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Figure 3.13: Keyword tree K. with five patterns.

from them, whereas the order is just the opposite in the method based on fundamental
preprocessing.

3.4. Exact matching with a set of patterns

An immediate and important generalization of the exact matching problem is to find all
occurrences in text T of any pattern in a set of patterns V — {Pu P2,..., Pz}. This
generalization is called the exact set matching problem. Let n now denote the total length
of all the patterns in V and m be, as before, the length of T. Then, the exact set matching
problem can be solved in time O(n + zm) by separately using any linear-time method for
each of the z patterns.

Perhaps surprisingly, the exact set matching problem can be solved faster than, O(n +
zm). It can be solved in O(n + m + k) time, where k is the number of occurrences in T of
the patterns from V. The first method to achieve this bound is due to Aho and Corasick
[9].2 In this section, we develop the Aho-Corasick method; some of the proofs are left
to the reader. An equally efficient, but more robust, method for the exact set matching
problem is based on suffix trees and is discussed in Section 7.2.

Definition The keyword tree for set V is a rooted directed tree K satisfying three
conditions: 1. each edge is labeled with exactly one character; 2. any two edges out of
the same node have distinct labels; and 3. every pattern Pt in V maps to some node v of
K, such that the characters on the path from the root of /C to v exactly spell out F,, and
every leaf of K. is mapped to by some pattern in V.

For example, Figure 3.13 shows the keyword tree for the set of patterns {potato, poetry,
pottery, science, school).

Clearly, every node in the keyword tree corresponds to a prefix of one of the patterns
in V, and every prefix of a pattern maps to a distinct node in the tree.

Assuming a fixed-size alphabet, it is easy to construct the keyword tree for V in O(n)
time. Define /C, to be the (partial) keyword tree that encodes patterns P\,..., Pj of V.

2 There is a more recent exposition of the Aho-Corasick method in [8], where the algorithm is used just as an
"acceptor", deciding whether or not there is an occurrence in T of at least one pattern from V. Because we will
want to explicitly find all occurrences, that version of the algorithm is too limited to use here.
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Figure 3.14: Pattern P\ is the string pat. a. The insertion of pattern 9% when Ffe is pa. b. The insertion
when Pi is party.

Tree K\ just consists of a single path of | Pi | edges out of root r. Each edge on this path
is labeled with a character of Pi and when read from the root, these characters spell out
Pi. The number 1 is written at the node at the end of this path. To create /C2 from K\,
first find the longest path from root r that matches the characters of P2 in order. That is,
find the longest prefix of P2 that matches the characters on some path from r. That path
either ends by exhausting P2 or it ends at some node v in the tree where no further match
is possible. In the first case, P2 already occurs in the tree, and so we write the number 2 at
the node where the path ends. In the second case, we create a new path out of v, labeled by
the remaining (unmatched) characters of P2, and write number 2 at the end of that path.
An example of these two possibilities is shown in Figure 3.14.

In either of the above two cases, /C2 will have at most one branching node (a node with
more than one child), and the characters on the two edges out of the branching node will
be distinct. We will see that the latter property holds inductively for any tree /C,-. That is,
at any branching node v in /C,, all edges out of v have distinct labels.

In general, to create /C,+i from /C,, start at the root of /C, and follow, as far as possible,
the (unique) path in /Q that matches the characters in P,+1 in order. This path is unique
because, at any branching node v of /C,, the characters on the edges out of v are distinct.
If pattern P,+ ] is exhausted (fully matched), then number the node where the match ends
with the number i +1. If a node v is reached where no further match is possible but P,+i is
not fully matched, then create a new path out of v labeled with the remaining unmatched
part of P,+i and number the endpoint of that path with the number i + 1.

During the insertion of P,+ ) , the work done at any node is bounded by a constant, since
the alphabet is finite and no two edges out of a node are labeled with the same character.
Hence for any i, it takes <9(|P,+i|) time to insert pattern P,-+1 into /Q, and so the time to
construct the entire keyword tree is O(n).

3.4.1. Naive use of keyword trees for set matching

Because no two edges out of any node are labeled with the same character, we can use the
keyword tree to search for all occurrences in T of patterns from V. To begin, consider how
to search for occurrences of patterns in V that begin at character 1 of T: Follow the unique
path in K that matches a prefix of T as far as possible. If a node is encountered on this path
that is numbered by i, then P, occurs in T starting from position 1. More than one such
numbered node can be encountered if some patterns in V are prefixes of other patterns in V.

In general, to find all patterns that occur in T, start from each position / in T and
follow the unique path from r in K, that matches a substring of T starting at character /.
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Numbered nodes along that path indicate patterns in V that start at position /. For a fixed
/, the traversal of a path of K, takes time proportional to the minimum of m and n, so by
successively incrementing / from 1 to m and traversing K. for each /, the exact set matching
problem can be solved in O(nm) time. We will reduce this to O(n + m+k) time below,
where k is the number of occurrences.

The dictionary problem

Without any further embellishments, this simple keyword tree algorithm efficiently solves
a special case of set matching, called the dictionary problem. In the dictionary problem, a
set of strings (forming a dictionary) is initially known and preprocessed. Then a sequence
of individual strings will be presented; for each one, the task is to find if the presented
string is contained in the dictionary. The utility of a keyword tree is clear in this context.
The strings in the dictionary are encoded into a keyword tree /C, and when an individual
string is presented, a walk from the root of /C determines if the string is in the dictionary.
In this special case of exact set matching, the problem is to determine if the text T (an
individual presented string) completely matches some string in V.

We now return to the general set matching problem of determining which strings in V
are contained in text T.

3.4.2. The speedup: generalizing Knuth-Morris-Pratt

The above naive approach to the exact set matching problem is analogous to the naive
search we discussed before introducing the Knuth-Morris-Pratt method. Successively in-
crementing / by one and starting each search from root r is analogous to the naive exact
match method for a single pattern, where after every mismatch the pattern is shifted by
only one position, and the comparisons are always begun at the left end of the pattern.
The Knuth-Morris-Pratt algorithm improves on that naive algorithm by shifting the pat-
tern by more than one position when possible and by never comparing characters to the
left of the current character in T. The Aho-Corasick algorithm makes the same kind of
improvements, incrementing / by more than one and skipping over initial parts of paths
in /C, when possible. The key is to generalize the function spt (defined on page 27 for a
single pattern) to operate on a set of patterns. This generalization is fairly direct, with only
one subtlety that occurs if a pattern in V is a proper substring of another pattern in V. So,
it is very helpful to (temporarily) make the following assumption:

Assumption No pattern in V is a proper substring of any other pattern in V.

3.4.3. Failure functions for the keyword tree

Definition Each node v in K. is labeled with the string obtained by concatenating in
order the characters on the path from the root of K, to node v. C(v) is used to denote the
label on v. That is, the concatenation of characters on the path from the root to v spells
out the string C{v).

For example, in Figure 3.15 the node pointed to by the arrow is labeled with the
string pott.

Definition For any node v of fC, define lp(v) to be the length of the longest proper
suffix of string C(v) that is a prefix of some pattern in V.
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Figure 3.15: Keyword tree to illustrate the label of a node.

Figure 3.16: Keyword tree showing the failure links.

For example, consider the set of patterns V = {potato, tattoo, theater, other] and its
keyword tree shown in Figure 3.16. Let v be the node labeled with the string potat. Since
tat is prefix of tattoo, and it is the longest proper suffix of potat that is a prefix of any
pattern in V, lp(v) = 3.

Lemma 3.4.1. Let a be the lp(v)-length suffix of string C(v). Then there is a unique node
in the keyword tree that is labeled by string a.

PROOF /C encodes all the patterns in V and, by definition, the //?(u)-length suffix of C(y)
is a prefix of some pattern in V. So there must be a path from the root in K. that spells out
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string a. By the construction of T no two paths spell out the same string, so this path is
unique and the lemma is proved. D

Definition For a node v of K. let nv be the unique node in K labeled with the suffix of
C(v) of length lp{v). When lp(v) = 0 then nv is the root of /C.

Definition We call the ordered pair (v, nv) a failure link.

Figure 3.16 shows the keyword tree for V = [potato, tatoo, theater, other). Failure
links are shown as pointers from every node v to node nv where lp(v) > 0. The other
failure links point to the root and are not shown.

3.4.4. The failure links speed up the search

Suppose that we know the failure link v \-+ nv for each node v in K.. (Later we will show
how to efficiently find those links.) How do the failure links help speed up the search? The
Aho-Corasick algorithm uses the function v i->- nv in a way that directly generalizes the
use of the function i H> spi in the Knuth-Morris-Pratt algorithm. As before, we use / to
indicate the starting position in T of the patterns being searched for. We also use pointer c
into T to indicate the "current character" of T to be compared with a character on /C. The
following algorithm uses the failure links to search for occurrences in T of patterns from V:

Algorithm AC search

/ : = 1 ;
c : = l ;
w := root of/C;
repeat

While there is an edge (w, w') labeled character T(c)
begin
if w' is numbered by pattern i then

report that P, occurs in T starting at position Z;
w := w' and c :— c + 1;
end;

w := nw and I := c — lp(w);
until c > m;

To understand the use of the function v \-+ nv, suppose we have traversed the tree to
node v but cannot continue (i.e., character T(c) does not occur on any edge out of v). We
know that string C(v) occurs in T starting at position / and ending at position c — 1. By
the definition of the function v i-> nv, it is guaranteed that string C(nv) matches string
T[c — lp(v)..c - 1]. That is, the algorithm could traverse /C from the root to node nv and be
sure to match all the characters on this path with the characters in T starting from position
c — lp(v). So when lp(v) > 0, / can be increased to c — lp(v), c can be left unchanged,
and there is no need to actually make the comparisons on the path from the root to node
nv. Instead, the comparisons should begin at node nv, comparing character c of T against
the characters on the edges out of nv.

For example, consider the text T — xxpotattooxx and the keyword tree shown in
Figure 3.16. When / = 3, the text matches the string potat but mismatches at the next
character. At this point c — 8, and the failure link from the node i> labeled potat points
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to the node nv labeled tat, and lp{v) = 3. So / is incremented to 5 = 8 — 3, and the next
comparison is between character T(8) and character t on the edge below tat.

With this algorithm, when no further matches are possible, / may increase by more than
one, avoiding the reexamination of characters of T to the left of c, and yet we may be
sure that every occurrence of a pattern in V that begins at character c — lp(v) of T will be
correctly detected. Of course (just as in Knuth-Morris-Pratt), we have to argue that there
are no occurrences of patterns of V starting strictly between the old / and c — lp(v) in
T, and thus / can be incremented to c — lp(v) without missing any occurrences. With the
given assumption that no pattern in V is a proper substring of another one, that argument
is almost identical to the proof of Theorem 2.3.2 in the analysis of Knuth-Morris-Pratt,
and it is left as an exercise.

When lp(v) = 0, then I is increased to c and the comparisons begin at the root of /C.
The only case remaining is when the mismatch occurs at the root. In this case, c must be
incremented by 1 and comparisons again begin at the root.

Therefore, the use of function v \-+ nv certainly accelerates the naive search for patterns
of V. But does it improve the worst-case running time? By the same sort of argument used
to analyze the search time (not the preprocessing time) of Knuth-Morris-Pratt (Theorem
2.3.3), it is easily established that the search time for Aho-Corasick is O(m). We leave
this as an exercise. However, we have yet to show how to precompute the function u H n ,
in linear time.

3.4.5. Linear preprocessing for the failure function

Recall that for any node v of IC, nu is the unique node in K labeled with the suffix of C(v) of
length lp(v). The following algorithm finds node nv for each node v in /C, using O(n) total
time. Clearly, if v is the root r or i; is one character away from r, then nv = r. Suppose, for
some k, nv has been computed for every node that is exactly k or fewer characters (edges)
from r. The task now is to compute nv for a node v that is k +1 characters from r. Let v' be
the parent of v in K and let x be the character on the v' to D edge, as shown in Figure 3.17.

We are looking for the node nv and the (unknown) string C(nv) labeling the path to it
from the root; we know node «„< because v' is k characters from r. Just as in the explanation

Figure 3.17: Keyword tree used to compute the failure function for node v.



58 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

of the classic preprocessing for Knuth-Morris-Pratt, £(«„) must be a suffix of £(«„-) (not
necessarily proper) followed by character x. So the first thing to check is whether there
is an edge («„<, w') out of node nv> labeled with character x. If that edge does exist, then
nv is node w' and we are done. If there is no such edge out of nv> labeled with character
x, then C(nv) is a proper suffix of £(«„<) followed by x. So we examine nnj next to see if
there is an edge out of it labeled with character x. (Node nn</ is known because nv* is k or
fewer edges from the root.) Continuing in this way, with exactly the same justification as
in the classic preprocessing for Knuth-Morris-Pratt, we arrive at the following algorithm
for computing nv for a node v:

Algorithm nv

v' is the parent of v in /C;
x is the character on the edge (i/, v);
w := nvr,
While there is no edge out of w labeled x and w ^ r

do w := nw;
end (while);
If there is an edge (w, w') out of w labeled x then

nv := u/;
else

nv : = r ;

Note the importance of the assumption that nu is already known for every node u that
is k or fewer characters from r.

To find nv for every node v, repeatedly apply the above algorithm to the nodes in /C in
a breadth-first manner starting at the root.

Theorem 3.4.1. Let n be the total length of all the patterns in V. The total time used by
Algorithm nv when applied to all nodes in /C is O(n).

PROOF The argument is a direct generalization of the argument used to analyze time
in the classic preprocessing for Knuth-Morris-Pratt. Consider a single pattern P in V of
length t and its path in /C for pattern P. We will analyze the time used in the algorithm to
find the failure links for the nodes on this path, as if the path shares no nodes with paths
for any other pattern in V. That analysis will overcount the actual amount of work done
by the algorithm, but it will still establish a linear time bound.

The key is to see how lp{v) varies as the algorithm is executed on each successive node
i; down the path for P. When v is one edge from the root, then lp(v) is zero. Now let v be
an arbitrary node on the path for P and let v' be the parent of v. Clearly, lp(v) < lp(v') + 1 ,
so over all executions of Algorithm nv for nodes on the path for P, ipQ is increased by a
total of at most t. Now consider how lp() can decrease. During the computation of nv for
any node v, w starts at «„< and so has initial node depth equal to lp(v'). However, during
the computation of «„, the node depth of w decreases every time an assignment to w is
made (inside the while loop). When nv is finally set, lp(v) equals the current depth of w,
so if w is assigned k times, then lp(v) < lp(v') — k and lp() decreases by at least k. Now
lp{) is never negative, and during all the computations along path P, IpQ can be increased
by a total of at most t. It follows that over all the computations done for nodes on the path
for P, the number of assignments made inside the while loop is at most t. The total time
used is proportional to the number of assignments inside the loop, and hence all failure
links on the path for P are set in O(t) time.
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Figure 3.18: Keyword tree showing a directed path from potatio at through tat.

Repeating this analysis for every pattern in V yields the result that all the failure links
are established in time proportional to the sum of the pattern lengths in V (i.e., in O(n)
total time). •

3.4.6. The full Aho-Corasick algorithm: relaxing the
substring assumption

Until now we have assumed that no pattern in V is a substring of another pattern in P . We
now relax that assumption. If one pattern is a substring of another, and yet Algorithm AC
search (page 56) uses the same keyword tree as before, then the algorithm may make / too
large. Consider the case when V = {acatt, ca} and T = acatg. As given, the algorithm
matches T along a path in K, until character g is the current character. That path ends at
the node v with C(v) = acat. Now no edges out of D are labeled g, and since no proper
suffix of acat is a prefix of acatt or ac, nv is the root of fC. So when the algorithm gets
stuck at node v it returns to the root with g as the current character, and it sets I to 5. Then
after one additional comparison the current character pointer will be set to m + 1 and the
algorithm will terminate without finding the occurrence of ca in T. This happens because
the algorithm shifts (increases /) so as to match the longest suffix of C(v) with a prefix of
some pattern in V. Embedded occurrences of patterns in C(v) that are not suffixes of C(v)
have no influence on how much / increases.

It is easy to repair this problem with the following observations whose proofs we leave
to the reader.

Lemma 3.4.2. Suppose in a keyword tree K there is a directed path of failure links
(possibly empty) from a node v to a node that is numbered with pattern i. Then pattern Pi
must occur in T ending at position c (the current character) whenever node v is reached
during the search phase of the Aho-Corasick algorithm.

For example, Figure 3.18 shows the keyword tree for V = {potato, pot, tatter, at] along
with some of the failure links. Those links form a directed path from the node v labeled
potat to the numbered node labeled at. If the traversal of K reaches v then T certainly
contains the patterns tat and at end at the current c.

Conversely,

Lemma 3.4.3. Suppose a node v has been reached during the algorithm. Then pattern
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Pi occurs in T ending at position c only if v is numbered i or there is a directed path of
failure links from v to the node numbered i.

So the full search algorithm is

Algorithm full AC search

/ := 1;
c : = l ;
w := root;
repeat

While there is an edge (w, w') labeled T(c)
begin
if w' is numbered by pattern i or there is
a directed path of failure links from w' to a node numbered with i

then report that Pt occurs in T ending at position c;
w := w' andc := c + 1;
end;

w := nw and / := c — lp(w);
until c > n;

Implementation

Lemmas 3.4.2 and 3.4.3 specify at a high level how to find all occurrences of the patterns
in the text, but specific implementation details are still needed. The goal is to be able to
build the keyword tree, determine function v i-»- nv, and be able to execute the full AC
search algorithm all in O(m + k) time. To do this we add an additional pointer, called the
output link, to each node of K,.

The output link (if there is one) at a node v points to that numbered node (a node
associated with the end of a pattern in V) other than v that is reachable from v by the
fewest failure links. The output links can be determined in O(n) time during the running
of the preprocessing algorithm nv. When the nv value is determined, the possible output
link from node v is determined as follows: If nv is a numbered node then the output link
from v points to nv\ if nv is not numbered but has an output link to a node w, then the
output link from v points to w, otherwise v has no output link. In this way, an output
link points only to a numbered node, and the path of output links from any node v passes
through all the numbered nodes reachable from v via a path of failure links. For example,
in Figure 3.18 the nodes for tat and potat will have their output links set to the node for
at. The work of adding output links adds only constant time per node, so the overall time
for algorithm nv remains O(n).

With the output links, all occurrences in T of patterns of V can be detected in 0(m + k)
time. As before, whenever a numbered node is encountered during the full AC search, an
occurrence is detected and reported. But additionally, whenever a node v is encountered
that has an output link from it, the algorithm must traverse the path of output links from
v, reporting an occurrence ending at position c of T for each link in the path. When that
path traversal reaches a node with no output link, it returns along the path to node v and
continues executing the full AC search algorithm. Since no character comparisons are
done during any output link traversal, over both the construction and search phases of the
algorithm the number of character comparisons is still bounded by 0(n+m). Further, even
though the number of traversals of output links can exceed that linear bound, each traversal
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of an output link leads to the discovery of a pattern occurrence, so the total time for the
algorithm is O(n+m+k), where k is the total number of occurrences. In summary we have,

Theorem 3.4.2. IfV is a set of patterns with total length n and T is a text of total length
m, then one can find all occurrences in T of patterns from V in O(n) preprocessing time
plus O(m+k) search time, where k is the number of occurrences. This is true even without
assuming that the patterns in V are substring free.

In a later chapter (Section 6.5) we will discuss further implementation issues that affect
the practical performance of both the Aho-Corasick method, and suffix tree methods.

3.5. Three applications of exact set matching

3.5.1. Matching against a DNA or protein library of known patterns

There are a number of applications in molecular biology where a relatively stable li-
brary of interesting or distinguishing DNA or protein substrings have been constructed.
The Sequence-tagged sites (STSs) and Expressed sequence tags (ESTs) provide our first
important illustration.

Sequence-tagged-sites

The concept of a Sequence-tagged-site (STS) is one of the most useful by-products that
has come out of the Human Genome Project [111, 234, 399]. Without going into full
biological detail, an STS is intuitively a DNA string of length 200-300 nucleotides whose
right and left ends, of length 20-30 nucleotides each, occur only once in the entire genome
[111,317]. Thus each STS occurs uniquely in the DNA of interest. Although this definition
is not quite correct, it is adequate for our purposes. An early goal of the Human Genome
Project was to select and map (locate on the genome) a set of STSs such that any substring
in the genome of length 100,000 or more contains at least one of those STSs. A more
refined goal is to make a map containing ESTs (expressed sequence tags), which are STSs
that come from genes rather than parts of intergene DNA. ESTs are obtained from mRNA
and cDNA (see Section 11.8.3 for more detail on cDNA) and typically reflect the protein
coding parts of a gene sequence.

With an STS map, one can locate on the map any sufficiently long string of anonymous
but sequenced DNA - the problem is just one of finding which STSs are contained in the
anonymous DNA. Thus with STSs, map location of anonymous sequenced DNA becomes
a string problem, an exact set matching problem. The STSs or the ESTs provide a computer-
based set of indices to which new DNA sequences can be referenced. Presently, hundreds
of thousands of STSs and tens of thousands of ESTs have been found and placed in
computer databases [234]. Note that the total length of all the STSs and ESTs is very large
compared to the typical size of an anonymous piece of DNA. Consequently, the keyword
tree and the Aho-Corasick method (with a search time proportional to the length of the
anonymous DNA) are of direct use in this problem for they allow very rapid identification
of STSs or ESTs that occur in newly sequenced DNA.

Of course, there may be some errors in either the STS map or in the newly sequenced
DNA causing trouble for this approach (see Section 16.5 for a discussion of STS maps).
But in this application, the number of errors should be a small percentage of the length of
the STS, and that will allow more sophisticated exact (and inexact) matching methods to
succeed. We will describe some of these in Sections 7.8.3, 9.4, and 12.2 of the book.
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A related application comes from the "BAC-PAC" proposal [442] for sequencing the
human genome (see page 418). In that method, 600,000 strings (patterns) of length 500
would first be obtained and entered into the computer. Thousands of times thereafter,
one would look for occurrences of any of these 600,000 patterns in text strings of length
150,000. Note that the total length of the patterns is 300 million characters, which is
two-thousand times as large as the typical text to be searched.

3.5.2. Exact matching with wild cards

As an application of exact set matching, we return to the problem of exact matching with
a single pattern, but complicate the problem a bit. We modify the exact matching problem
by introducing a character </>, called a wild card, that matches any single character. Given
a pattern P containing wild cards, we want to find all occurrences of P in a text T. For
example, the pattern ab<t>(pc(/> occurs twice in the text xabvccbababcax. Note that in this
version of the problem no wild cards appear in T and that each wild card matches only a
single character rather than a substring of unspecified length.

The problem of matching with wild cards should need little motivating, as it is not
difficult to think up realistic cases where the pattern contains wild cards. One very im-
portant case where simple wild cards occur is in DNA transcription factors. A tran-
scription factor is a protein that binds to specific locations in DNA and regulates, either
enhancing or suppressing, the transcription of the DNA into RNA. In this way, pro-
duction of the protein that the DNA codes for is regulated. The study of transcription
factors has exploded in the past decade; many transcription factors are now known and
can be separated into families characterized by specific substrings containing wild cards.
For example, the Zinc Finger is a common transcription factor that has the following
signature:

where CYS is the amino acid cysteine and HIS is the amino acid histidine. Another im-
portant transcription factor is the Leucine Zipper, which consists of four to seven leucines,
each separated by six wild card amino acids.

If the number of permitted wild cards is unbounded, it is not known if the problem
can be solved in linear time. However, if the number of wild cards is bounded by a fixed
constant (independent of the size of P) then the following method, based on exact set
pattern matching, runs in linear time:

Exact matching with wild cards

0. Let C be a vector of length |T| initialized to all zeros.

1. Let V = {Pi, P2,..., Pk] be the (multi-)set of maximal
substrings of P that do not contain any wild cards. Let l\, h,..., 4
be the starting positions in P of each of these substrings.

{For example, if P = ab<p<pc(pab(p(t> then V = [ab, c, ab} and
/, = l , / 2 = 5, /3 = 7.}

2. Using the Aho-Corasick algorithm (or the suffix tree approach to be discussed
later), find for each string P, in V, all starting positions of P, in
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text T. For each starting location j of P, in T,
increment the count in cell j - /, + 1 of C by one.

{For example, if the second copy of string ab is found in T
starting at position 18, then cell 12 of C is incremented by one.}

3. Scan vector C for any cell with value k. There is an occurrence of P
in T starting at position p if and only if C(p) = k.

Correctness and complexity of the method

Correctness Clearly, there is an occurrence of P in T starting at position p if and only
if, for each /, subpattern P, 6 V occurs at position j = p + /,- — 1 of 7\ The above method
uses this idea in reverse. If pattern P, e V is found to occur starting at position j of T,
and pattern P, starts at position /, in P, then this provides one "witness" that P occurs at
T starting at position p = j — I,• + 1. Hence P occurs in T starting at p if and only if
similar witnesses for position p are found for each of the k strings in V. The algorithm
counts, at position p, the number of witnesses that observe an occurrence of P beginning
at p. This correctly determines whether P occurs starting at p because each string in V
can cause at most one increment to cell p of C.

Complexity The time used by the Aho-Corasick algorithm to build the keyword tree
for V is O(n). The time to search for occurrences in T of patterns from V is O(m + z),
where \T\ = m and z is the number of occurrences. We treat each pattern in V as being
distinct even if there are multiple copies of it in V. Then whenever an occurrence of a
pattern from V is found in T, exactly one cell in C is incremented; furthermore, a cell can
be incremented to at most k. Hence z must be bounded by km, and the algorithm runs in
O(km) time . Although the number of character comparisons used is just O(m), km need
not be O(m) and hence the number of times C is incremented may grow faster than O(m),
leading to a nonlinear O(km) time bound. But ifk is assumed to be bounded (independent
of | P |), then the method does run in linear time. In summary,

Theorem 3.5.1. If the number of wild cards in pattern P is bounded by a constant, then
the exact matching problem with wild cards in the Pattern can be solved in O(n + m) time.

Later, in Sections 9.3, we will return to the problem of wild cards when they occur in
either the pattern, text, or both.

3.5.3. Two-dimensional exact matching

A second classic application of exact set matching occurs in a generalization of string
matching to two-dimensional exact matching. Suppose we have a rectangular digitized
picture T, where each point is given a number indicating its color and brightness. We are
also given a smaller rectangular picture P, which also is digitized, and we want to find all
occurrences (possibly overlapping) of the smaller picture in the larger one. We assume that
the bottom edges of the two rectangles are parallel to each other. This is a two-dimensional
generalization of the exact string matching problem.

Admittedly, this problem is somewhat contrived. Unlike the one-dimensional exact
matching problem, which truly arises in numerous practical applications, compelling ap-
plications of two-dimensional exact matching are hard to find. Two-dimensional matching
that is inexact, allowing some errors, is a more realistic problem, but its solution requires
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more complex techniques of the type we will examine in Part III of the book. So for now,
we view two-dimensional exact matching as an illustration of how exact set matching can
be used in more complex settings and as an introduction to more realistic two-dimensional
problems. The method presented follows the basic approach given in [44] and [66]. Since
then, many additional methods have been presented since that improve on those papers
in various ways. However, because the problem as stated is somewhat unrealistic, we
will not discuss the newer, more complex, methods. For a sophisticated treatment of
two-dimensional matching see [22] and [169].

Let m be the total number of points in T, let n be the number of points in P, and let n'
be the number of rows in P. Just as in exact string matching, we want to find the smaller
picture in the larger one in O(n + m) time, where O(nm) is the time for the obvious
approach. Assume for now that each of the rows of P are distinct; later we will relax this
assumption.

The method is divided into two phases. In the first phase, search for all occurrences of
each of the rows of P among the rows of T. To do this, add an end of row marker (some
character not in the alphabet) to each row of T and concatenate these rows together to
form a single text string T' of length O(m). Then, treating each row of P as a separate
pattern, use the Aho-Corasick algorithm to search for all occurrences in T of any row
of P. Since P is rectangular, all rows have the same width, and so no row is a proper
substring of another and we can use the simpler version of Aho-Corasick discussed in
Section 3.4.2. Hence the first phase identifies all occurrences of complete rows of P in
complete rows of T and takes 0{n + m) time.

Whenever an occurrence of row i of P is found starting at position (p,q)ofT, write the
number i in position (p, q) of another array M with the same dimensions as T. Because
each row of P is assumed to be distinct and because P is rectangular, at most one number
will be written in any cell of M.

In the second phase, scan each column of M, looking for an occurrence of the string
1, 2 , . . . , « ' in consecutive cells in a single column. For example, if this string is found in
column 6, starting at row 12 and ending at row n' + 12, then P occurs in T when its upper
left corner is at position (6,12). Phase two can be implemented in O(n' + m) = O(n + m)
time by applying any linear-time exact matching algorithm to each column of M.

This gives an O(n + m) time solution to the two-dimensional exact set matching
problem. Note the similarity between this solution and the solution to the exact matching
problem with wild cards discussed in the previous section. A distinction will be discussed
in the exercises.

Now suppose that the rows of P are not all distinct. Then, first find all identical rows
and give them a common label (this is easily done during the construction of the keyword
tree for the row patterns). For example, if rows 3,6, and 10 are the same then we might give
them all the label of 3. We do a similar thing for any other rows that are identical. Then, in
phase one, only look for occurrences of row 3, and not rows 6 and 10. This ensures that a
cell of M will have at most one number written in it during phase 1. In phase 2, don't look
for the string 1, 2, 3 , . . . , n' in the columns of M, but rather for a string where 3 replaces 6
and 10, etc. It is easy to verify that this approach is correct and that it takes just O(n + m)
time. In summary,

Theorem 3.5.2. IfT and P are rectangular pictures with m andn cells, respectively, then
all exact occurrences of P in T can be found in O(n + m) time, improving upon the naive
method, which takes 0{nm) time.
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3.6. Regular expression pattern matching

A regular expression is a way to specify a set of related strings, sometimes referred to as a
pattern? Many important sets of substrings (patterns) found in biosequences, particularly
in proteins, can be specified as regular expressions, and several databases have been
constructed to hold such patterns. The PROSITE database, developed by Amos Bairoch
[41, 42], is the major regular expression database for significant patterns in proteins (see
Section 15.8 for more on PROSITE).

In this section, we examine the problem of finding substrings of a text string that match
one of the strings specified by a given regular expression. These matches are computed in
the Unix utility grep, and several special programs have been developed to find matches
to regular expressions in biological sequences [279,416, 422].

It is helpful to start first with an example of a simple regular expression. A formal defi-
nition of a regular expression is given later. The following PROSITE expression specifies
a set of substrings, some of which appear in a particular family of granin proteins:

[ED]-[EN]-MSAN]-*-*-[DE]-*-E-L.

Every string specified by this regular expression has ten positions, which are separated
by a dash. Each capital letter specifies a single amino acid and a group of amino acids
enclosed by brackets indicates that exactly one of those amino acids must be chosen. A
small x indicates that any one of the twenty amino acids from the protein alphabet can be
chosen for that position. This regular expression describes 192,000 amino acid strings, but
only a few of these actually appear in any known proteins. For example, ENLSSEDEEL
is specified by the regular expression and is found in human granin proteins.

3.6.1. Formal definitions

We now give a formal, recursive definition for a regular expression formed from an alphabet
E. For simplicity, and contrary to the PROSITE example, assume that alphabet £ does
not contain any symbol from the following list: *, + , (,), e.

Definition A single character from £ is a regular expression. The symbol e is a regu-
lar expression. A regular expression followed by another regular expression is a regular
expression. Two regular expressions separated by the symbol "+" form a regular ex-
pression. A regular expression enclosed in parentheses is a regular expression. A regular
expression enclosed in parentheses and followed by the symbol "*" is a regular expres-
sion. The symbol * is called the Kleene closure.

These recursive rules are simple to follow, but may need some explanation. The symbol
e represents the empty string (i.e., the string of length zero). If R is a parenthesized regular
expression, then R* means that the expression R can be repeated any number of times
(including zero times). The inclusion of parentheses as part of a regular expression (outside
of E) is not standard, but is closer to the way that regular expressions are actually specified
in many applications. Note that the example given above in PROSITE format does not
conform to the present definition but can easily be converted to do so.

As an example, let £ be the alphabet of lower case English characters. Then R =
(a + c + t)ykk(p + q)* vdt(l + z + e)(pq) is a regular expression over £, and S =

3 Note that in the context of regular expressions, the meaning of the word "pattern" is different from its previous and
general meaning in this book.
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Figure 3.19: Directed graph for the regular expression (d + o + g){(n + o)w)*(c + / + e)(c +1).

aykkpqppvdtpq is a string specified by R. To specify S, the subexpression (p+q)ofR was
repeated four times, and the empty string e was the choice specified by the subexpression
(1 + Z + �) .

It is very useful to represent a regular expression R by a directed graph G(R) (usually
called a nondeterministic, finite state automaton). An example is shown in Figure 3.19.
The graph has a start node .? and a termination node t, and each edge is labeled with a
single symbol from EUf. Each s to t path in G(R) specifies a string by concatenating
the characters of E that label the edges of the path. The set of strings specified by all
such paths is exactly the set of strings specified by the regular expression R. The rules for
constructing G(R) from R are simple and are left as an exercise. It is easy to show that
if a regular expression R has n symbols, then G(R) can be constructed using at most 2/z
edges. The details are left as an exercise and can be found in [10] and [8].

Definition A substring 7" of string T matches the regular expression R if there is an
s to t path in G(R) that specifies 7".

Searching for matches
To search for a substring in T that matches the regular expression R, we first consider the
simpler problem of determining whether some (unspecified) prefix of T matches R. Let
N(0) be the set of nodes consisting of node s plus all nodes of G(R) that are reachable
from node s by traversing edges labeled e. In general, a node v is in set N(i), for i > 0, if
v can be reached from some node in N(i - 1) by traversing an edge labeled T(i) followed
by zero or more edges labeled e. This gives a constructive rule for finding set N(i) from
set N(i — 1) and character T(i). It easily follows by induction on i that a node v is in N(i)
if and only if there is path in G(R) from s that ends at v and generates the string T[l..i].
Therefore, prefix T[l ..i] matches R if and only if N(i) contains node t.

Given the above discussion, to find all prefixes of T that match R, compute the sets
N(i) for i from 0 to m, the length of T. If G(R) contains e edges, then the time for this
algorithm is 0(me), where m is the length of the text string T. The reason is that each
iteration i [finding N(i) from N(i — 1) and character T(i)] can be implemented to run in
O(e) time (see Exercise 29).

To search for a nonprefix substring of T that matches R, simply search for a prefix
of T that matches the regular expression H*R. E* represents any number of repetitions
(including zero) of any character in S. With this detail, we now have the following:

Theorem 3.6.1. If T is of length m, and the regular expression R contains n symbols,
then it is possible to determine whether T contains a substring matching R in 0(nm) time.


