language processing is to represent probabilities, or
more commonly, negative log probabilities, of different analyses.

An example is shown in Figure 1.3. In this example, several plausible
pronunciations are shown for the word data , with associated probabili
ties; note that the probabilities for all arcs leaving a given state must sum
to one. (The four pronunciations correspond to the IPA transcriptions
Idelta/, Idreta/, Idelra/, and Idrera/.) The probability of a particular
path is given by multiplying the individual arc probabilities along the
path. In this example, for instance, the pronunciation Id ey t ax! has the

probability 1 * 0.4 * 0.2 * 1 = 0.08.
In a toy example like the one we have just examined, it is reasonable

to represent probabilities as themselves, but in any realistic scenario
this presents a computational problem since the probabilities along any
given path can be very small and will generally lead to difficulties in
floating point represention of the values. Thus it is more common to
represent probabilities in the log domain and, more specifically, to rep
resent them in terms of negative logs. Note that in this representation,
smaller numbers correspond to more probable events. Recall that, if we
use negative log probabilities, we must sum the weights along the path
rather than multiply them.

When automata and transducers are given weights, the interpreta
tion of those weights must be provided. In addition to specifying how
weights are combined along a path (which for probabilities is by mul
tiplication) , one must also specify how weights are combined between
paths. For example, suppose there are two paths in an automaton with
the same symbols on the arc labels of the paths, and we want to collapse
those into a single path. How are the weights combined? When dealing
with straight probabilities, in order to ensure proper normalization,
the weights (probabilities) of two paths are added together. Different
kinds of weights - e.g., logs or probabilities - will have different ways
of combining the weights along the path (which we will generally term

the times operation) and between paths (which we will term the plus
operation).

The different interpretations of weights are usefully unified in terms
of semirings. Before we can introduce the notion of a semiring, we first
need the definition of a monoid:

Definition 3 A monoid is a pair (M, .), where M is a set and. is a
binary operation on M, obeying the following rules:

1. closure: for all a, b in M, a • b is in M
2. identity: there exists an element e in M, such that for all a in M,

a • e = e . a = a. This is termed the neutral element.
3. associativity:. is an associative operation; that is, for all a, b, c in

M, (a • b). c = a. (b. c)

A monoid (M,.) is commutative if a. b = b. a for all a, b in M.
We can take this notion of monoid and define semirings in terms of
notional summation and multiplication as follows:

Definition 4 A semiring is a triple OK, $, (81), where OC is a set and $
and 181 are binary operations on OC, obeying the following rules:

1. (OC, $) is a commutative monoid with neutral element denoted by 0
2. (OC, (81) is a monoid with neutral element denoted by 1
3. The product (181) distributes with respect to the sum ($), i.e.,

a 181 (b $ c) = (a 181 b) $ (a 181 c)
4· For all a in lK, a 181 0 = 0 181 a = 0

Since most applications use real numbers as the semiring set, one typi
cally denotes a particular semiring with a pair ($, (81) that specifies the
actual instantiation of the notional plus and times operations. Com
mon semirings used in speech and language processing are the (+, x)
or "real" semiring, and the (min, +) or "tropical" semiring.5 The (+, x)
semiring is appropriate for use with probabilities: to get the probability
of a path, one multiplies along the path; to get the probability of a
set of paths, one sums the probabilities of those paths. The (min , +)
semiring is appropriate for use with negative log probabilities: one sums
the weights along the path, and one computes the minimum of a set of
paths - which is useful if one is looking for the best scoring path, since
lower scores are better with negative logs.

S So called because the mathematician who pioneered this serniring. Imre Simon. was
from Brazil.

Weighted finite-state automata (and the corresponding weighted
languages) are closed under intersection. When one combines two
paths via intersection, the resulting cost is obtained by using the semi
ring 18> operation. Note that 18> is often referred to as the extend opera
tion, since it is the operation that one uses when one extends a path by
an additional arc.

A formal definition of a weighted finite automaton is as follows:

Definition 5 A weighted finite-state automaton is an octuple
A = (Q, s, F, !:. O. A, a, p), where:

1. (Q, s, F.!:, 0) is a finite-state automaton
2. An initial output function A: s -+ lK assigns a weight to entering the

automaton
3. An output function a: 0 -+ lK assigns a weight to transitions in the

automaton
4. A final output function p: F -+ lK assigns a weight to leaving the

automaton

For any transition d E 0, let i[d] E (!: U <) be its label; p[d] E Q its
origin state; and n[d] E Q its destination state. A path 7T = d l ••• dk

consistsofktransitionsdl , . . .• dk E o,wheren[dj] = p[dj+tl forallj,
i.e., the destination state of transition dj is the origin state of transition
dj + l • We can extend the definitions of label, origin and destination to
paths: let i [7T] = i [dtl ... i [dk]; p [7T] = P [dtl; and n [7T] = n [dd . A cycle
is a path 7T such that p [7T] = n [7T], i.e., a path that starts and ends at the
same state. An acyclic automaton or transducer has no cycles.

We can also extend the definition of the a function of Definition
5 to paths: a[7T] = a[dtll8>"'18> a[dd. Let P(q. x, q') be the set of
paths 7T such that P[7T] = q, i [7T] = x, and n[7T] = q'. Given a semiring
(lK, Ell, 18», the weight associated by A to a string x E !:* can be defined
as follows:

[[A]](x) = EB EB ,\(s) 18> a(7T) 18> p(f)
fEF .EP(' .x.f)

Weighted finite-state transducers are an obvious extension of finite
state transducers and weighted automata. A WFST computes a regular
relation, but in addition it associates each mapping with a weight. For
example, in a transducer encoding a rewrite rule system, the weights
might represent the probabilities of a particular rule application.

1.5 A Synopsis of Algorithmic Issues

The basic texts on automata theory that we have already cited give
algorithms for various finite-state operations including concatenation,
Kleene closure, union , intersection, complementation, determiniza
tion, and minimization. While these algorithms obviously produce
correct results and work fine for small automata and transducers,
they are often not efficient enough to handle the very large machines
that are typical of serious speech- and language-processing applica
tions. Furthermore, the textbook algorithms do not deal with weighted
automata, and the correct treatment of weights turns out to be critical
for efficient processing. Some algorithmic issues that have been very
important in the application to speech and language processing include
efficient algorithms for composition, minimization, determinization,
and epsilon removal. In this section we will provide a brief high-level
overview of some of these algorithmic issues, with pointers to some
papers that deal with them in depth.

One of the most fundamental algorithms that we will be assuming
for much of our cliscussion of finite-state methods in this book is com
position, so it is useful to have a basic understanding of how this works.
At its core, composition is essentially the same as automata intersection
as defined in standard texts. We start by reminding the reader how
intersection works. The basic algorithm for intersection is as follows.
Given two automata M = (Q, s. F. !:, 0) and M' = (Q', s' . F' . !:', 0'),
construct a new automaton M" such that:

o Its set of states Q" = Q x Q' is the cross-product of the states of
the individual machines.

os" = (s. s')
o F" = F x F'
o !:" = !: n !:'
o o"«p. p'), x) = (q. q') just In case o(P. x) = q IS In M and

o'(p'. x) = q' is in M'.

The basic algori thm for transducer composition is essentially the same,
with the difference that with transducers one is matching the output
label of one transducer with the input label of the other. The resulting
arc has as its input label the input label of the arc from the first machine
and as its output label the output label of the arc from the second
machine. Automata can be seen as a special case of transducers, where
the input and output symbols are always identical.

A: }-.:::d:c::.d---lIU

B:

FIGURE 1.4 Two transducers wi th epsilons. Example taken from Pereira and Riley (1997)

When one is dealing with weighted intersection or composition, as
we noted above, one computes the weights of the resulting path as the
extend (@) of the weights of the two input paths.

Even with the basic algorithms there are various efficiency issues.
Computation of the transition function 8" for a new state (p, p') and
label x requires efficient search. For example, suppose we are looldng at
transducer M, at state p, and at an arc with an output label x. We wish
to find in M', state p', the set of arcs, if any, that have input labels x.
If the arcs of the second machine are arranged in no particular order,
then one has no choice but to search linearly through the arcs in M' to
find any that have input label x, and this will be inefficient if there are a
large number of arcs exiting p'. A solution is to index M' on the input
side, so that for any state the arcs are sorted by input label , allowing
for a more efficient search method, such as a binary search. Even more
efficient methods are possible.

The complication with transducers involves epsilons: arcs where the
output side (if on the first transducer) or the input side (if on the second
transducer) are labeled with the empty-string symbol E. Epsilons allow
one to implement different-length relations (as opposed to same-length
relations) so that, for example, one can implement a rule that deletes
symbols in certain contexts. In such a case the transducer would contain
arcs labeled with the symbols in question on the input side and E on
the output side. The problem with epsilons is that they introduce non
determinism over and above the non-determinism that one would have
due to one or both of the input machines being non-deterministic, and
hence inefficiency. 6 With weighted transducers the situation is worse:
one will actually get the wrong result.

6 Note that the same issue arises with epsilons in the intersection of acceptors, and the
same solution applies. However, note also that acceptors can always have their epsilons
removed before intersection, whereas with transducers it is not generally possible to remove
eps ilons when the epsilo n is only on o nc side of the arc label pair.

a:d
0,0 }-=-{

b:e b:e

E:e
2,1 }-=-{

C:E

FIGURE 1.5 Naive composition of the transducers from Figure 1.4. Example taken from
Pereira and Riley (1997)

To see this, consider the two transducers in Figure 1.4, from Pereira
and Riley (1997). In composing A with B, what is at issue is how to
move from state 1 through 2 and 3 in machine A and at the same time
move from state 1 to 2 in machine B. Since these operations consume
no output in A or input in B, there are in principle a number of ways
one could do this. One could, for example traverse both arcs from states
1 to 3 in A before traversing any arc in B; or one could traverse the arc
between 1 and 2 in B before traversing any arcs in A; or one could
choose to move from 1 to 2 in A, then stay in 2 in A while moving
from I to 2 in B, and then complete the transition to 3 in A. These
various options are diagrammed in Figure 1.5. These multiple paths lead
to inefficiency in unweighted transducers but are otherwise correct.
In weighted transducers, however, they yield the wrong result for the
simple reason that the weights from the two original paths will be
combined in each of the alternatives (via@);these multiplealternatives
will then be combined (via EB), meaning that in many semi rings the
resulting cost of the intersection of the two original paths will be wrong.
The solution to this problem is to insert an epsilon filter F between the
transducers A and B so that in effect one is composing A 0 F o B; the
transducer F forces the result to have just one of the paths, specifically
the bold-marked path in Figure 1.5.7

Beyond composition, other algorithmic issues that arise relate
to determinization, minimization and epsilon removal. Weighted
automata and transducers (whether weighted or not) cannot in gen
eral be determinized, but certain types of machines, including acyclic

7 The actual algorithm is somewhat mo re complicated than what we have sketched here,
and the epsilon fi lter transducer is simulated rather than actually constructed; see Pereira
and Riley (1997) for further details.

machines, can be. (See Mohri, 1997, for a rigorous characterization
of the class of determinizable machines.) Since machine minimization
requires a determinized machine (Harrison, 1978; Hopcroft and Ull
man, 1979; Lewis and Papadimitriou, 1981), this also implies that not
all weighted acceptors or transducers can be minimized, though, again,
some classes of machine can be. Transducers and weighted acceptors
that fall into the class of determinizable and minimizable machines
include machines that are useful in speech and language processing. For
example, a dictionary can be modeled as an acyclic transducer, map
ping input words to some other property such as their part of speech
or pronunciation; and a lattice of possible analyses output by a speech
recognizer can be modeled as an acyclic weighted acceptor. Determiniz
ing and minimizing such machines can provide large efficiency gains
(Mohri and Riley, 1999).8 Epsilon removal with weighted automata
is an interesting algorithmic issue in particular because epsilon arcs
may have weights, and one must therefore be careful to distribute the
weights correctly once the epsilon arcs are removed (Mohri, 2002).

1.6 Computational Approaches to Morphology and Syntax

One might wonder why so much attention is paid to finite-state meth
ods in this book, even in the sections that are devoted to syntax. Weren't
finite-state techniques mostly relegated to the dustheap during the
1970S1 That has certainly been one common view. In the mid 1990S
one of the authors gave a talk at a major industrial research lab in the
Seattle, Washington area. He presented some work on applications of
finite-state methods to text analysis for text-to-speech synthesis. Sev
eral natural language researchers in the audience reacted negatively to
his presentation, claiming that finite-state methods were outdated and
belonged in the 1970S not the 1990S.

Developments over the past decade have proved this view to be ill
founded: there has been a veritable explosion of research in finite
state methods with applications in a number of areas of speech and
language processing including morphology and phonology (in which
there was already substantial work by the mid 1990S and as we shall dis
cuss further below), the computational analysis of syntax (e.g., Vouti
lainen, 1994; Mohri, 1994, and see Chapter 6), language modeling for
speech recognition (Pereira and Riley, 1997; Mohri et aI., 2002), text

8 Even for machines that cannot be dcterminizcd. it is often possible to locally deter

minize them (Mohri, 1997)·

normalization systems for speech synthesis (Sproat, 1997a), pronuncia
tion modeling (Mohri et a1., 2002), the analysis of document structure
(Sproat et aI., 1998), inter alia. Outside speech and language processing,
finite-state methods have found applications in other fields, such as
computational biology (Durbin et a1., 1998). Thus, if we seem to dwell
too much on finite-state methods in this book, it is for a reason: such
methods have a broad range of applications and students of speech and
language processing would do well to master them.

Despite the broad applicability of finite-state methods, however,
there is a fundamental difference between computational approaches
to morphology and computational approaches to syntax, in that the
former (we shall argue) can be accomplished entirely with finite-state
methods, while the latter cannot. Finite-state approaches to syntax
can be extremely efficient and useful for many applications requiring
some amount of syntactic processing, but it has been widely known
since Chomsky (1957) that many syntactic phenomena simply cannot
be described without context-free or even context-sensitive grammars.
Grammars built for computational syntactic processing must typically
trade-off the richness of syntactic description provided by the grammar
with the computational cost of using it. Often the utility of a syntactic
annotation will not justify - within the context of a particular appli
cation - the cost of annotating it. This is much less of an issue for
morphological processing, since finite-state models and algorithms are
generally sufficient for morphological description.

Computationally, a grammar may be used for syntactic processing
in several ways. First, it may be used to generate word strings in the
language described by the grammar. It may also be used to recognize
(or accept) strings in the language and reject strings that are not in
the language. The grammar may additionally be used to provide some
useful annotation to the accepted strings, such as, labels, delimiters, or
perhaps a numerical score. Very often it is this annotation, and not just
acceptance or rejection, that makes grammars useful computationally.

The quality of a grammar (or syntactic model) is usually inversely
related to the efficiency with which the model can be built and
used. Very rich syntactic formalisms that find favor with syntacticians
because they do a good job of accepting just those sentences that are
grammatical in a language are often not used because explicit, detailed
grammars require significant expertise and a relatively long time to
write, and because the most efficient recognition algorithms that make
use of such grammars are simply not efficient enough for particular

applications. The most commonly implemented syntactic models fall
far short of what linguists would expect from a grammar in terms of
describing languages, yet they provide useful information and are both
easy to build and efficient to use. These latter considerations will carry
the day, unless a compelling difference in application performance can
be demonstrated.

A very important consideration is robustness in the face of noise.
Unless the application is severely constrained, for example, machine
translation of official weather reports, the language usage will be varied
and noisy. In more natural, less constrained settings, any grammar
will be presented with false starts, disfluencies, sentence fragments,
out-of-vocabulary words, misspellings, run-on sentences, or just plain
ungrammaticalities. A parser is usually expected to yield some useful
information to an application beyond rejection, even in the face of these
phenomena.

Issues of efficiency and robustness have made simple, weighted
finite-state methods very popular. However, much research is currently
focused on enriching robust syntactic models, and making richer syn
tactic formalisms more efficient and robust. Part II of this book (chap
ters 6-9) will look at various computational approaches to syntax, start
ing with the simplest and most efficient techniques before moving on
to richer ones. The inclusion of scores among syntactic annotations will
be particularly emphasized, since this particular annotation, as shall
be seen, can make the difference between a useless model and a very
useful one. It is in computational linguistics, more than any other sub
discipline of linguistics, where statistical and probabilistic approaches
to disambiguation have been investigated, and it is this most of all that
distinguishes computational approaches to syntax from other perspec
tives.

Many of the most successful computational models of syntax share
much in common with constraint-based linguistic formalisms, such
as Optimality Theory (OT), with some simple differences. What is
shared is the notion of a feature or constraint that encodes some
informative linguistic distinction. General, effective automatic feature
induction methods are beyond the current state-of-the-art in Natural
Language Processing, so that effective manual feature selection - often
based on linguist-documented generalizations - is a key part of build
ing effective syntactic analyzers. Computational approaches typically
differ from OT approaches primarily in terms of how the evidence
of various features/constraints is combined, but also in terms of the

explicitness of the candidate generation mechanism, known as GEN in
~T. Chapters 6-9 will present just how serious a problem efficient can
didate generation can be, and a range of computational solutions. Dis
ambiguation through candidate ranking will be presented in Chapter 9.

In Chapter 2, we will show that models of morphology can be imple
mented in a unified framework of finite-state transducers. That is not
the case for syntax, which brings efficiency to center stage. As a result,
Part II (Computational Approaches to Syntax) will have much more of
a focus on the accuracy/efficiency trade-off than Part I (Computational
Approaches to Morphology), with efficient approximations that pro
vide useful annotations receiving much attention. Efficient algorithms
will be explicitly presented, to clearly illustrate why computational
linguists are forced to make the choices they do. Differences in focus
between the two parts of the book reflect differences in the key issues
driving the two topic areas.

