
12

Refining Core String Edits and Alignments

In this chapter we look at a number of important refinements that have been developed
for certain core string edit and alignment problems. These refinements either speed up a
dynamic programming solution, reduce its space requirements, or extend its utility.

12.1. Computing alignments in only linear space

One of the defects of dynamic programming for all the problems we have discussed is
that the dynamic programming tables use ®(nm) space when the input strings have length
n and m. (When we talk about the space used by a method, we refer to the maximum
space ever in use simultaneously. Reused space does not add to the count of space use.)
It is quite common that the limiting resource in string alignment problems is not time but
space. That limit makes it difficult to handle large strings, no matter how long we may be
willing to wait for the computation to finish. Therefore, it is very valuable to have methods
that reduce the use of space without dramatically increasing the time requirements.

Hirschberg [224] developed an elegant and practical space-reduction method that works
for many dynamic programming problems. For several string alignment problems, this
method reduces the required space from &(nm) to O(n) (for n < m) while only doubling
the worst-case time bound. Miller and Myers expanded on the idea and brought it to
the attention of the computational biology community [344]. The method has since been
extended and applied to many more problems [97]. We illustrate the method using the
dynamic programming solution to the problem of computing the optimal weighted global
alignment of two strings.

12.1.1. Space reduction for computing similarity

Recall that the similarity of two strings is a number, and that under the similarity objective
function there is an optimal alignment whose value equals that number. Now if we only
require the similarity V(n,m), and not an actual alignment with that value, then the
maximum space needed (in addition to the space for the strings) can be reduced to 2m.
The idea is that when computing V values for row i, the only values needed from previous
rows are from row i — 1; any rows before i — 1 can be discarded. This observation is clear
from the recurrences for similarity. Thus, we can implement the dynamic programming
solution using only two rows, one called row C for current, and one called row P for
previous. In each iteration, row C is computed using row P, the recurrences, and the two
strings. When that row C is completely filled in, the values in row P are no longer needed
and C gets copied to P to prepare for the next iteration. After n iterations, row C holds
the values for row n of the full table and hence V(n, m) is located in the last cell of that
row. In this way, V(n, m) can be computed in 0{m) space and O(nm) time. In fact, any

254

12.1. COMPUTING ALIGNMENTS IN ONLY LINEAR SPACE 255

n-i

m—j m
Figure 12.1: The similarity of the first / characters of S\ and the first j characters of Sr

2 equals the similarity
of the last / characters of Si and the last j characters of S2. (The dotted lines denote the substrings being
aligned.)

single row of the full table can be found and stored in those same time and space bounds.
This ability will be critical in the method to come.

As a further refinement of this idea, the space needed can be reduced to one row plus
one additional cell (in addition to the space for the strings). Thus m + 1 space is all that
is needed. And, if n < m then space use can be further reduced to n + 1. We leave the
details as an exercise.

12.1.2. How to find the optimal alignment in linear space

The above idea is fine //"we only want the similarity V(n, m) or just want to store one
preselected row of the dynamic programming table. But what can we do if we actually
want an alignment that achieves value V(n, m)? In most cases it is such an alignment
that is sought, not just its value. In the basic algorithm, the alignment would be found
by traversing the pointers set while computing the full dynamic programming table for
similarity. However, the above linear space method does not store the whole table and
linear space is insufficient to store the pointers.

Hirschberg's high-level scheme for finding the optimal alignment in only linear space
performs several smaller alignment computations, each using only linear space and each
determining a bit more about an actual optimal alignment. The net result of these compu-
tations is a full description of an optimal alignment. We first describe how the initial piece
of the full alignment is found using only linear space.

Definition For any string a, let ar denote the reverse of string a.

Definition Given strings S\ and S2, define V(i, j) as the similarity of the string con-
sisting of the first / characters of S[, and the string consisting of the first j characters
of Sr

2. Equivalently, V(i, j) is the similarity of the last i characters of Si and the last j
characters of S2 (see Figure 12.1).

Clearly, the table of V(i, j) values can be computed in 0{nm) time, and any single
preselected row of that table can be computed and stored in O(nm) time using only O(m)
space.

The initial piece of the full alignment is computed in linear space by computing V (n, m)
in two parts. The first part uses the original strings; the second part uses the reverse strings.
The details of this two-part computation are suggested in the following lemma.

Lemma 12.1.1. V(n, m) = maxo<*<m[V(n/2, k) + V(n/2, m - k)].

256 REFINING CORE STRING EDITS AND ALIGNMENTS

PROOF This result is almost obvious, and yet it requires a proof. Recall that Si[l..i] is
the prefix of string S\ consisting of the first / characters and that S[[l . i] is the reverse
of the suffix of S\ consisting of the last i characters of Si. Similar definitions hold for S2

and Sj.
For any fixed position k' in S2, there is an alignment of S\ and S2 consisting of an

alignment of S,[l..n/2] and S2[l..k'] followed by a disjoint alignment of Si[n/2 + l..n]
and S2[k' + \..m]. By definition of V and V, the best alignment of the first type has
value V(n/2, k') and the best alignment of the second type has value V(n/2, m — k'), so
the combined alignment has value V(n/2, k') + V(n/2, m - k') < maxk[V(n/2, k) +
V(n/2,m-k)] < V(n,m).

Conversely, consider an optimal alignment of Si and S2. Let k' be the right-most position
in S2 that is aligned with a character at or before position n/2 in S\. Then the optimal
alignment of Si and S2 consists of an alignment of Si [1..n/2] and S2[l..k'] followed by
an alignment of Si [n/2 + l..n] and S2[k' + \..m\. Let the value of the first alignment be
denoted p and the value of the second alignment be denoted q. Then p must be equal
to V(n/2, k'), for if p < V(n/2, k') we could replace the alignment of Si[l..n/2] and
S2[l..k'] with the alignment of Si[1..n/2] and S2[l..k'] that has value V(n/2,k'). That
would create an alignment of Si and S2 whose value is larger than the claimed optimal.
Hence p = V(n/2,k'). By similar reasoning, q = V(n/2,m — k'). So V{n,m) =
V(n/2, it') + V(n/2, m-k')< max*[V(n/2, jfc) + V(n/2, m - k)].

Having shown both sides of the inequality, we conclude that V(n, m) = max^[V(n/2, k)
+ Vr(n/2,m-k)]. •

Definition Let k* be a position k that maximizes [V(n/2, k) + V(n/2, m - k)].

By Lemma 12.1.1, there is an optimal alignment whose traceback path in the full
dynamic programming table (if one had filled in the full n by m table) goes through cell
(n/2, k*). Another way to say this is that there is an optimal (longest) path L from node
(0,0) to node (n, m) in the alignment graph that goes through node (n/2, k*). That is the
key feature of k*.

Definition Let Ln/2 be the subpath of L that starts with the last node of L in row n/2—I
and ends with the first node of L in row n/2 + 1.

Lemma 12.1.2. A position k* in row n/2 can be found in O(nm) time and O(m) space.
Moreover, a subpath Ln/2 can be found and stored in those time and space bounds.

PROOF First, execute dynamic programming to compute the optimal alignment of Si
and S2, but stop after iteration n/2 (i.e., after the values in row n/2 have been computed).
Moreover, when filling in row n/2, establish and save the normal traceback pointers for
the cells in that row. At this point, V(n/2, k) is known for every 0 < k < m. Following
the earlier discussion, only O(m) space is needed to obtain the values and pointers in rows
n/2. Second, begin computing the optimal alignment of S[and S2 but stop after iteration
n/2. Save both the values for cells in row n/2 along with the traceback pointers for those
cells. Again, O(m) space suffices and value V(n/2 , m — k) is known for every k. Now,
for each k, add V(n/2, k) to V(n/2, m — k), and let k* be an index k that gives the largest
sum. These additions and comparisons take O(m) time.

Using the first set of saved pointers, follow any traceback path from cell (n/2, k*) to a
cell k\ in row n/2 — 1. This identifies a subpath that is on an optimal path from cell (0, 0) to
cell (n/2, k*). Similarly, using the second set of traceback pointers, follow any traceback

12.1. COMPUTING ALIGNMENTS IN ONLY LINEAR SPACE 257

n / 2 - l

nil

A

B

71/2+ 1

Figure 12.2: After finding k*, the alignment problem reduces to finding an optimal alignment in section A
of the table and another optimal alignment in section B of the table. The total area of subtables A and B is
at most cnm/2. The subpath Ln/2 through cell (n/2, k*) is represented by a dashed path.

path from cell (n/2, k*) to a cell k2 in row n/2 + 1. That path identifies a subpath of an
optimal path from (n/2, k*) to (n, m). These two subpaths taken together form the subpath
L,,/2 that is part of an optimal path L from (0, 0) to (n, m). Moreover, that optimal path
goes through cell (n/2, k*). Overall, 0(nm) time and O(m) space is used to findk*,k\, k2,
and Ln/2. D

To analyze the full method to come, we will express the time needed to fill in the
dynamic programming table of size p by q as cpq, for some unspecified constant c, rather
than as O(pq). In that view, the n/2 row of the first dynamic program computation is
found in cnm/2 time, as is the n/2 row of the second computation. Thus, a total of cnm
time is needed to obtain and store both rows.

The key point to note is that with a cnm-time and O(w)-space computation, the al-
gorithm learns k*,k\, k2, and Ln/2. This specifies part of an optimal alignment of Si and
52, and not just the value V(n, m). By Lemma 12.1.1 it learns that there is an optimal
alignment of S\ and S2 consisting of an optimal alignment of the first n /2 characters of
S\ with the first k* characters of 52, followed by an optimal alignment of the last n/2
characters of Si with the last m—k* characters of S2. In fact, since the algorithm has also
learned the subpath (subalignment) Ln/2, the problem of aligning Si and S2 reduces to
two smaller alignment problems, one for the strings Si[l. .n/2 — 1] and 52[l..Jti], and one
for the strings S][n/2 + l..ra] and S2[k2..m]. We call the first of the two problems the top
problem and the second the bottom problem. Note that the top problem is an alignment
problem on strings of lengths at most n/2 and k*, while the bottom problem is on strings
of lengths at most n/2 and m — k*.

In terms of the dynamic programming table, the top problem is computed in section A
of the original n by m table shown in Figure 12.2, and the bottom problem is computed
in section B of the table. The rest of the table can be ignored. Again, we can determine
the values in the middle row of A (or B) in time proportional to the total size of A (or B).
Hence the middle row of the top problem can be determined at most ck*n/2 time, and the
middle row in the bottom problem can be determined in at most c(m — k*)n/2 time. These
two times add to cnm/2. This leads to the full idea for computing the optimal alignment
of Si and S2.

258 REFINING CORE STRING EDITS AND ALIGNMENTS

12.1.3. The full idea: use recursion

Having reduced the original n by m alignment problem (for S\ and S2) to two smaller
alignment problems (the top and bottom problems) using O(nm) time and O(m) space,
we now solve the top and bottom problems by a recursive application of this reduction.
(For now, we ignore the space needed to save the subpaths of L.) Applying exactly the
same idea as was used to find k* in the n by m problem, the algorithm uses 0{m) space
to find the best column in row n/4 to break up the top n/2 by k\ alignment problem.
Then it reuses O(m) space to find the best column to break up the bottom n/2 by m — k2

alignment problem. Stated another way, we have two alignment problems, one on a table
of size at most n/2 by k* and another on a table of size at most n/2 by m — k*. We can
therefore find the best column in the middle row of each of the two subproblems in at most
cnk*/2 + cn(m — k*)/2 = cnm/2 time, and recurse from there with four subproblems.

Continuing in this recursive way, we can find an optimal alignment of the two original
strings with log2 n levels of recursion, and at no time do we ever use more than O(m) space.
For convenience, assume that n is a power of two so that each successive halving gives a
whole number. At each recursive call, we also find and store a subpath of an optimal path
L, but these subpaths are edge disjoint, and so their total length is O(n + m). In summary,
the recursive algorithm we need is:

Hirschberg's linear-space optimal alignment algorithm

Procedure OPTAQ, V, r, r');
begin
h := (/' - /) /2;
In 0(1' — I) = O(m) space, find an index k* between / and /', inclusively, such that

there is an optimal alignment of Si [I..I'] and S2[r..r'] consisting of an optimal alignment of
Si [l..h] and S2[r..k*] followed by an optimal alignment of Si [h + 1../'] and S2[k* + l . .r '] .
Also find and store the subpath Lh that is part of an optimal (longest) path L' from cell
(/, r) to cell (/', r') and that begins with the last cell k\ on L' in row h — 1 and ends with
the first cell k2 on L' in row h + 1. This is done as described earlier.

Call OPTA(l, h-\,r,kx); {new top problem}
Output subpath Lh;
Call OPTAQi + 1,1', k2, r'); {new bottom problem}
end.

The call that begins the computation is to OPTA(\, n, 1, m). Note that the subpath Lh

is output between the two OPTA calls and that the top problem is called before the bottom
problem. The effect is that the subpaths are output in order of increasing h value, so that
their concatenation describes an optimal path L from (0, 0) to (n, m), and hence an optimal
alignment of Si and S2.

12.1.4. Time analysis

We have seen that the first level of recursion uses cnm time and the second level uses
at most cnm/2 time. At the ith level of recursion, we have 2'"1 subproblems, each of
which has n/2'~l rows but a variable number of columns. However, the columns in these
subproblems are distinct so the total size of all the problems is at most the total number
of columns, m, times n/2'~]. Hence the total time used at the ith level of recursion is at

12.2. FASTER ALGORITHMS WHEN DIFFERENCES ARE BOUNDED 259

most cnm/2'~K The final dynamic programming pass to describe the optimal alignment
takes cnm time. Therefore, we have the following theorem:

Theorem 12.1.1. Using Hirschberg 's procedure OPTA, an optimal alignment of two
strings of length n and m can be found in X °̂f" cnm/2'~' < 2cnm time and O(m) space.

For comparison, recall that cnm time is used by the original method of filling in the
full n by m dynamic programming table. Hirschberg's method reduces the space use from
®(nm) to 0(m) while only doubling the worst-case time needed for the computation.

12.1.5. Extension to local alignment

It is easy to apply Hirschberg's linear-space method for (global) alignment to solve the
local alignment problem for strings Si and 52. Recall that the optimal local alignment of
Si and S2 identifies substrings a and P whose global alignment has maximum value over
all pairs of substrings. Hence, if substrings a and /J can be found using only linear space,
then their actual alignment can be found in linear space, using Hirschberg's method for
global alignment.

From Theorem 11.7.1, the value of the optimal local alignment is found in the cell
0'*, j*) containing the maximum v value. The indices i* and j * specify the ends of strings
a and fi whose global alignment has a maximum similarity value. The v values can be
computed rowwise, and the algorithm must store values for only two rows at a time. Hence
the end positions i* and j * can be found in linear space. To find the starting positions of
the two strings, the algorithm can execute a reverse dynamic program using linear space
(we leave this to the reader to detail). Alternatively, the dynamic programming algorithm
for v can be extended to set a pointer h(i, j) for each cell (i, j), as follows: If v(i, j) is
set to zero, then set the pointer h(i, j) to (i, j); if v(i, j) is set greater than zero, and if
the normal traceback pointer would point to cell (p, q), then set h(i, j) to h(p, q). In this
way, h(i*, j*) specifies the starting positions of substrings a and fl, respectively. Since a
and ft can be found in linear space, the local alignment problem can be solved in 0{nm)
time and 0{m) space. More on this topic can be found in [232] and [97].

12.2. Faster algorithms when the number of differences is bounded

In Sections 9.4 and 9.5 we considered several alignment and matching problems where the
number of allowed mismatches was bounded by a parameter k, and we obtained algorithms
that run faster than without the imposed bound. One particular problem was the k-mismatch
problem, finding all places in a text T where a pattern P occurs with at most it mismatches.
A direct dynamic programming solution to this problem runs in 0(nm) time for a pattern
of length n and a text of length m. But in Section 9.4 we developed an <9(ifcm)-time solution
based on the use of a suffix tree, without any need for dynamic programming.

The 0(km)-\ime result for the ̂ -mismatch problem is useful because many applications
seek only exact or nearly exact occurrences of P in T. Motivated by the same kinds of
applications (and additional ones to be discussed in Section 12.2.1), we now extend the
^-mismatch result to allow both mismatches and spaces (insertions and deletions from the
viewpoint of edit distance). We use the term "differences" to refer to both mismatches and
spaces.

260 REFINING CORE STRING EDITS AND ALIGNMENTS

Two specific bounded difference problems

We study two specific problems: the k-difference global alignment problem and the more
involved k-difference inexact matching problem. This material was developed originally in
the papers of Ukkonen [439], Fickett [155], Myers [341], and Landau and Vishkin [289].
The latter paper was expanded and illustrated with biological applications by Landau,
Vishkin, and Nussinov [290]. There is much additional algorithmic work exploiting the
assumption that the number of differences may be small [341, 345, 342, 337,483, 94,93,
95, 373, 440, 482, 413, 414, 415]. A related topic, algorithms whose expected running
time is fast, is studied in Section 12.3.

Definition Given strings Si and S2 and a fixed number k, the k-difference global
alignment problem is to find the best global alignment of Si and S2 containing at most
k mismatches and spaces (if one exists).

The fc-difference global alignment problem is a special case of edit distance and is
useful when 5i and 52 are believed to be fairly similar. It also arises as a subproblem in
more complex string processing problems, such as the approximate PCR primer problem
considered in Section 12.2.5. The solution to the fc-difference global alignment problem
will also be used to speed up global alignment when no bound k is specified.

Definition Given strings P and T, the k-difference inexact matching problem is to find
all ways (if any) to match P in T using at most k character substitutions, insertions, and
deletions. That is, find all occurrences of P in T using at most k mismatches and spaces.
(End spaces in T but not P are free.)

The inclusion of spaces, in addition to mismatches, allows a more robust version of
the fc-mismatch problem discussed in Section 9.4, but it complicates the problem. Unlike
our solution to the ^-mismatch problem, the ^-differences problem seems to require the
use of dynamic programming. The approach we take is to speed up the basic 0(nm)-time
dynamic programming solution, making use of the assumption that only alignments with
at most k differences are of interest.

12.2.1. Where do bounded difference problems arise?

There is a large (and growing) computer science literature on algorithms whose efficiency is
based on assuming a bounded number of differences. (See [93] for a survey and comparison
of some of these, along with an additional method.) It is therefore appropriate, before
discussing specific algorithmic results, to ask whether bounded difference problems arise
frequently enough to justify the extensive research effort.

Bounded difference problems arise naturally in situations where a text is repeatedly
modified (edited). Alignment of the text before and after modification can highlight the
places where changes were made. A related application [345] concerns updating a graphics
screen after incremental changes have been made to the displayed text. The assumption
behind incremental screen update is that the text has changed by only a small amount, and
that changing the text on the screen is slow enough to be seen by the user. The alignment
of the old and new text then specifies the fewest changes to the existing screen needed to
display the new text. Graphic displays with random access can exploit this information to
very rapidly update the screen. This approach has been taken by a number of text editors.
The effects of the speedup are easily seen and are often quite dramatic.

12.2. FASTER ALGORITHMS WHEN DIFFERENCES ARE BOUNDED 261

12.2.2. Illustrations from molecular biology

In biological applications of alignment, it may be less apparent that a bound on the number
of allowed (or expected) differences between strings is ever justified. It has been explic-
itly stated by some computer scientists that bounded difference alignment methods have
no relevance in biology. Certainly, the major open problems in aligning and comparing
biological sequences arise from strings (usually protein) that have very little overall sim-
ilarity. There is no argument on that point. Still, there are many sequence problems in
molecular biology (particularly problems that come from genomics and handling DNA
sequences rather than proteins) where it is appropriate to restrict the number of allowed
(or expected) differences. A few hours of skimming biology journals will turn up many
such examples.' We have already discussed one application, that of searching for STSs
and ESTs in newly sequenced DNA (see Section 7.8.3). We have also mentioned the ap-
proximate PCR primer problem, which will be discussed in detail in Section 12.2.5. We
mention here a few additional examples of alignment problems in biology where setting
a bound on the number of differences is appropriate.

Chang and Lawler [94] point out that present DNA sequence assembly methods (see
Sections 16.14 and 16.15.1) solve a massive number of instances of the approximate suffix-
prefix matching problem. These methods compute, for every pair of strings S\, S2 in a large
set of strings, the best match of a suffix of Si with a prefix of S2, where the match is permitted
to contain a "modest" percentage of differences. Using standard dynamic programming
methods, those suffix-prefix computations have accounted for over 90% of the computation
time used in past sequence assembly projects [363]. But in this application, the only suffix-
prefix matches of interest are those with a modest number of differences. Accordingly, it
is appropriate to use a faster algorithm that explicitly exploits that assumption. A related
problem occurs in the "BAC-PAC" sequencing method involving hundreds of thousands
of sequence alignments (see Section 16.13.1).

Another example arises in approaches to locating genes whose mutation causes or
contributes to certain genetic diseases. The basic idea is to first identify (through genetic
linkage analysis, functional analysis, or other means) a gene, or a region containing a
gene, that is believed to cause or contribute to the disease of interest. Copies of that gene
or region are then obtained and sequenced from people who are affected by the disease
and people (usually relatives) who are not. The sequenced DNA from the affected and
unaffected individuals is compared to find any consistent differences. Since many genetic
diseases are caused by very small changes in a gene (possibly a single base change,
deletion, or inversion), the problem involves comparing strings that have a very small
number of differences. Systematic investigation of gene polymorphisms (differences) is
an active area of research, and there are databases holding all the different sequences that
have been found for certain specific genes. These sequences generally will be very similar
to one another, so alignment and string manipulation tools that assume a bounded number
of differences between strings are useful in handling those sequences.

A similar situation arises in the emerging field of "molecular epidemiology" where one
tries to trace the transmission history of a pathogen (usually a virus) whose genome is
mutating rapidly. This fine-scale analysis of the changing viral DNA or RNA gives rise to
string comparisons between very similar strings. Aligning pairs of these strings to reveal

1 I recently attended a meeting concerning the Human Genome Project, where numerous examples were presented
in talks. I stopped taking notes after the tenth one.

262 REFINING CORE STRING EDITS AND ALIGNMENTS

their similarities and differences is a first step in sorting out their history and the constraints
on how they can mutate. The history of their mutations is then represented in the form
of an evolutionary tree (see Chapter 17). Collections of HIV viruses have been studied
in this way. Another good example of molecular epidemiology [348] arises in tracing the
history of Hantavirus infections in the southwest United States that appeared during the
early 1990s.

The final two examples come from the milestone paper [162] reporting the first com-
plete DNA sequencing of a free-living organism, the bacteria Haemophilus influenzae Rd.
The genome of this bacteria consists of 1,830,137 base pairs and its full sequence was de-
termined by pure shotgun sequencing without initial mapping (see Section 16.14). Before
the large-scale sequencing project, many small, disparate pieces of the bacterial genome
had been sequenced by different groups, and these sequences were in the DNA databases.
One of the ways the sequencers checked the quality of their large-scale sequencing was
to compare, when possible, their newly obtained sequence to the previously determined
sequence. If they could not match the appropriate new sequences to the old ones with only
a small number of differences, then additional steps were taken to assure that the new
sequences were correct. Quoting from [162], "The results of such a comparison show that
our sequence is 99.67 percent identical overall to those GenBank sequences annotated as
H. influenzae Rd".

From the standpoint of alignment, the problem discussed above is to determine whether
or not the new sequences match the old ones with few differences. This application illus-
trates both kinds of bounded difference alignment problems introduced earlier. When the
location in the genome of the database sequence is known, the corresponding string in
the full sequence can be extracted for comparison. The resulting comparison problem is
then an instance of the k-difference global alignment problem that will be discussed next,
in Section 12.2.3. When the genome location of the database sequence P is not known
(and this is common), the comparison problem is to find all the places in the full sequence
where P occurs with a very small number of allowed differences. That is then an instance
of the /^-difference inexact matching problem, which will be considered in Section 12.2.4.

The above story of H. influenzae sequencing will be repeated frequently as systematic
large-scale DNA sequencing of various organisms becomes more common. Each full
sequence will be checked against the shorter sequences for that organism already in the
databases. This will be done not only for quality control of the large-scale sequencing,
but also to correct entries in the databases, since it is generally believed that large-scale
sequencing is more accurate.

The second application from [162] concerns building a nonredundant database of bac-
terial proteins (NRBP). For a number of reasons (for example, to speed up the search or to
better evaluate the statistical significance of matches that are found), it is helpful to reduce
the number of entries in a sequence database (in this case, bacterial protein sequences)
by culling out, or combining in some way, highly similar, "redundant" sequences. This
was done in the work presented in [162], and a "nonredundant" version of GenBank is
regularly compiled at The National Center for Biotechnology Information. Fleischmann
etal. [162] write:

Redundancy was removed from NRBP at two stages. All DNA coding sequences were ex-
tracted from GenBank . . . and sequences from the same species were searched against each
other. Sequences having more than 97 percent identity over regions longer than 100 nu-
cleotides were combined. In addition, the sequences were translated and used in protein

12.2. FASTER ALGORITHMS WHEN DIFFERENCES ARE BOUNDED 263

\

\
\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\
\

\
\

\

t t two cells off the main diagonal

main diagonal

Figure 12.3: The main diagonal and a strip that is k = 2 spaces off the main diagonal on each side.

comparisons with all sequences in SwissProt... Sequences belonging to the same species
and having more than 98 percent similarity over 33 amino acids were combined.

A similar example is discussed in [399] where roughly 170,000 DNA sequences "were
subjected to an optimal alignment procedure to identify sequence pairs with at least 97%
identity". In these alignment problems, one can impose a bound on the number of allowed
differences. Alignments that exceed that bound are not of interest - the computation only
needs to determine whether two sequences are "sufficiently similar" or not. Moreover,
because these applications involve a large number of alignments (all database entries
against themselves), efficiency of the method is important.

Admittedly, not every bounded-difference alignment problem in biology requires a so-
phisticated algorithm. But applications are so common, the sizes of some of the applications
are so large, and the speedsups so great, that it seems unproductive to completely dismiss
the potential utility to molecular biology of bounded-difference and bounded-mismatch
methods. With this motivation, we now discuss specific techniques that efficiently solve
bounded-difference alignment problems.

12.2.3. ^-difference global alignment

The problem is to find the best global alignment subject to the added condition that
the alignment contains at most k mismatches and spaces, for a given value k. The goal
is to reduce the time bound for the solution from 0(nm) (based on standard dynamic
programming) to 0(km). The basic approach is to compute the edit distance of Si and S2

using dynamic programming but fill in only an O(km)-size portion of the full table.
The key observation is the following: If we define the main diagonal of the dynamic

programming table as the cells (/, i) for i < n < m, then any path in the dynamic
programming table that defines a ^-difference global alignment must not contain any cell
(/, i + 1) or (/, / - /) where / is greater than k (see Figure 12.3). To understand this, note
that any path specifying a global alignment begins on the main diagonal (in cell (0, 0))
and ends on, or to the right of, the main diagonal (in cell (n, m)). Therefore, the path must
introduce one space in the alignment for every horizontal move that the path makes off
the main diagonal. Thus, only those paths that are never more than k horizontal cells from
the main diagonal are candidates for specifying a fc-difference global alignment. (Note

264 REFINING CORE STRING EDITS AND ALIGNMENTS

that this implies that m — n < k is a necessary condition for there to be any solution.)
Therefore, to find any ^-difference global alignment, it suffices to fill in the dynamic
programming table in a strip consisting of 2k + 1 cells in each row, centered on the main
diagonal. When assigning values to cells in that strip, the algorithm follows the established
recurrence relations for edit distance except for cells on the upper and lower border of the
strip. Any cell on the upper border of the strip ignores the term in the recurrence relation
for the cell above it (since it is out of the strip); similarly, any cell on the lower border
ignores the term in the recurrence relation for the cell to its left. If m — n, the size of the
strip can be reduced by half (Exercise 4).

If there is no global alignment of Si and S2 with k or fewer differences, then the value
obtained for cell (n,m) will be greater than k. That value, greater than k, is not necessarily
the correct edit distance of S\ and S2> but it will indicate that the correct value for (n, m)
is greater than k. Conversely, if there is a global alignment with d < k differences, then
the corresponding path is contained inside the strip and so the value in cell (n,m) will be
correctly set to d. The total area of the strip is O(kn) which is O(km), because n and m
can differ by at most k. In summary, we have

Theorem 12.2.1. There is a global alignment of S\ and Si with at most k differences
if and only if the above algorithm assigns a value ofk or less to cell (n,m). Hence the
k-difference global alignment problem can be solved in O(km) time and 0{km) space.

What if A: is not specified?

The solution presented above can be used in somewhat different context. Suppose the
edit distance of S\ and S2 is k*, but we don't know k* or any bound on it ahead of time.
The straightforward dynamic programming solution to compute the edit distance, k*,
takes ®(nm) time and space. We will reduce those bounds to ®(k*m). So when the edit
distance is small, the method runs fast and uses little space. When the edit distance is
large, the method only uses 0(nm)-time and space, the same as for the standard dynamic
programming solution.

The idea is to successively guess a bound k on k* and use Theorem 12.2.1 to determine
if the guessed bound is big enough. In detail, the method starts with k = 1 and checks if
there is a global alignment with at most one difference. If so, then the best global alignment
(with zero or one difference) has been found. If not, then the method doubles k and again
checks if there is a ^-difference global alignment. At each successive iteration the method
doubles k and checks whether the current k is sufficient. The process continues until a
global alignment is found that has at most k differences, for the current value of k. When
the method stops, the best alignment in the present strip (of width k on either side of the
main diagonal) must have value k*. The reason is that the alignment paths are divided into
two types: those contained entirely in the present strip and those that go out of the strip.
The alignment in hand is the best alignment of the first type, and any path that goes out of
the strip specifies an alignment with more than k spaces. It follows that the current value
of cell (n,m) must be k*.

Theorem 12.2.2. By successively doubling k until there is a k-difference global alignment,
the edit distance k* and its associated alignment are computed in O(k*m) time and space.

PROOF Let k' be the largest value of k used in the method. Clearly, k' < 2k*. So the total
work in the method is 0{k'm + k'm/2 + k'm/4 H h m) = O(k'm) = O(k*m). D

12.2. FASTER ALGORITHMS WHEN DIFFERENCES ARE BOUNDED 265

0 1 2 3 4 5 6 7 8 9 10 11 12

- 1

- 2

- 3

- 4

- 5

- 6

- 7

Figure 12.4: The numbered diagonals of the dynamic programming table.

12.2.4. The return of the suffix tree: ^-difference inexact matching

We now consider the problem of inexactly matching a pattern P to a text T, when the
number of differences is required to be at most k. This is an extension of the fc-mismatch
problem but is more difficult because it allows spaces in addition to mismatches. The
^-mismatch problem was solved using suffix trees alone, but suffix trees are not well struc-
tured to handle insertion and deletion errors. The k-difference inexact matching problem
is also more difficult than the fc-difference global alignment problem because we seek an
alignment of P and T in which the end spaces occurring in T are not counted. Therefore,
the sizes of P and T can be very different, and we cannot restrict attention to paths that
stay within k cells of the main diagonal.

Even so, we will again obtain an 0(km) time and space method, combining dynamic
programming with the ability to solve longest common extension queries in constant
time (see Section 9.1). The resulting solution will be the first of several examples of
hybrid dynamic programming, where suffix trees are used to solve subproblems within
the framework of a dynamic programming computation. The 0(fcm)-time result was first
obtained by Landau and Vishkin [287] and Myers [341] and extended in a number of
papers. Good surveys of many methods for this problem appear in [93] and [421].

Definition As before, the main diagonal of the n by m dynamic programming table
consists of cells (i, i) for 0 < i < n < m. The diagonals above the main diagonal are
numbered 1 through m; the diagonal starting in cell (0, /) is diagonal i. The diagonals
below the main diagonal are numbered — 1 through —n; the diagonal starting in cell (i, 0)
is diagonal —i. (See Figure 12.4.)

Since end spaces in the text T are free, row zero of the dynamic programming table is
initialized with all zero entries. That allows a left end of T to be opposite a gap without
incurring any penalty.

Definition A d-path in the dynamic programming table is a path that starts in row zero
and specifies a total of exactly d mismatches and spaces.

Definition A d-path is farthest-reaching in diagonal i if it is a d-path that ends in
diagonal i, and the index of it's ending column c (along diagonal i) is greater than or
equal to the ending column of any other d-path ending in diagonal i.

Graphically, a d-path is farthest reaching in diagonal i if no other d-path reaches a cell
further along diagonal i.

266 REFINING CORE STRING EDITS AND ALIGNMENTS

R i i - l i i + l

Figure 12.5: Path R^ consists of a farthest-reaching (d - 1)-path on diagonal / + 1 (shown with dashes),
followed by a vertical edge (dots), which adds the cfth difference to the alignment, followed by a maximal
path (solid line) on diagonal / that corresponds to (maximal) identical substrings in Pand T.

Hybrid dynamic programming: the high-level idea

At the high level, the O(km) method will run in k iterations, each taking O(m) time. In
every iteration d < k, the method finds the end of the farthest-reaching d-path on diagonal
i, for each i from - n to m. The farthest-reaching d-path on diagonal i is found from the
farthest-reaching (d — l)-paths on diagonals i — l,i, and i + 1. This will be explained in
detail below. Any farthest-reaching <i-path that reaches row n specifies the end location (in
T) of an occurrence of P with exactly d differences. We will implement each iteration in
O(n + m) time, yielding the desired 0(&m)-time bound. Space will be similarly bounded.

Details

To begin, when d — 0, the farthest-reaching 0-path ending on diagonal i corresponds to the
longest common extension of T[i..m] and P[l..n], since a 0-path allows no mismatches
or spaces. Therefore, the farthest-reaching 0-path ending on diagonal i can be found in
constant time, as detailed in Section 9.1.

For d > 0, the farthest-reaching d-path on diagonal i can be found by considering the
following three particular paths that end on diagonal i.

• Path R\ consists of the farthest-reaching (d — l)-path on diagonal i + l, followed by a
vertical edge (a space in text T) to diagonal i, followed by the maximal extension along
diagonal i that corresponds to identical substrings in P and T. (See Figure 12.5). Since R\
begins with a (d — l)-path and adds one more space for the vertical edge, /?i is a rf-path.

• Path #2 consists of the farthest-reaching (d — l)-path on diagonal i — 1, followed by a
horizontal edge (a space in pattern P) to diagonal i, followed by the maximal extension
along diagonal / that corresponds to identical substrings in P and T. Path Ri is a a!-path.

• Path R3 consists of the farthest-reaching (d — 1)-path on diagonal i, followed by a diagonal
edge corresponding to a mismatch between a character of P and a character of T, followed
by a maximal extension along diagonal i that corresponds to identical substrings from P

. and T. Path /?3 is a d-path. (See Figure 12.6.)

Each of the paths Rlt R2, and R3 ends with a maximal extension corresponding to
identical substrings of P and T. In the case of R\ (or R2), the starting positions of the two
substrings are given by the last entry point of R\ (or R2) into diagonal i. In the case of /?3,
the starting position is the position just past the last mismatch on R^.

12.2. FASTER ALGORITHMS WHEN DIFFERENCES ARE BOUNDED 267

R ' i - l / i + l

Figure 12.6: The dashed line shows path R', the farthest-reaching {d - 1)-path ending on diagonal /.
The edge M on diagonal / just past the end of R' must correspond to a mismatch between Pand T (the
characters involved are denoted P(k) and T(k') in the figure).

Theorem 12.2.3. Each of the three paths R\, R2, and R3 are d-paths ending on diagonal
i. The farthest-reaching d-path on diagonal i is the path R\, R2, or /?3 that extends the
farthest along diagonal i.

PROOF Each of the three paths is an extension of a {d — 1)-path, and each extension adds
either one more space or one more mismatch. Hence each is a <i-path, and each ends on
diagonal i by definition. So the farthest-reaching d-path on diagonal i must either be the
farthest-reaching of R\, Ri, and Rj, or it must reach farther on diagonal i than any of those
three paths.

Let R' be the farthest-reaching (d - l)-path on diagonal i. The edge of the alignment
graph along diagonal i that immediately follows R' must correspond to a mismatch,
otherwise /?' would not be the farthest-reaching (d — l)-path on i. Let M denote that edge
(see Figure 12.6).

Let R* denote the farthest-reaching d-path on diagonal i. Since R* ends on diagonal i,
there is a point where R* enters diagonal i for the last time and then never leaves diagonal
i. If R* enters diagonal i for the last time above edge M, then R* must traverse edge M,
otherwise R* would not reach as far as R3. When R* reaches M (which marks the end of
/?')> it must also have {d — 1) differences; if that portion of R* had less than a total of (d — 1)
differences, then it could traverse M creating a (d — l)-path on diagonal i that reached
farther on diagonal i than /?', contradicting the definition of R'. It follows that if R* enters
diagonal i above M, then it will have d differences after it traverses M, and so it will end
exactly where R3 ends. So if R* is not R3, then R* must enter diagonal i below edge M.

Suppose R* enters diagonal i for the last time below edge M. Then R* must have d
differences, at that point of entry; if it had fewer differences then R' would again fail to
be the farthest-reaching (d — l)-path on diagonal i. Now R* enters diagonal i for the last
time either from diagonal i — 1 or diagonal i + l, say i + 1 (the case of i — 1 is symmetric).
So R* traverses a vertical edge from diagonal i + 1 to diagonal i, which adds a space to
R*. That means that the point where R* ends on diagonal i + 1 defines a (d — l)-path on
diagonal i + l. Hence R* leaves diagonal i + 1 at or above the point where the path R\
does. Then R{ and R* each have d spaces or mismatches at the points where they enter
diagonal i for the last time, and then they each run along diagonal i until reaching an edge
corresponding to a mismatch. It follows that R* cannot reach farther along diagonal i then
R\ does. So in this case, R* ends exactly where R\ ends.

268 REFINING CORE STRING EDITS AND ALIGNMENTS

The case that R* enters diagonal i for the last time from diagonal i — 1 is symmetric, and
R* ends exactly where R2 ends. In each case we have shown that R*, the assumed farthest-
reaching d-path on diagonal i, ends at the ending point of either Ru R2, or R3. Hence the
farthest-reaching d-path on diagonal i is the farthest-reaching of R\, R2, and /?3. •

Theorem 12.2.3 is the key to the O(km)-time method.

Hybrid dynamic programming: ^-differences algorithm

begin
d : = 0
for / := 0 to m do
find the longest common extension between P[l..n] and T[i..m]. This specifies the
end column of the farthest-reaching O-path on diagonal /.

For d = 0 to k do
begin

For / = — n to m do
begin
using the farthest-reaching (d — l)-paths on diagonals i, i — 1, and i + 1,
find the end, on diagonal i, of paths Ru R2, and /?3. The farthest-reaching
of these three paths is the farthest-reaching d-path on diagonal i;
end;

end;
Any path that reaches row n in column c say, defines an inexact match of P in
T that ends at character c of T and that contains at most k differences,

end.

Implementation and time analysis

For each value of d and each diagonal i, we record the column in diagonal / where the
farthest-reaching d-path ends. Since d ranges from 0 to k and there are only O(n + m)
diagonals, all of these values can be stored in O(km) space. In iteration d, the algorithm
only needs to retrieve the values computed in iteration (d — 1). The entire set of stored
values can be used to reconstruct any alignment of P in T with at most k differences. We
leave the details of that reconstruction as an exercise.

Now we proceed with the time analysis. For each d and each /, the end of three
particular (d — l)-paths must be retrieved. For a fixed d and i, this takes constant time,
so these retrievals take O(A:m)-time over the entire algorithm. There are also O(km)
path extensions, each along a diagonal, that must be computed. But each path extension
corresponds to a maximal identical substring in P and T starting at particular known
positions in P and T. Hence each path extension requires finding the longest substring
starting at a given location in T that matches a substring starting at a given location of P.
In other words, each path extension requires a longest common extension computation.
In Section 9.1 on page 196 we showed that any longest common extension computation
can be done in constant time, after linear preprocessing of the strings. Hence the 0{km)
extensions can all be computed in O(n + m + km) — 0{km) total time. Furthermore, as
shown in Section 9.1.2, these extensions can be implemented using only a copy of the two
strings and a suffix tree for the smaller of the two strings. In summary, we have

12.2. FASTER ALGORITHMS WHEN DIFFERENCES ARE BOUNDED 269

Theorem 12.2.4. All locations in T where pattern P occurs with at most k differences
can be found in O(km)-time and O(km) space. Moreover, the actual alignment of P and
T for each of these locations can be reconstructed in O(km) total time.

Sometimes this k differences result is reported in a somewhat simpler but less useful
form, requiring less space. If one is only interested in the end locations in T where P
inexactly matches in T with at most k differences, then the O(km) space bound can be
reduced to O(n + m). The idea is that the ends of the farthest-reaching (d — l)-paths in
each diagonal would then not be needed after iteration d and could be discarded. Thus
only O(n + m) space is needed to solve the simpler problem.

Theorem 12.2.5. In O(km)-time and O(n+m) space, the algorithm can find all the end
locations in T where P matches T with at most k differences.

12.2.5. The primer (and probe) selection problem revisited - An
application of bounded difference matching

In Exercise 61 of Chapter 7, we introduced an exact matching version of the primer (and
probe) selection problem. The simplest version of that problem starts with two strings a
and p. The exact matching version is:

Exact matching primer (and probe) problem For each index j past some starting
point, find the shortest substring y of a (if any) that begins at position j and that
does not appear as a substring of /?.

That problem can be solved in time proportional to the sum of the lengths, of a and /6.
The exact matching version of the primer selection problem may not fully model the

real primer selection problem (although as noted earlier, the exact matching version may
be realistic for probe selection). Recall that primers are short substrings of DNA that
hybridize to the desired part of string or and that ideally should not hybridize to any parts
of another string p. Exact matching is not an adequate model of practical hybridization
because a substring of DNA can hybridize, under the right conditions, to another string of
DNA even without exact matching; inexact matching of the right type may be enough to
allow hybridization. A more realistic version of the primer selection problem moves from
exact matching to inexact matching as follows:

Inexact matching primer problem Given a parameter p, find for each index j
(past some starting point), the shortest substring y of a (if any) that begins at position
j and that has edit distance at least \y \/p from any substring in fi.

We solve the above problem efficiently by solving the following-fc-difference problem:

^-difference primer problem Given a parameter k, find for each index j (past
some starting point), the shortest substring y of a (if any) that begins at position j
and that has edit distance at least k from any substring in f}.

Changing \y \/p to k in the problem statement (converting the Inexact matching primer
problem to the fc-difference primer problem) makes the solution easier but does not reduce
the utility of the solution. The reason is that the length of a practical primer must be within
a fixed and fairly narrow range, so for fixed p,\y\/p also falls in a small range. Hence for

270 REFINING CORE STRING EDITS AND ALIGNMENTS

a specified p, the ^-difference primer problem can be solved for a small range of choices
for k and still be expected to pick out useful primer candidates.

How to solve the ^-difference primer problem

We follow the approach introduced in [243]. The method examines each position j in a

separately. For any position j , the ^-difference primer problem becomes:

Find the shortest prefix of string a[j..n] (if it exists) that has edit distance at least k
from every substring in p.

The problem for a fixed j is essentially the "reverse" of the ^-differences inexact
matching problem. In the ^-difference inexact matching problem we want to find the
substrings of T that P matches, with at most k differences. But now, we want to reject any
prefix of a[j..n] that matches a substring of yS with less than k differences. The viewpoint
is reversed, but the same machinery works.

The solution is to run the ^-differences algorithm with string a[j..n] playing the role
of P and fi playing the role of T. The algorithm computes the farthest-reaching d-paths,
for d = k, in each diagonal. If row n is reached by any J-path for d < k — 1, then the
entire string a[j..n] matches a substring of fi with less than k differences, so no acceptable
primer can start at j . But, if none of the farthest-reaching (k — l)-paths reach row n, then
there is an acceptable primer starting at position j . In detail, if none of the farthest-reaching
of the rf-paths for d — k - 1 reach row r < n, then the substring y = a[j..r] has edit
distance at least k from every substring in p. Moreover, if r is the smallest row with that
property, then a[j..r] is the shortest substring starting at j that has edit distance at least k
from every substring in /?.

The above algorithm is applied to each potential starting position j in a, yielding the
following theorem:

Theorem 12.2.6. If a has length n and /3 has length m, then the k-dijferences primer
selection problem can be solved in 0(knm) total time.

12.3. Exclusion methods: fast expected running time

The ^-mismatch and ^-difference methods we have presented so far all have worst-case
running times of ®(km). For t « n , these speedups are significant improvements over the
®(nm) bound for straight dynamic programming. Still, even greater efficiency is desired
when m (the size of the text T) is large. The typical situation is that T represents a large
database of sequences, and the problem is to find an approximate match of a pattern P
in T. The goal is to obtain methods that are significantly faster than ®(km) not in worst
case, but in expected running time. This is reminiscent of the way that the Boyer-Moore
method, which typically skips over a large fraction of the text, has an expected running
time that is sublinear in the size of the text.

Several methods have been devised for approximate matching problems whose expected
running times are faster than ®(km). In fact, some of the methods have an expected running
time that is sublinear in m, for a reasonable range of k. These methods artfully mix exact
matching with dynamic programming and explicitly use many of the ideas in Parts I and
II of the book. Although the details differ considerably, all the methods we will discuss
have a similar high-level flavor. We focus on methods due to Baeza-Yates and Perleberg
[36], Chang and Lawler [94], and Myers [342], although only the first method will be

12.3. EXCLUSION METHODS: FAST EXPECTED RUNNING TIME 271

explained and analyzed in full detail. Two other methods (Wu-Manber [482] and Pevzner-
Waterman [373]) will also be mentioned. These methods do not completely achieve the
goal of provable linear and sublinear expected running times for all practical ranges of
errors (and this remains a superb open problem), but they do achieve the goal when the
error rate k/n is "modest".

Let a be the size of the alphabet used in P and T. As usual, n is the length of P and
m is the length of T. For the general discussion, an occurrence of P in T with at most
k errors (mismatches or differences depending on the particular problem) will be called
an approximate occurrence of P. The high-level outline of most of the methods is the
following:

Partition approach to approximate matching

a. Partition T or P into consecutive regions of a given length r (to be specified later).

b. Search phase Using various exact matching methods, search T to find length-r intervals
of T (or regions, if T was partitioned) that could be contained in an approximate occurrence
of P. These are called surviving intervals. The nonsurviving intervals are definitely not
contained in any approximate occurrence of P, and the goal of this phase is to eliminate
as many intervals as possible.

c. Check phase For each surviving interval R of T, use some approximate matching
method to explicitly check if there is an approximate occurrence of P in a larger interval
around R.

The methods differ primarily in the choice of r, in the choice of string to partition,
and in the exact matching methods used in the search phase. The methods also differ in
the definition of a region but are not generally affected by the specific choice of checking
algorithm. The point of the partition approach is to exclude a large amount of T, using
only (sub)linear expected time in the search phase, so that only (sub)linear expected time
is needed to check the few surviving intervals. A balance is needed between searching and
checking because a reduction in the time used in one phase causes an increase in the time
used in the other phase.

12.3.1. The BYP method

The first specific method we will look at is due to R. Baeza-Yates and C. Perleberg [36].
Its expected running time is O(m) for modest error rates (made precise below).

Let r = |_nrJ> ar)d partition P into consecutive r-length regions (the last region may
be of length less than r). By the choice of r, there are k + 1 regions that have the full
length r. The utility of this partition is suggested in the following lemma.

Lemma 12.3.1. Suppose P matches a substring T ofT with at most k differences. Then
T' must contain at least one interval of length r that exactly matches one of the r-length
regions of the partition of P.

PROOF In the alignment of P to T', each region of P aligns to some part of T (see Figure
12.7), defining k + 1 subalignments. If each of those k + 1 subalignments were to contain
at least one error (mismatch or space), then there would be more than k differences in
total, a contradiction. Therefore, one of the first k + 1 regions of P must be aligned to an
interval of 7" without any errors. •

Note that the lemma also holds even for the ^-mismatch problem (i.e., when no space

272 REFINING CORE STRING EDITS AND ALIGNMENTS

m

p I I I I "
1 jfc+l

Figure 12.7: The first k + 1 regions of Pare each of length r = J^T

insertions are allowed). Lemma 12.3.1 leads to the following approximate matching al-
gorithm:

Algorithm BYP

a. Let V be the set of k + 1 substrings of P taken from the first k + 1 regions of P 's partition.

b. Build a keyword tree (Section 3.4) for the set of "patterns" V.

c. Using the Aho-Corasik algorithm (Section 3.4), find I , the set of all starting locations in
T where any pattern in V occurs exactly.

d. For each index i e I use an approximate matching algorithm (usually based on dynamic
programming) to locate the end points of all approximate occurrences of P in the substring
T[i — n — k..i + n + k] (i.e., in an appropriate-length interval around i).

By Lemma 12.3.1, it is easy to establish that the algorithm correctly finds all approxi-
mate occurrences of P in T. The point is that the interval around each i is "large enough" to
align with any approximate occurrence of P that spans i, and there can be no approximate
occurrence of P outside such an interval. A formal proof is left as an exercise. Now we
focus on specific implementation details and time analysis.

Building the keyword tree takes O(n) time, and the Aho-Corasik algorithm takes 0{m)
(worst-case) time (Section 3.4). So steps b and c take O(n + m) time. There are a number
of alternate implementations for steps b and c. One is to build a suffix tree for T, and
then use it to find every occurrence in T of a pattern in V (see Section 7.1). However, that
would be very space intensive. A space-efficient version of this approach is to construct a
generalized suffix tree for only V, and then match T to it (in the way that matching statistics
are computed in Section 7.8.1). Both approaches take ®(n + m) worst-case time, but are
no faster in expected time because every character in T is examined. A faster approach in
practice is to use the Boyer-Moore set matching method based on suffix trees, which was
developed in Section 7.16. That algorithm will skip over parts of T, and hence it breaks
the @(m) bottleneck. A different variation was developed by Wu and Manber [482] who
implement steps b and c using the Shift-And method (Section 4.2) on a set of patterns.
Another approach, found in the paper of Pevzner and Waterman [373] and elsewhere, uses
hashing to identify long exact matching substrings of P and T. Of course, one can use
suffix trees to find long common substrings, and one could develop a Karp-Rabin type
method as well. Hashing, or approaches based on suffix trees, that look directly for long
common substrings between P and T, seem a bit more robust than BYP because there is
no string partition involved. But the only stated time bounds in [373] are the same as those
for BYP.

In the checking phase, step d, the algorithm executes some approximate matching
algorithm between P and an interval of T of length O(n), for each index in 1. Naively, each
of these checks can be done in O(n2) time by dynamic programming (global alignment).
Even this time bound will be adequate to establish an expected O(m) overall running
time for the range of error rates that will be detailed below. Alternately, the Landau-
Vishkin method (Section 12.2) based on suffix trees could be used, so that each check

12.3. EXCLUSION METHODS: FAST EXPECTED RUNNING TIME 273

takes only O(kn) worst-case time. If no spaces are allowed in the alignment of P to T'
(only matches and mismatches) then the simpler <9(fcn)-time approach based on longest
common extension (Section 9.1) can be used, or if attention is paid to exactly where in P
any match is found, then O(n) time suffices for each check.

12.3.2. Expected time analysis of algorithm BYP

Since steps b and c run in O(m) worst-case time, we only need to analyze step d. The key
is to estimate the expected size of set X.

In the following analysis, we assume that each character of T is drawn uniformly (i.e.,
with equal probability) from an alphabet of size a . However, P can be an arbitrary string.
Consider any pattern p � V. Since p has length r, and T contains roughly m substrings
of length r, the expected number of exact occurrences of p in T is m/ar. Therefore, the
expected total number of occurrences in T of patterns from V (i.e., the expected size of
I)ism(k + l)/ar.

For each i � 1, the algorithm spends O(n2) time (or less if faster methods are used) in
the checking phase. So the expected checking time is mn2(k + \)/ar. The goal is to make
the expected checking time linear in m for modest k, so we must determine what values
of k make

mn\k + 1)
< cm,

ar

for some constant c.
To simplify the analysis, replace k by n — 1, and solve for r in

mr?
= cm.r

3This gives or = £ , so r = logCT n3 - logCT c. But r = | _ ^ J , so

Theorem 12.3.1. Algorithm BYP runs in O(m) time fork = O (^) .

Stated another way, as long as the error rate is less than one in logCT n characters,
algorithm BYP will run in linear time as a function of m.

The bottleneck in the BYP method is the ®(m) time required to run the Aho-Corasik
algorithm. Using the Boyer-Moore set matching method should reduce that time in prac-
tice, but we cannot present a time analysis for that approach. However, the Chang-Lawler
method has an expected time bound that is provably sublinear for k = O (j ^) .

12.3.3. The Chang-Lawler method

For ease of exposition, we will explain the Chang-Lawler (CL) method [94] for the k-
mismatches problem; we leave the extension to ^-differences as an exercise.

In CL, it is string T, not P, that is partitioned into consecutive fixed regions of length
r = n/2. These regions are large compared to the regions in BYP. The purpose of the length
n/2 is to assure that no matter how P is aligned to T (without inserted spaces), at least one
of the fixed regions in T's partition is completely contained in the interval spanned by P
(see Figure 12.8). Therefore, if P occurs in T with at most k mismatches, there must be one
region of T that is spanned by that occurrence of P and, of course, that region matches
its counterpart in P with at most k mismatches. Based on this observation, the search
phase of CL examines each region in the partition of T to find regions that cannot match

274 REFINING CORE STRING EDITS AND ALIGNMENTS

m
H 1 1 1 1 1 1 1 1

Figure 12.8: Each full region in T has length r = n/2. This assures that no matter how P is aligned with
T, P spans one full region.

Figure 12.9: Blowup of one region in T aligned with one copy of P. Each black box shows a mismatch
between a character in P and its counterpart in T.

any substring of P with at most k mismatches. These regions are excluded, and then an
interval around each surviving region is checked using an approximate matching method,
as in BYP. The search phase of CL relies heavily on the matching statistics discussed in
Section 7.8.1.

Recall that the value of matching statistic ms(i) is the length of the longest substring
starting at position / of T that matches a substring somewhere (an unspecified location)
in P. Recall also, that for any string S, all the matching statistics for the positions in S
can be computed in O(|5|) total time. This is true even when S is a substring of a larger
string T.

Now let T be the substring of one of the regions of T 's partition that matches a substring
P' of P with at most k mismatches (see Figure 12.9). The alignment of P' and 7" can be
divided into at most k + 1 intervals where no mismatches occur, alternating with intervals
containing only mismatches. Let i be the starting position of any one of those matching
intervals, and let / be its length. Then clearly, ms{i) > I. The CL search phase exploits this
observation. It executes the following algorithm for each region R in the partition of T:

The CL search in region R

Set j to the starting position j * of region R in T.
en := 0;
Repeat
compute ms(j);
j := j + ms(j) + 1;
en := en + 1;
Until en = k or j — j * > n/2.
If j — j* > n/2 then region R survives, otherwise it is excluded.

If 7? is a surviving region, then in the checking phase CL executes an approximate
matching algorithm for P against a neighborhood of T that starts n/2 positions to the left
of R and ends n/2 positions to its right. This neighborhood is of size 3n/2, and so each
check can be executed in 0{kri) time.

The correctness of the CL method comes from the following lemma, and the fact that
the neighborhoods are "large enough".

Lemma 12.3.2. When the CL search declares a region R excluded, then there is no
occurrence of P in T with at most k mismatches that completely contains region R.

The proof is easy and is left to the reader, as is its use in a formal proof of the correctness
of CL. Now we consider the time analysis.

12.3. EXCLUSION METHODS: FAST EXPECTED RUNNING TIME 275

The CL search is executed on 2m/n regions of T. For any region R let / be the last
value of j (i.e., the value of j when en reaches k or when j — j* exceeds n/2). Thus, in
R, matching statistics are computed for the interval of length / - j* < n/2. With the
matching statistics algorithm in Section 7.8.1, the time used to compute those matching
statistics is 0{j' — j *) . Now the expected value of / — j* is less than or equal to k times
the expected value of ms(i), for any i. Let E(M) denote the expected value of a matching
statistic, and let e denote the expected number of regions that survive the search phase.
Then the expected time for the search phase is 0(2mkE(M)/n), and the expected time
for the checking phase is 0{kne).

In the following analysis, we assume that P is a random string where each character is
chosen uniformly from an alphabet of size a.

Lemma 12.3.3. E(M), the expected value of a matching statistic, is O(logCT n).

PROOF For fixed length d, there are roughly n substrings of length din P, and there are
od substrings of length d that can be constructed. So, for any specific string a of length
d, the probability that a is found somewhere in P is less than n/ad. This is true for any
d, but vacuously true until od = n (i.e., when d = logCT n).

Let X be the random variable that has value logCT n for ms(i) < logCT n; otherwise it has
value ms(i). Then

00 /E(M)<E(X)<\ogan+ J2 — =logffn + 2.
l=\ogan °

Corollary 12.3.1. The expected time that CL spends in the search phase is 0(2mk \ogan/n),
which is sublinear in m for k < n/ logCT n.

The analysis for e, the expected number of surviving regions is too difficult to present
here. It is shown in [94] that when k = O(n/loga n), then e = m/n4, so the expected
time that CL spends in the checking phase is O(km/n3) = o(m). The search phase of CL
is so effective in excluding regions of T that the checking phase has very small expected
running time.

12.3.4. Multiple filtration for ^-mismatches

Both the BYP and the CL methods use fairly simple combinatorial criteria in their search
phases to exclude intervals of T. One can devise more stringent conditions that are nec-
essary for an interval of T to be contained in an approximate occurrence of P. In the
context of the /c-mismatches problem, conditions of this type (called filtration conditions)
were developed and studied by Pevzner and Waterman [373]. These conditions are used
together with substring hashing to obtain another linear expected-time method for the
^-mismatch problem. Empirical results are given in [373] that show faster running times
in practice than other methods for the fc-mismatch problem.

12.3.5. Myers's sublinear-time method

Gene Myers [342,337] developed an exclusion method that is more sophisticated than the
ones we have discussed so far and that runs in sublinear time for a wider range of error
rates. The method handles approximate matching with insertions and deletions as well as
mismatches. The full algorithm and its analysis are too complex for detailed discussion

276 REFINING CORE STRING EDITS AND ALIGNMENTS

here, but we can introduce some of the ideas it uses to address deficiencies in the other
exclusion methods.

There are two basic problems with the Baeza-Yates-Perlberg and the Chang-Lawler
methods (and the other exclusion methods we have mentioned). First, the exclusion criteria
they use permit a large expected number of surviving regions compared to the expected
number of true approximate matches. That is, not every initial surviving region is actu-
ally contained in an approximate match, and the ratio of expected survivors to expected
matches is fairly high (for random patterns and text). Further, the higher the permitted
error rate, the more severe is the problem. Second, when a surviving region is first located,
the methods move directly to full dynamic programming computations (or some other rel-
atively expensive operations) to check for an approximate match in a large interval around
the surviving region. Hence the methods are required to do a large amount of computation
for a large number of intervals that don't contain any approximate match.

Compared to the other exclusion methods, Myers's method contains two different ideas
to make it both more selective (finding fewer initial surviving regions) and less expensive
to test the ones that are found. Myers's algorithm begins in a manner similar to the other
exclusion methods. It partitions P into short substrings (to be specified later) and then
finds all locations in T where these substrings appear with a small number of allowed
differences. The details of the search are quite different from the other methods, but the
intent (to exclude a large portion of T from further consideration) is the same. Each of
these initial alignments of a substring of P that is found (approximately) in T is called
a surviving match. A surviving match roughly plays the role of a surviving region in the
other exclusion methods, but it specifies two substrings (one in P and one in 7") rather
than just a single substring, as a surviving region does. Another way to think of a surviving
region is as a roughly diagonal subpath in the alignment graph for P and T.

Having found the initial surviving matches (or surviving regions), all the other exclusion
methods we have mentioned would next check a full interval of length roughly 2n around
each surviving region in T to see if it contains an approximate match to P. In contrast,
Myers's method will incrementally extend and check a growing interval around each initial
surviving match to create longer surviving matches or to exclude a surviving match from
further consideration. This is done in about O(log n) iterations. (Recall that n is the length
of the pattern and m is the length of the text.)

Definition For a given error rate e, a string S e-matches a substring of T if S matches
the substring using at most e\S\ insertions, deletions, and mismatches.

For example, let S = aba and e = 2/3. Then ac e-matches 5 using one mismatch and
one deletion operation.

In the first iteration, the pattern P is partitioned into consecutive, nonoverlapping sub-
patterns of length logCT m (assumed to be an integer), and the algorithm finds all substrings
in T that e-match one of these short subpatterns (discussed in more detail below). The
length of these subpatterns is short enough that all the e -matches can be found in sublin-
ear expected time for a wide range of � values. These e -matches are the initial surviving
matches.

The algorithm next tries to extend each initial surviving match to become an e-match
between substrings (in P and T) that are roughly twice as long as those in the current
surviving match. This is done by dynamic programming in an appropriate interval around
the surviving match. In each successive iteration, the method applies a more selective and
expensive filter, trying to double the length of the e-match around each surviving match.

12.3. EXCLUSION METHODS: FAST EXPECTED RUNNING TIME 277

Since the intervals of interest double in length, the time used per interval grows four fold
in each successive iteration. However, the number of surviving matches is expected to
fall hyper-exponentially in each successive iteration, more than offsetting the increase in
computation time per interval.

With this iterative expansion, the effort expended to check any initial surviving match
is doled out incrementally throughout the O(log -^~) iterations, and is not continued
for any surviving match past an iteration where it is excluded. We now describe in a bit
more detail how the initial surviving matches are found and how they are incrementally
extended in successive iterations.

The first iteration

Definition For a string 5 and value of e, let d — e \ S \. The d-neighborhood of S is the
set of all strings that e-match S.

For example, over the two-letter alphabet [a,b], if S = aba and d = 1, then the
1-neighborhood of 5 is [bba, aaa, abb, aaba, abaa, baba, abba, abab, ba, aa, ab}. It is
created from S by the operations of mismatch, insertion and deletion respectively. The
condensed d-neighborhood of S is created from the d-neighborhood of S by removing
any substring that is a prefix of another string in the d-neighborhood. The condensed
1-neighborhood S is {bba, aaa, aaba, abaa, baba, abba, abab}.

Recall that pattern P is initially partitioned into subpatterns of length logCT m (assumed
to be an integer). Let V be the set of these subpatterns. In the first iteration, the algorithm
(conceptually) constructs the condensed d-neighborhood for each subpattern in V, and
then finds all locations of substrings in text T that exactly match one of the substrings
in one of the condensed d-neighborhoods. In this way, the method finds all substrings of
T that e-match one of the subpatterns in V. These e-matches form the initial surviving
matches.

In actuality, the tasks of generating the substrings in the condensed d-neighborhoods
and of searching for their exact occurrences in T are intertwined and require text T to
have been preprocessed into some index structure. This structure could be a suffix tree, a
suffix array or a hash table holding short substrings of T. Details are found in [342].

Myers [342] shows that when the length of the subpatterns is O(logCT m), then the first
iteration can be implemented to run in O(kmp^ logm) expected time. The function p(e)
is complicated, but it is convex (negative second derivative) increasing, and increases more
slowly as the alphabet size grows. For DNA, it has value less than one for e < | , and for
proteins it has value less than one for c < 0.56.

Successive iterations

To explain the central idea, let a = aoct\, where |aol is assumed equal to |ati |.

Lemma 12.3.4. Suppose a e-matches ff. Then ft can be divided into two substrings Po
and fi\ such that fi = Paf5\, and either a0 (-matches fi0 or a\ e-matches p\.

This lemma (used in reverse) is the key to determining how to expand the intervals
around the surviving matches in each iteration. For simplicity, assume that n is a power of
two and that logCT m is also a power of two. Let B be a binary tree representing successive
divisions of P into two equal size parts, until each part has length log,, m (see Figure 12.10).
The substrings written at the leaves are the subpatterns used in the first iteration of Myers's
algorithm. Iteration / of the algorithm examines substrings of P that label (some) nodes
of B i levels above the leaves (counting the leaves as level 1).

278 REFINING CORE STRING EDITS AND ALIGNMENTS

abcdefgh

Figure 12.10: Binary tree B defining the successive divisions of Pand its partition into regions of length
log,, m (equal to two in this figure).

Suppose at iteration i - 1 that substrings P' and T' in the query and text, respectively,
form a surviving match (i.e., are found to align to form an e-match). Let P" be the parent
of P' in tree B. If P' is a left child of P", then in iteration i, the algorithm tries to e-match
P" to a substring of T in an interval that extends T to the right. Conversely, if P' is a right
child of P", then the algorithm tries to e-match P" with a substring in an interval that
extends 7" to its left. By Lemma 12.3.4, if the e-match of P' to T is part of an e-match
of P to a substring of T, then P" will e-match the appropriate substring of T. Moreover,
the specified interval in T that must be compared against P" is just twice as long as the
interval for T. The end result, as detailed in [342], is that all of the checking, and hence
the entire algorithm, runs in 0{kmp(e) log m) expected time.

Final comments on Myers's method
There are several points to emphasize. First, the exposition given above is only intended
to be an outline of Myers's method, without any analysis. The full details of the algorithm
and analysis are found in [342]; [337] provides an overview, in relation to other exclusion
methods. Second, unlike the BYP and CL methods, the error rates that establish sublinear
(or linear) running times do not depend on the length of P. In BYP and CL, the permitted
error rate decreases as the length of P increases. In Myers's method, the permitted error
rate depends only on the alphabet size. Third, although the expected running times for
both CL and for Myers's method are sublinear (for the proper range of error rates), there
is an important difference in the nature of these sublinearities. In the CL method, the
sublinearity is due to a multiplicative factor that is less than one. But in Myers's method,
the sublinearity is due to an exponent that is less than one. So as a function of m, the CL
bound increases linearly (although for any fixed value of m the expected running time is
less than m), while the bound for Myers's method increases sublinearly in m. This is an
important distinction since many databases are rapidly increasing in size.

However, Myers's method assumes that the text T has already been preprocessed into
some index structure, and the time for that preprocessing (while linear in m) is not included
in the above time bounds. In contrast, the running times of the BYP and CL methods include
all the work needed for those methods. Finally, Myers has shown that in experiments on
problems of meaningful size in molecular biology (patterns of length 80 on texts of length
3 million), the /t-difference algorithms of Sections 12.2.4 and 12.2.3 run 100 to 500 times
slower than his expected sublinear method.

12.4. SUFFIX TREES AND HYBRID DYNAMIC PROGRAMMING 279

12.3.6. Final comment on exclusion methods

The fast expected-time exclusion methods have all been developed with the motivation of
searching large DNA and protein databases for approximate occurrences of query strings.
But the proven results are a bit weak for the case of protein database search, because error
rates as high as 85% (the so-called twilight zone) are of great interest when comparing
protein sequences [127, 360]. In the twilight zone, evidence of common ancestry may
still remain, but it takes some skill to determine if a given match is meaningful or not.
Another problem with the exclusion methods presented here is that not all of the methods
or analyses extend nicely to the case of weighted or local alignment.

Nonetheless, these results are promising, and the open problem of finding sublinear
expected-time algorithms for higher error rates is very inviting. Moreover, we will see in
Chapter 15 on database searching that the most effective practical database search methods
in use today (BLAST, FASTA, and variants) can be considered as exclusion methods and
are based on ideas similar to some of the more formal methods presented here.

12.4. Yet more suffix trees and more hybrid dynamic programming

Although the suffix tree was initially designed and employed to handle complex problems
of exact matching, it can be used to great advantage in various problems of inexact match-
ing. This has already been demonstrated in Sections 9.4 and 12.2 where the fc-mismatch
and fc-difference problems were discussed. The suffix tree in the latter application was used
in combination with dynamic programming to produce a hybrid dynamic programming
method that is faster than dynamic programming alone. One deficiency of that approach
is that it does not generalize nicely to problems of weighted alignment. In this section, we
introduce a different way to combine suffix trees with dynamic programming for problems
of weighted alignment. These ideas have been claimed to be very effective in practice,
particularly for large computational projects. However, the methods do not always lend
themselves to greatly improved provable, worst-case time bounds. The ideas presented
here loosely follow the published work of Ukkonen [437] and an unpublished note of
Gonnet and Baeza-Yates [34]. The thesis by Bieganski [63] discusses a related idea for
using suffix trees in regular expression pattern matching (with errors) and its large-scale
application in managing genomic databases. The method of Gonnet and Baeza-Yates has
been implemented and extensively used for large-scale protein comparisons [57], [183].

Two problems

We assume the existence of a scoring matrix used to compute the value of any alignment,
and hence "edit distance" here refers to weighted edit distance. We will discuss two
problems in the text and introduce two more related problems in the exercises.

1. The P-against-all problem Given strings P and T, compute the edit distance between
P and every substring T of T.

2. The threshold all-against-all problem Given strings P and T and a threshold d, find
every pair of substrings P' of P and V of T such that the edit distance between P' and
T is less than d.

The threshold all-against-all problem is similar to problems mentioned in Section 12.2.1
concerning the construction of nonredundant sequence databases. However, the threshold
all-against-all problem is harder, because it asks for the alignment of all pairs of substrings,

280 REFINING CORE STRING EDITS AND ALIGNMENTS

not just the alignment of all pairs of strings. This critical distinction has been the source
of some confusion in the literature [50], [56].

12.4.1. The JP-against-all problem

The P-against-all problem is an example of a large-scale alignment problem that asks for
a great amount of related alignment information. If not done carefully, its solution will
involve a large amount of redundant computation.

Assume that P has length n and T has length m > n. The most naive solution to
the P-against-all problem is to enumerate all (™) substrings of T, and then separately
compute the edit distance between P and each substring of T. This takes ®(nm3) total
time. A moment's thought leads to an improvement. Instead of choosing all substrings of
T, we need only choose each suffix S of T and compute the dynamic programming edit
distance table for strings P and S. If S begins at position i of T, then the last row of that
table gives the edit distance between P and every substring of T that begins at position i.
That is, the edit distance between P and T[i..j] is found in cell (n, j — i + 1) of the table.
This approach takes ®(nm2) total time.

We are interested in the P-against-all problem when T is very long. In that case, the
introduction of a suffix tree may greatly speed up the dynamic programming computation,
depending on how much repetition is contained in string T} (See also Section 7.11.1.)
To get the basic idea of the method, consider two substrings T and T" of T that are
identical for their first n' characters. In the dynamic programming approach above, the
edit distances between P and T' and between P and T" would be computed separately.
But if we compute edit distance columnwise (instead of in the usual rowwise manner),
then we can combine the two edit distance computations for the first n' columns, since the
first ri characters of T and T" are the same (see Figure 12.11). It would be redundant to
compute the first n by n' subtable separately for the two edit distances. This idea of using
the commonality of T and T" can be formalized and fully exploited through the use of a
suffix tree for string T.

Consider a suffix tree T for string T and recall that any path from the root of T specifies
some substring S of T. If we traverse a path from the root of T, and we let 5 denote the
growing substring corresponding to that path, then during the traversal we can build up
(columnwise) the dynamic programming table for the edit distance between P and the
growing substring 5 of T. The full idea then is to traverse T in a depth-first manner,
computing the appropriate dynamic programming column (from the column to its left) for
every substring S specified by the current path. When the traversal reaches a node v of
T, it stores there the last (most recently generated) column and last subrow of the current
subtable (the last row will always be row n). That is, if S is the substring specified by the
path to a node v, then what will be stored at v is the last row and column of the dynamic
programming table for the edit distance between P and S. When the depth-first traversal
visits a child v' of v, it adds columns (one for each character on the (u, v') edge) to this
table to correspond to the extension of substring 5. When the depth-first traversal reaches
a leaf of T corresponding to the suffix starting at a position i (say) of T, it can then output
the values in the last row of the current table. Those values specify the edit distances

2 Recent estimates put the amount of repeated human DNA at 50 to 60%. That is, 50 to 60% of all human DNA is
contained in nontrivial length, structured substrings that show up repeatedly throughout the genome. Similar levels
of redundancy appear in many other organisms.

12.4. SUFFIX TREES AND HYBRID DYNAMIC PROGRAMMING 281

Figure 12.11: A cartoon of the dynamic programming tables for computing the edit distance between P
and substring T' (top) and between Pand substring T" (bottom). The two tables share the subtable for P
and substring A (shown as a shaded rectangle). This shaded subtable only needs to be computed once.

root

Figure 12.12: A piece of the suffix tree for T. The traversal from the root to node v is accompanied by the
computation of subtable A (from the previous figure). At that point, the last row and column of subtable A
are stored at node v. Computing the subtable B corresponds to the traversal from v to the leaf representing
substring T'. After the traversal reaches the leaf for T', it backs up to node v, retrieves the row and column
stored there, and uses them to compute the subtable C needed to compute the edit distance between P
and T".

between P and every substring beginning at position iofT. When the depth-first traversal
backs up to a node v, and v has an unvisited child v', the row and column stored at v are
retrieved and extended as the traversal follows a new (v, v') edge (see Figure 12.12).

It should be clear that this suffix-tree approach does correctly compute the edit distance
between P and every substring of T, and it does exploit repeated substrings (small or
large) that may occur in T. But how effective is it compared to the 0(nm2)-time dynamic
programming approach?

282 REFINING CORE STRING EDITS AND ALIGNMENTS

Definition The string-length of an edge label in a suffix tree is the length of the string
labeling that edge (even though the label is compactly represented by a constant number
of characters). The length of a suffix tree is the sum of the string-lengths for all of its
edges.

The length for a suffix tree T for a string T of length m can be anywhere between ®(m)
and ®(m2), depending on how much repetition exists in T. In computational experiments
using long substrings of mammalian DNA (length around one million), the string-lengths
of the resulting suffix trees have been around m2/10. Now the number of dynamic pro-
gramming columns that are generated during the depth-first traversal of T is exactly the
length of T. Each column takes ®(n) time to generate, and so we can state

Lemma 12.4.1. The time used to generate the needed columns in the depth-first traversal
is ®(n x (length of T)).

We must also account for the time and space used to write the rows and columns stored
at each node of T . In a suffix tree with m leaves there are 0(m) internal nodes and a single
row and column take at most O(m + n) time and space to write. Therefore, the time and
space needed for the row and column stores is 0(m2 + nm) = 0 (m 2) . Hence, we have

Theorem 12.4.1. The total time for the suffix-tree approach is ®(n x (length of T)+m2),
and the maximum space used is ®(m2).

Reducing space

The size of the required output is 0(m2), since the problem calls for the edit distance
between P and each of 0(m2) substrings of T, making the 0(m2) term in the time bound
acceptable. On the other hand, the space used seems excessive since the space needed by
the dynamic programming solution without using a suffix tree is just ®(nm) and can be
reduced to O(m). We now modify the suffix-tree approach to also use only O(n + m)
space and the same time bounds as before.

First, there is no need to store the current column at each node v. When backing up
from a child v' of v, we can use the current column at v' and the string labeling edge
(v, v') to recompute the column for node v. This does, however, double the total time for
computing the columns. There is also no need to keep the current row n at each node v.
Instead, only O(n) space is needed for row entries. The key idea is that the current table is
expanded columnwise, so if the string-depth of v' is j and the string-depth of v' is j + d,
then the row n stored at v and v' would be identical for the first j entries. We leave it as
an exercise to work out die details. In summary, we have

Theorem 12.4.2. The hybrid suffix-tree/dynamic programming approach to the P-against-
all problem can be implemented to run in ®[n(length ofT) + m2] time and O(n + m)
space.

The above time and space bounds should be compared to the ®(nm2) time and O(n+m)
space bounds that result from a straightforward application of dynamic programming. The
effectiveness in practice of this method depends on the length of T for realistic strings. It is
known that for random strings, the length of T is ®(m2), making the method unattractive.
(For random strings, the suffix tree is bushy for string-depths of logCT m or less, where a
is the size of the alphabet. But beyond that depth, the suffix tree becomes very sparse,
since the probability is very low that a substring of length greater than logCT m occurs
more than once in the string.) However, strings with more structured repetitions (as occur

12.4. SUFFIX TREES AND HYBRID DYNAMIC PROGRAMMING 283

in DNA) should give rise to suffix trees with lengths that are small enough to make this
method useful. We examined this question empirically for DNA strings up to one million
characters, and the lengths of the resulting suffix trees were around m2/10.

12.4.2. The (threshold) all-against-all problem

Now we consider a more ambitious problem: Given strings P and T, find every pair of
substrings where the edit distance is below a fixed threshold d. Computations of this type
have been conducted when P and T are both equal to the combined set of protein strings
in the database Swiss-Prot [183]. The importance of this kind of large-scale computation
and the way in which its results are used are discussed in [57]. The way suffix trees are
used to accelerate the computation is discussed in [34].

Since P and T have respective lengths of n and m, the full all-against-all problem (with
threshold oo) calls for the computation of n2m2 pieces of output. Hence no method for this
problem can run faster than ®(n2m2) time. Moreover, that time bound is easily achieved:
Pick a pair of starting positions in P and T (in nm possible ways), and for each choice of
starting positions i, j fill in the dynamic programming table for the edit distance of P[i..n]
and T[j..m] (in O(nm)-time). For any choice of i and j , the entries in the corresponding
table give the edit distance for every pair of substrings that begin at position i in P and at
position j in T. Thus, achieving the O(n2m2) bound for the full all-against-all problem
does not require suffix trees.

But the full all-against-all problem calls for an amount of output that is often excessive,
and the output can be reduced by choosing a meaningful threshold. Or the criteria for
reporting a substring pair might be a function of both length and edit distance. Whatever
the specific reporting criteria, if it is no longer necessary to report the edit distance of
every pair, it is no longer certain that 0(n2m2) time is required. Here we develop a method
whose worst-case running time is expressed as O(C + R), where C is a computation time
that may be less than ®(n2m2) and R is the output size (i.e., the number of reported pairs
of substrings). In this setting, the use of suffix trees may be quite valuable depending on
the size of the output and the amount of repetition in the two strings.

An OiC + R)-time method
The method uses a suffix tree TP for string P and a suffix tree TT for string T. The worst-
case time for the method will be shown to be O(C + R), where C is the length of TP

times the length of TT independent of whatever the output criteria are, and R is the size
of the output. (The definition of the length of a suffix tree is found in Section 12.4.1.)
That is, the method will compute certain dynamic programming cell values, which will
be the same no matter what the output criteria are, and then when a cell value satisfies the
particular output criteria, the algorithm will collect the relevant substrings associated with
that cell. Hence our description of the method holds for the full all-against-all problem,
the threshold version of the problem, or any other version with different reporting criteria.

To start, recall that each node in TP represents a substring of P and that every substring
of P is a prefix of a substring represented by a node of TP. In particular, each suffix of P
is represented by a leaf of TP. The same is true of T and TT.

Definition The dynamic programming table for a pair of nodes (u,v), from TP and TT,
respectively, is defined as the dynamic programming table for the edit distance between
the string represented by node u and the string represented by node v.

284 REFINING CORE STRING EDITS AND ALIGNMENTS

suffix tree for P suffix tree for T

i

New part
of the (u, V)

table
a

Figure 12.13: The dynamic programming table for (u,v) is shown below the suffix trees for Pand T. The
string on the path to node u is Za and the string to node v is XYp. Every cell in the (u,v) table, except any
in the lower right rectangle, is also in the (u,v'), (u',v), or (u'.v1) tables. The new part of the (u,v) table
can be computed from the shaded entries and substrings a and p. The shaded entries contain exactly one
entry from the ((/,v') table; |a| entries from the last column in the {u,v') table; and |j6| entries from the last
row in the (u',v) table.

The threshold all-against-all problem could be solved (ignoring time) by computing
the dynamic programming table for each pair of leaves, one from each tree, and then
examining every entry in each of those tables. Hence it certainly would be solved by
computing the dynamic programming table for each pair of nodes and then examining
each entry in those tables. This is essentially what we will do, but we proceed in a way
that avoids redundant computation and examination. The following lemma gives the key
observation.

Lemma 12.4.2. Let u' be the parent of node u in TP and let a be the string labeling
the edge between them. Similarly, let v' be the parent of v in Tr and let fi be the string
labeling the edge between them. Then, all but the bottom right \a\\fi\ entries in the dynamic
programming table for the pair (u, v) appear in one of the tables for (u', v'), (u1, v), or
(u, D'). Moreover, that bottom right part of the (u, v) table can be obtained from the other
three tables in O(\a\\p\) time. (See Figure 12.13.)

The proof of this lemma is immediate from the definitions and the edit distance recur-
rences.

The computation for the new part of the (w, v) table produces an \a\ by |/8| rectangular
subtable that forms the lower right section of the (u,v) table. In the algorithm to be
developed below, we will store and associate with each node pair (u, v) the last column
and the last row of this |a| by |/?| subtable.

We can now fully describe the algorithm.

12.4. SUFFIX TREES AND HYBRID DYNAMIC PROGRAMMING 285

suffix tree for P suffix tree for T
Figure 12.14: The suffix trees for P and T with nodes numbered by string-depth. Note that these numbers
are not the standard suffix position numbers that label the leaves. The ordered list of node pairs begins
(1,1),(1,2),(1,3)... and ends with (6,8).

Details of the algorithm

First, number the nonroot nodes of TP according to string-depth, with smaller string-depth
first.3 Separately, number the nodes of TT according to string-depth. Then form a list L of
all pairs of node numbers, one from each tree, in lexicographic order. Hence, pair (u, v)
appears before pair (p, q) in the list if and only if u is less than p, or if u is equal to p and
v is less than q. (See Figure 12.14). It follows that if u' is the parent of u in TP and v' is
the parent of v in TT, then (u', v') appears before (u, v).

Next, process each pair of nodes (u, v) in the order that it appears in L. Assume again
that u' is the parent of u, that v' is the parent of u, and that the labels on the respective edges
are a and /S. To process a node pair (u, v), retrieve the value in the single lower right cell
from the stored part of the («', v') table; retrieve the column stored with the pair (u, v'),
and retrieve the row stored with the pair («', i>). These three pairs of nodes have already
been processed, due to the lexicographic ordering of the list. From those retrieved values,
and from the substrings a and fi, compute the new |a | by \fi\ subtable completing the
(M, V) table. Store with pair (u, v) the last row and column of newly computed subtable.

Now suppose cell (i, j) is in the new |or| by |j8| subtable, and its value satisfies the
output criteria. The algorithm must find and output all locations of the two substrings
specified by (i, ;'). As usual, a depth-first traversal to the leaves below u and v will then
find all the starting positions of those strings. The length of the strings is determined by
i and j . Hence, when it is required to output pairs of substrings that satisfy the reporting
criteria, the time to collect the pairs is just proportional to the number of them.

Correctness and time analysis

The correctness of the method follows from the fact that at the highest level of description,
the method computes the edit distance for every pair of substrings, one from each string.
It does this by generating and examining every cell in the dynamic programming table
for every pair of substrings (although it avoids redundant examinations). The only subtle
point is that the method generates and examines the cells in each table in an incremental
manner to exploit the commonalities between substrings, and hence it avoids regenerating
and reexamining any cell that is part of more than one table. Further, when the method
finds a cell satisfying the reporting criteria (a function of value and length), it can find all

Actually, any topological numbering will do, but string-depth has some advantages when heuristic accelerations
are added.

286 REFINING CORE STRING EDITS AND ALIGNMENTS

the pairs of substrings specified by that cell using a traversal to a subset of leaves in the
two suffix trees. A formal proof of correctness is left to the reader as an exercise.

For the time analysis, recall that the length of TP is the sum of lengths of all the edge
labels in TP. If P has length n, then the length of TP ranges between n and n212, depending
on how repetitive P is. The length of TT is similarly defined and ranges between m and
m112, where m is the length of T.

Lemma 12.4.3. The time used by the algorithm for all the needed dynamic programming
computations and cell examinations is proportional to the product of the length of TP and
the length of TT. Hence that time, defined as C, ranges between nm and n2m2.

PROOF In the algorithm, each pair of nodes is processed exactly once. At the point a
pair (u, v) is processed, the algorithm spends O(|a | |^ |) time to compute a subtable and
examine it, where a and ft are the labels on the edges into u and v, respectively. Each
edge-label in TP therefore forms exactly one dynamic programming table with each of
the edge-labels in TT. The time to build those tables is |a|(length of TT). Summing over
all edges in TP gives the claimed time bound. •

The above lemma counts all the time used in the algorithm except the time used to
collect and report pairs of substrings (by their starting position, length, and edit distance).
But since the algorithm collects substrings when it sees a cell value that satisfies the
reporting criteria, the time devoted to output is just the time needed to traverse the tree to
collect output pairs. We have already seen that this time is proportional to the number of
pairs collected, R. Hence, we have

Theorem 12.4.3. The complete time for the algorithm is O(C + R).

How effective is the suffix tree approach?

As in the P-against-all problem, the effectiveness of this method in practice depends
on the lengths of TP and TT. Clearly, the product of those lengths, C, falls as P and
T increase in repetitiveness. We have built a suffix tree for DNA strings of total length
around one million bases and have observed that the tree length is around one tenth of the
maximum possible. In that case, C is around n2m2/'100, so all else being equal (which
is unrealistic), standard dynamic programming for the all-against-all problem should run
about one hundred times slower than the hybrid dynamic programming approach.

A vastly larger "all-against-all" computation on amino acid strings was reported in
[183]. Although their description is very vague, they essentially used the suffix tree ap-
proach described here, computing similarity instead of edit distance. But, rather than a
hundred-fold speedup, they claim to have achieved nearly a million-fold speedup over
standard dynamic programming.4 That level of speedup is not supported by theoretical
considerations (recall that for a random string S of length m, a substring of length greater
than loga m is very unlikely to occur in 5 more than once). Nor is it supported by the
experiments we have done. The explanation may be the incorporation of an early stopping
rule described in [183] only by the vague statement "Time is saved because the matching
of patricia5 subtrees is aborted when the score falls below a liberally chosen similar-
ity limit". That rule is apparently very effective in reducing running time, but without a

4 They finish a computation in 405 cpu days that they claim would otherwise have taken more than a million cpu
years without the use of suffix trees.

5 A patricia tree is a variant of a suffix tree.

12.5. A FASTER ALGORITHM FOR LONGEST COMMON SUBSEQUENCE 287

clearer description of it we cannot define precisely what specific all-against-all problem
was solved.

12.5. A faster (combinatorial) algorithm for longest
common subsequence

The longest common subsequence problem (Ics) is a special case of general weighted
alignment or edit distance, and it can be solved in ®(nm) time either by applying those
general methods or with more direct recurrences (Exercise 16 of Chapter 11). However,
the Ics problem plays a special role in the field of string algorithms and merits additional
discussion. This is partly for historical reasons (many string and alignment ideas were first
worked out for the special case of Ics) and partly because Ics often seems to capture the
desired relationship between the strings of interest.

In this section we present an alternative (combinatorial) method for Ics that is not based
on dynamic programming. For two strings of lengths n and m > n, the method runs in
O(r log n) worst-case time, where r is a parameter that is typically small enough to make
this bound attractive compared to ®(nm). The main idea is to reduce the Ics problem to a
simpler sounding problem, the longest increasing subsequence problem (Us). The method
can also be adapted to compute the length of the Ics in O(r log n) time, using only linear
space, without the need for Hirschberg's method. That will be considered in Exercise 23.

12.5.1. Longest increasing subsequence

Definition Let n be a list of n integers, not necessarily distinct. An increasing subse-
quence of n is a subsequence of n whose values strictly increase from left to right.

For example, if n = 5, 3, 4, 9, 6, 2, 1, 8, 7, 10 then {3, 4, 6, 8, 10} and {5, 9, 10} are
both increasing subsequences in FI. (Recall the distinction between subsequences and sub-
strings.) We are interested in the problem of computing a longest increasing subsequence
in n . The method we develop here will later be used to solve the problem of finding the
longest common subsequence of two (or more) strings.

Definition A decreasing subsequence of Fi is a subsequence of FI where the numbers
are nonincreasing from left to right.

For example, under this definition, {8, 5, 5, 3, 1, 1} is a decreasing subsequence in
the sequence 4, 8, 3, 9, 5,2, 5, 3,10, 1,9, 1, 6. Note the asymmetry in the definitions of
increasing and decreasing subsequences. The term "decreasing" is slightly misleading.
Although "nonincreasing" is more precise, it is too clumsy a term to use in high repetition.

Definition A cover of FI is a set of decreasing subsequences of Fl that contain all the
numbers of PI.

Forexample, {5, 3, 2, 1}; {4}; {9, 6}; {8, 7}; {10} is a cover of n = 5, 3, 4, 9, 6, 2, 1, 8, 7,
10. It consists of five decreasing subsequences, two of which contain only a single number.

Definition The size of the cover is the number of decreasing subsequences in it, and a
smallest cover is a cover with minimum size among all covers.

We will develop an 0(nlogn)-time method that simultaneously constructs a longest
increasing subsequence (Us) and a smallest cover of FT. The following lemma is the key.

288 REFINING CORE STRING EDITS AND ALIGNMENTS

5 4 9 8 10
3 6 7
2
1

Figure 12.15: Decreasing cover of {5, 3, 4, 9, 6, 2, 1, 8, 7, 10)

Lemma 12.5.1. If I is an increasing subsequence o/FF with length equal to the size of a
cover of Fl, call it C, then I is a longest increasing subsequence of Fl and C is a smallest
cover of T\.

PROOF No increasing subsequence of FI can contain more than one number contained in
any decreasing subsequence of Fl, since the numbers in an increasing subsequence strictly
increase left to right, whereas the numbers in a decreasing subsequence are nonincreasing
left to right. Hence no increasing subsequence of Fl can have length greater than the size
of any cover of Fl.

Now assume that the length of / is equal to the size of C. This implies that / is a longest
increasing subsequence of FT because no other increasing subsequence can be longer than
the size of C. Conversely, C must be a smallest cover of Fl, for if there were a smaller
cover C" then / would be longer than the size of C", which is impossible. Hence, if the
length of / equals the size of C, then / is a longest increasing subsequence and C is a
smallest cover. •

Lemma 12.5.1 is the basis of a method to find a longest increasing subsequence and
a smallest cover of FF. The idea is to decompose Fl into a cover C such that there is an
increasing subsequence / containing exactly one number from each decreasing subse-
quence in C. Without concern for efficiency, a cover of FF can be built in the following
straightforward way:

Naive cover algorithm Starting from the left of FF, examine each successive num-
ber in Fl and place it at the end of the first (left-most) decreasing subsequence that it
can extend. If there are no decreasing subsequences it can extend, then start a new
(decreasing) subsequence to the right of all the existing decreasing subsequences.

To elaborate, if JC denotes the current number from FF being examined, then x extends a
subsequence / if x is smaller than or equal to the current number at the end of subsequence
i, and if x is strictly larger than the last number of each subsequence to the left of /.

For example, with FF as before the first two numbers examined are put into a decreasing
subsequence {5,3}. Then the number 4 is examined, which is in position 3 of FF. Number
4 cannot be placed at the end of the first subsequence because 4 is larger than 3. So 4
begins a new subsequence of its own to the right of the first subsequence. Next, the number
9 is considered and since it cannot be added to the end of either subsequence {5,3} or 4,
it begins a third subsequence. Next, 6 is considered; it can be added to 9 but not to the
end of any of the two subsequences to the left of 9. The final cover of FF produced by the
algorithm is shown in Figure 12.15, where each subsequence runs vertically.

Clearly, this algorithm produces a cover of FT, which we call the greedy cover. To see
whether a number x can be added to any particular decreasing subsequence, we only have
to compare x to the number, say y, currently at the end of the subsequence - x can be added
if and only if jc < y. Hence if there are k subsequences at the time x is considered, then
the time to add x to the correct subsequence is O(k). Since k < n, we have the following:

Lemma 12.5.2. The greedy cover of Fl can be built in 0{n2) time.

12.5. A FASTER ALGORITHM FOR LONGEST COMMON SUBSEQUENCE 289

We will shortly see how to reduce the time needed to find the greedy cover to O(n log n),
but we first show that the greedy cover is a smallest cover of fl and that a longest increasing
subsequence can easily be extracted from it.

Lemma 12.5.3. There is an increasing subsequence IofU containing exactly one number
from each decreasing subsequence in the greedy cover C. Hence I is the longest possible,
and C is the smallest possible.

PROOF Let x be an arbitrary number placed into decreasing subsequence i > 1 (counting
from the left) by the greedy algorithm. At the time x was considered, the last number y of
subsequence i — 1 must have been smaller than x. Also, since y was placed before x was,
y appears before JC in n , and [y, x} forms an increasing subsequence in I~I. Since x was
arbitrary, the same argument applies to y, and if i — 1 > 1 then there must be a number z
in subsequence i — 2 such that z < y and z appears before y in FT. Repeating this argument
until the first subsequence is reached, we conclude that there is an increasing subsequence
in n containing one number from each of the first / subsequences in the greedy cover and
ending with x. Choosing x to be any number in the last decreasing subsequence proves
the lemma. •

Algorithmically, we can find a longest increasing subsequence given the greedy cover
as follows:

Longest increasing subsequence algorithm

begin

0. Set i to be the number of subsequences in the greedy cover. Set / to the empty list; pick
any number x in subsequence i and place it on the front of list / .

1. While i > 1 do
begin

2. Scanning down from the top of subsequence i — 1, find the first number y that is smaller
than x.

3. Set x to y and i to / — 1.

4. Place x on the front of list / .
end

end.

Since no number is examined twice during this algorithm, a longest increasing subse-
quence can be found in O(n) time given the greedy cover.

An alternate approach is to use pointers. As the greedy cover is being constructed,
whenever a number x is added to subsequence i, connect a pointer from x to the number
at the current end of subsequence i — 1. After the greedy algorithm finishes, pick any
number in the last decreasing subsequence and follow the unique path of pointers starting
from it and ending at the first subsequence.

Faster construction of the greedy cover

Now we reduce the time to construct a greedy cover to O(n logn), reducing the overall
running time to find a longest increasing subsequence to O(n logn) as well.

At any point during the running of the greedy cover algorithm, let L be the ordered
list containing the last number of each of the decreasing subsequences built so far. That

290 REFINING CORE STRING EDITS AND ALIGNMENTS

is, the last number from any subsequence / — 1 appears in L before the last number from
subsequence i.

Lemma 12.5.4. At any point in the execution of the algorithm, the list L is sorted in
increasing order.

PROOF Assume inductively that the lemma holds through iteration k—1. When examining
the fcth number in n , call it x, suppose x is to be placed at the end of subsequence i. Let
w be the current number at the end of subsequence i — 1, let jy be the current number at
the end of subsequence / (if any), and let z be the number at the end of subsequence i + 1
(if it exists). Then w < x < y by the workings of the algorithm, and since y < z by the
inductive assumption, x < z also. In summary, w < x < z, so the new subsequence L
remains sorted. •

Note that L itself need not be (and generally will not be) an increasing subsequence
of n . Although x < z, x appears to the right of z in II. Despite this, the fact that L is
in sorted order means that we can use binary search to implement each iteration of the
algorithm building the greedy cover. Each iteration k considers the kth number x in FI
and the current list L to find the left-most number in L larger than x. Since L is in sorted
order, this can be done in O(logn) time by binary search. The list Fl has n numbers, so
we have

Theorem 12.5.1. The greedy cover can be constructed in O{n\ogn) time. A longest
increasing subsequence and a smallest cover ofYl can therefore be found in O(n logn)
time.

In fact, if p is the length of the Us, then it can be found in O(n log p) time.

12.5.2. Longest common subsequence reduces to longest
increasing subsequence

We will now solve the longest common subsequence problem for a pair of strings, using
the method for finding a longest increasing subsequence in a list of integers.

Definition Given strings Si and S2 (of length m and n, respectively) over an alphabet
E, let r(i) be the number of times that the ith character of string S\ appears in string S2.

Definition Let r denote the sum Y17=\ r (')-

For example, suppose we are using the normal English alphabet; when Si = abacx
and S2 = baabca then r (l) = 3, r(2) = 2, r(3) = 3, r(4) = 1, and r(5) = 0, so r = 9.
Clearly, for any two strings, r will fall in the range 0 to nm. We will solve the Ics problem in
O(r log n) time (where n < m), which is inferior to 0(nm) when the r is large. However,
r is often substantially smaller than nm, depending on the alphabet E. We will discuss
this more fully later.

The reduction

For each alphabet character x that occurs at least once in Si, create a list of the positions
where character x occurs in string S2; write this list in decreasing order. Two distinct
alphabet characters will have totally disjoint lists. In the above example (Si = abacx and
S2 = baabca) the list for character a is 6, 3, 2 and the list for b is 4, 1.

Now create a list called I~I(Si, S2) of length r, in which each character instance in Si is
replaced with the associated list for that character. That is, for each position i in S!, insert

12.5. A FASTER ALGORITHM FOR LONGEST COMMON SUBSEQUENCE 291

the list associated with the character S\(i). For example, list Yl(S\, S2) for the above two
strings is 6, 3, 2, 4, 1, 6, 3, 2, 5.

To understand the importance of n(Si, S2), we examine what an increasing subsequence
in that list means in terms of the original strings.

Theorem 12.5.2. Every increasing subsequence I in Y\(S\, S2) specifies an equal length
common subsequence of S\ and S2 and vice versa. Thus a longest common subsequence
ofS\ and S2 corresponds to a longest increasing subsequence in the list U(S\, S2).

PROOF First, given an increasing subsequence / of n(Si , S2), we can create a string S
and show that 5 is a subsequence of both S\ and S2. String S is successively built up during
a left-to-right scan of / . During this scan, also construct two lists of indices specifying
a subsequence of S\ and a subsequence of S2. In detail, if number j is encountered in /
during the scan, and number j is contained in the sublist contributed by character i of S\,
then add character S\(i) to the right end of S, add number i to the right end of the first
index list, and add j to the right end of the other index list.

For example, consider / = 3,4, 5 in the running example. The number 3 comes from
the sublist for character 1 of Si, the number 4 comes from the sublist for character 2, and
the number 5 comes from the sublist for character 4. So the string 5 is abc. That string is a
subsequence of Si found in positions 1,2,4 and is a subsequence of S2 found in positions
3,4 ,5 .

The list n(Si, 52) contains one sublist for every position in Si, and each such sublist in
ri(Si, S2) is m decreasing order. So at most one number from any sublist is in / and any
position in Si contributes at most one character to S. Further, the m lists are arranged left
to right corresponding to the order of the characters in Si, so S is certainly a subsequence
of Si. The numbers in / strictly increase and correspond to positions in S2, so S is also a
subsequence of S2.

In summary, we have proven that every increasing subsequence in n(Si, S2) can be
used to create an equal length common subsequence in Si and S2. The converse argument,
that a common subsequence yields an increasing subsequence, is very similar and is left
as an exercise. •

FI(Si, S2) is a list of r integers, and the longest increasing subsequence problem can be
solved in 0{r log/) time on an r-length list when the longest increasing subsequence is
of length l.lf n < m then / < n, yielding the following theorem:

Theorem 12.5.3. The longest common subsequence problem can be solved in O(r log n)
time.

The O(r logn) result for Ics was first obtained by Hunt and Szymanski [238]. Their
algorithm is superficially very different than the one above, but in retrospect one can see
similar ideas embodied in it. The relationship between the Ics and Us problems was partly
identified by Apostolico and Guerra [25, 27] and made explicit by Jacobson and Vo [244]
and independently by Pevzner and Waterman [370].

The Ics method based on Us is an example of what is called sparse dynamic program-
ming, where the input is a relatively sparse set of pairs that are permitted to align. This
approach, and in fact the solution technique discussed here, has been very extensively
generalized by a number of people and appears in detail in [137] and [138].

292 REFINING CORE STRING EDITS AND ALIGNMENTS

12.5.3. How good is the method

How good is the Ics method based on the Us compared to the original @(nm)-time dynamic
programming approach? It depends on the size of r. Let a denote the size of the alphabet
E. A very naive analysis would say that r can be expected to be about nm/a. This assumes
that each character in S appears with equal probability and hence is expected to appear
n/a times in the short string. That means that r, = n/a for each i. The long string has
length m, so r is expected to be nm/a. But of course, equal distribution of characters is
not really typical, and the value of r is then highly dependent on the specific strings.

For the Roman alphabet with capital letters, digits, and punctuation marks added, a
is around 100, but the assumption of equal distribution is clearly flawed. Still, one can
ask whether (nm/l00)\ogn looks attractive compared to nm. For such alphabets, the
speedup doesn't look so compelling, although the method retains its simplicity and space
efficiency. Thus for typical English text, the lis-based approach may not be much superior
to the dynamic programming approach. However, in many applications, the "alphabet"
size is quite large and grows with the size of the text.6 This is true, for example, in the
unix utility diff where each line in the text is considered as a character in the "alphabet"
used for the Ics computation. In certain applications in molecular biology the alphabet
consists of patterns or substrings, rather than the four-character alphabet of DNA or the
twenty-character alphabet of protein. These substrings might be genes, exons, or restriction
enzyme recognition sequences. In those cases, the alphabet size is large compared to the
string size, so r is small and r log n is quite attractive compared to nm.

Constrained Ics

The Ics method based on Us has another advantage over the standard dynamic programming
approach. In some applications there are additional constraints imposed on which pairs of
positions are permitted to align in the Ics. That is, in addition to the constraint that position
i in 5i can align with position j in 52 only if S\(i) = S2O), some additional constraints
may apply. The reduction of Ics to Us can be easily modified to incorporate these additional
constraints, and we leave the details to the reader. The effect is to reduce the size of r and
consequently to speed up the entire Ics computation. This is another example and variant
of sparse dynamic programming.

12.5.4. The Ics of more than two strings

One of the nice features of the Ics method based on Us is that it easily generalizes to the
Ics problem for more than two strings. That problem is a special case of multiple sequence
alignment, a crucial problem in computational molecular biology that we will more fully
discuss in Chapter 14. The generalization from two to many strings will be presented here
for three strings, Si, S2, and 53.

The idea is to again reduce the Ics problem to the Us problem. As before, we start
by creating a list for each character * in Si. In particular, the list for x will contain
pairs of integers, each pair containing a position in S2 where x occurs and a position
in S3 where x occurs. Further, the list for character x will be ordered so that the pairs
in the list are in lexically decreasing order. That is, if pair (/, j) appears before pair
(1', j') in the list for x, then either i > i' or i = i' and j > j ' . For example, if Si =

6 This is one of the few places in the book where we deviate from the standard assumption that the alphabet is fixed.

12.6. CONVEX GAP WEIGHTS 293

ahacx and 52 = baabca (as above) and 53 = babbac, then the list for character a is
(6, 5), (6, 2), (3, 5), (3, 2), (2, 5), (2, 2).

The lists for each character are again concatenated in the order that the characters
appear in string Si, forming the sequence of pairs FI(Si, S2, S3). We define an increasing
subsequence in n(Si, S2, S3) to be a subsequence of pairs such that the first numbers in
each pair form an increasing subsequence of integers, and the second numbers in each
pair also form an increasing subsequence of integers. We can easily modify the greedy
cover algorithm to find a longest increasing subsequence of pairs under this definition.
This increasing subsequence is used as follows.

Theorem 12.5.4. Every increasing subsequence in U(S\, S2, S3) specifies an equal length
common subsequence of S\, S2, S3 and vice versa. Therefore, a longest common subse-
quence ofS\, S2, S3 corresponds to a longest increasing subsequence in Yl(S\, S2, S3).

The proof of this theorem is similar to the case of two strings and is left as an exercise.
Adaptation of the greedy cover algorithm and its time analysis for the case of three strings is
also left to the reader. Extension to more than three strings is immediate. The combinatorial
approach to computing Ics also has a nice space-efficiency feature that we will explore in
the exercises.

12.6. Convex gap weights

Overwhelmingly, the affine gap weight model is the model most commonly used by molec-
ular biologists today. This is particularly true for aligning amino acid sequences. However,
a richer gap model, the convex gap weight, was proposed and studied by Waterman in 1984
[466], and has been more extensively examined since then. In discussing the common use
of the affine gap weight, Benner, Cohen and Gonnet state "There is no justification either
theoretical or empirical for this treatment" [183] and forcefully argue that "a non-linear
gap penalty is the only one that is grounded in empirical data" [57]. They propose [57]
that to align two protein sequences that are d PAM units diverged (see Section 15.7.2), a
gap of length q should be given the weight:

35.03 -6.881ogi0rf+ 17.

Under this weighting model, the cost to initiate a gap is at most 35.03, and declines
with increasing evolutionary (PAM) distance between the two sequences. In addition to
this initiation weight, the function adds 17.02 log10 q for the actual length, q, of the gap.

It is hard to believe that a function this precise could be correct, but the key point is
that, for a fixed PAM distance, the proposed gap weight is a convex function of its length.7

The alignment problem with convex gap weights is more difficult to solve than with
affine gap weights, but it is not as difficult as the problem with arbitrary gap weights. In
this section we develop a practical algorithm to optimally align two strings of lengths n
and m > n, when the gap weights are specified by a convex function of the gap length.
The algorithm runs in 0{nm logm) time, in contrast to the <9(nm)-time bound for affine
gap weights and the 0(nm2) time for arbitrary gap weights. The speedup for the convex
case was established by Miller and Myers [322] and independently by Galil and Giancarlo

7 Unfortunately, there is no standard agreement on terminology, and some of the papers refer to the model as the
"convex" gap weight model, while others call it the "concave" gap model. In this book, a convex function is one
with a negative or zero second derivative, and a concave function is one with a positive second derivative.

294 REFINING CORE STRING EDITS AND ALIGNMENTS

w

q q + d q' q' + d

Figure 12.16: A convex function w.

[170]. However, the solution in the second paper is given in terms of edit distance rather
than similarity. Similarity is often more useful than edit distance because it can be used to
handle the extremely important case of local comparison. Hence we will discuss convex
gap weights in terms of similarity (maximum weighted alignment) and leave it to the
reader to derive the analogous algorithms for computing edit distance with convex gap
weights. More advanced results on alignment with convex or concave gap weights appear
in [136], [138], and [276].

Recall from the discussion of arbitrary gap weights that w(q) is the weight given to a
gap of length q. That gap then contributes a penalty of — w(q) to the total weight of the
alignment.

Definition Assume that w(q) is a nonnegative function of q. Then w(q) is convex if
and only if w(q + 1) — w{q) < w{q) — w{q — 1) for every q.

That is, as a gap length increases, the additional penalty contributed by the gap decreases
for each additional unit of the gap. It follows that w(q + d) — w(q) > w(q' + d) — w(q')
for q < q' and any fixed d (see Figure 12.16). Note that the function w can have regions of
both positive and negative slope, although any region of positive slope must be to the left
of the region of negative slope. Note that the definition allows w{q) to become negative
for large enough n and m. At that point, —w(q) becomes positive, which is probably not
desirable. Hence, gap weight functions with negative slope must be used with care.

The convex gap weight was introduced in [466] with the suggestion that mutational
events that insert or delete varying length blocks of DNA can be more meaningfully
modeled by convex gap weights, compared to affine or constant gap weights. A convex gap
penalty allows the modeler more specificity in reflecting the cost or probability of different
gap lengths, and yet it can be more efficiently handled than arbitrary gap weights. One
particular convex function that is appealing in this context is the log function, although it
is not clear which base of the logarithm might be most meaningful.

The argument for or against convex gap weights is still open, and the affine gap model
remains dominant in practice. Still, even if the convex gap model never becomes popular
in molecular biology it could well find application elsewhere. Furthermore, the algorithm
for alignment with convex gaps is of interest in itself, as a representative of a number of
related algorithms in the general area of "sparse dynamic programming".

Speeding up the general recurrences

To solve the convex gap weight case we use the same dynamic programming recurrences
developed for arbitrary gap weights (page 242), but reduce the time needed to evaluate

12.6. CONVEX GAP WEIGHTS 295

those recurrences. For convenience, we restate the general recurrences for arbitrary gap
weights.

V(i, j) = max[£(i, j), F(i, j), G(i, j)],

G(i, j) = V(i - 1 , 7 - 1) + j(S,(i), S2(7)).

£ (i , ;) = max [V(i, k) - w(j - Ic)),
0<k<j-l

F(i, j) = max [V(l, j) - w(i - I)],
0<l<i-l

V(i, 0) = -w(i),

V(0, j) = -w(J),

E(i, 0) = -u>(i),

G(i, j) is undefined when i or j is zero.
Even with arbitrary gap weights, the work required by the first and second recurrences is

0{m) per row, which is within our desired time bound. It is the recurrences for E(i, j) and
F(i, j) that respectively require ®(m2) time per row and &(n2) time per column when the
function w is arbitrary. Hence, it is the evaluation of E and F for any given row or column
that will be improved in the case where w is convex. We will focus on the computation
of E for a single row. The computation of F and the associated time analysis for a single
column is symmetric, with one caveat to be discussed later.

Simplifying notation

The value E(i, j) depends on i only through the values V(i, k) for k < i. Hence, in any
fixed row, we can drop the reference to the row index /, simplifying the recurrence for E.
That is, in any fixed row we define

E(j)= max [V(k) - w(j - k)].
0<k<j-i

Further, we introduce the following notation to simplify the recurrence:

Cand(k, j) = V(k) - w(j - Jk);

therefore,

E(j) = max Cand(k, j).
0<k<j~l

The term Cand stands for "candidate"; the meaning of this will become clear later.

12.6.1. Forward dynamic programming

It will be useful in the exposition to change the way we normally implement dynamic
programming. Normally when setting the value E(j), we would look backwards in the
row to compare all the Cand(k, j) values for k < j , taking the largest one to be the value
E(j). But an alternative forward-looking implementation is also possible and is more
helpful in this exposition.8

8 Gene Lawler pointed out that in some circles forward and backward implementations are referred to as "push you
- pull me" dynamic programming. The reader may determine which term denotes forwards and which denotes
backwards.

296 REFINING CORE STRING EDITS AND ALIGNMENTS

In the forward implementation, we first initialize a variable E(j') to Cand(0, j ') for
each cell j ' > 0 in the row. The E values are set left to right in the row, as in backward
dynamic programming. However, to set the value of E(j) (for any j > 0) the algorithm
merely sets E(j) to the current value of E(j), since every cell to the left of j will have
contributed a candidate value to cell j . Then, before setting the value of E(j + 1), the
algorithm traverses forwards in the row to set E(j') (for each / > j) to be the maximum
of the current E(j') and Cand(j, j ') . To summarize, the forward implementation for a
fixed row is:

Forward dynamic programming for a fixed row

For j := 1 to m do
begin
E(j) := Cand(0, j);
b(j) := 0
end;

For j := 1 to m do
begin

V(J) • -
{We assume, but do not show that F(j) and GO")
have been computed for cell j in the row.)

For j ' :— j' + 1 to m do {Loop 1}
if E(j') < Cand(j, j') then

begin
E(j') := Cand(j, j');
b(j') := j ; {This sets a pointer from / to j to be explained later.}
end

end;

An alternative way to think about forward dynamic programming is to consider the
weighted edit graph for the alignment problem (see Section 11.4). In that (acyclic) graph,
the optimal path (shortest or longest distance, depending on the type of alignment being
computed) from cell (0,0) to cell (n, m) specifies an optimal alignment. Hence algorithms
that compute optimal distances in (acyclic) graphs can be used to compute optimal align-
ments, and distance algorithms (such as Dijkstra's algorithm for shortest distance) can be
described as forward looking. When the correct distance d(v) to a node v has been com-
puted, and there is an edge from v to a node w whose correct distance is still unknown, the
algorithm adds d(v) to the distance on the edge (u, w) to obtain a candidate value for the
correct distance to w. When the correct distances have been computed to all nodes with a
direct edge to w, and each has contributed a candidate value for v, the correct distance to
v is the best of those candidate values.

It should be clear that exactly the same arithmetic operations and comparisons are done
in both backward and forward dynamic programming - the only difference is the order
in which the operations take place. It follows that the forward algorithm correctly sets all
the E values in a fixed row and still requires 0(m2) time per row. Thus forward dynamic
programming is no faster than backwards dynamic programming, but the concept will
help explain the speedup to come.

12.6. CONVEX GAP WEIGHTS 297

Figure 12.17: Graphical illustration of the key observation. Winning candidates are shown with a solid
curve and losers with a dashed curve. If the candidate from j loses to the candidate from k at cell j ' , then
the candidate from /will lose to the candidate from k at every cell j" to the right of j'.

12.6.2. The basis of the speedup

At the point when E(j) is set, call cell j the current cell. We interpret Cand(j, j') as the
"candidate value" for E(j') that cell j "sends forward" to cell / . When j is the current cell,
it "sends forward" m — j candidate values, one to each cell / > j . Each such Cand(j, j')
value is compared to the current E(j'); it either wins (when Cand(j, j') is greater than
E(j')) or loses the comparison. The speedup works by identifying and eliminating large
numbers of candidate values that have no chance of winning any comparison. In this way,
the algorithm avoids a large number of useless comparisons. This approach is sometimes
called a candidate list approach. The following is the key observation used to identify
"loser" candidates:

Key observation Let j be the current cell. If Cand(j, j') < E(j') for some j ' > j ,
then Cand(j, j") < E(j") for every j " > j ' . That is, "one strike and you're out".

Hence the current cell j need not send forward any candidate values to the right of
the first cell / > j where Cand(j, j') is less than or equal to E(j'). This suggests the
obvious practical speedup of stopping the loop labeled {Loop 1} in the Forward dynamic
programming algorithm as soon as j's candidate loses. But this improvement does not
lead directly to a better (worst-case) time bound. For that, we will have to use one more
trick. But first, we prove the key observation with the following more precise lemma.

Lemma 12.6.1. Let k < j < j ' < j " be any four cells in the same row. IfCand(j, j') <
Cand{k, j') then Cand(j, j") < Cand{k, j ") . See Figure 12.11 for reference.

PROOF Candik, j') > Cand(j, j') implies that V(k) - w(j' - k) > V(j) - w(j' - j),
so V(k) - V(j) > w(f -k)- w(f ~ jl

Trivially, (/ - Jfc) = (/ - j) + (j - k). Similarly, (J" - *) = U" ~ j) + U ~ *)• For
future use, note that (/ — k) < (j" — k).

Now let q denote (/ — j), let q' denote (j" — j), and let d denote (j — k). Since / < / ' ,
then q < q'. By convexity, w(q + d) — w(q) > w(q' + d) — w{q') (see Figure 12.16).
Translating back, we have w(j' — k) — w(j' — j) > w(j" — k) — w(j" — j). Combining
this with the result in the first paragraph gives V(k) — V(j) > w(j" — k) — w(j" — j), and
rewriting gives V(k) - w(j" - k) > V(j) - w{j" - j), i.e., Cand(k, j") > Cand(j, j ") ,
as claimed. •

Lemma 12.6.1 immediately implies the key observation.

12.6.3. Cell pointers and row partition

Recall from the details of the forward dynamic programming algorithm that the algorithm
maintains a variable b(j') for each cell j ' . This variable is a pointer to the left-most cell

298 REFINING CORE STRING EDITS AND ALIGNMENTS

[9 9 9 9 9 | 7

Figure 12.18: Partition of the cells / '+1 through m into maximal blocks of consecutive cells such that all
the cells in any block have the same b value. The common b value in any block is less than the common b
value in the preceding block.

k < j ' that has contributed the best candidate yet seen for cell / . Pointer b(j') is updated
every time the value of E(j') changes. The use of these pointers combined with the next
lemma leads ultimately to the desired speedup.

Lemma 12.6.2. Consider the point when j is the current cell, but before j sends forward
any candidate values. At that point, b(j') > b(j' + \) for every cell j ' from j + 1 torn —I.

PROOF For notational simplicity, let b(j') = k and b(j' + 1) = k'. Then, by the se-
lection oik, Cand(k, j') > Cand(k', j ') . Now suppose k < k'. Then, by Lemma 12.6.1,
Cand(k, j ' + 1) > Cand(k', j ' + 1), in which case b(j' + 1) should be set to k, not k'.
Hence k > k' and the lemma is proved. D

The following corollary restates Lemma 12.6.2 in a more useful way.

Corollary 12.6.1. At the point that j is the current cell but before j sends forward any
candidates, the values of the b pointers form a nonincreasing sequence from left to right.
Therefore, cells j , j +1, j + 2 , . . . , m are partitioned into maximal blocks of consecutive
cells such that all b pointers in the block have the same value, and the pointer values
decline in successive blocks.

Definition The partition of cells j through m referred to in Corollary 12.6.1 is called
the current block-partition. See Figure 12.18.

Given Corollary 12.6.1, the algorithm doesn't need to explicitly maintain a b pointer
for every cell but only record the common b pointer for each block. This fact will next be
exploited to achieve the desired speedup.

Preparation for the speedup

Our goal is to reduce the time per row used in computing the E values from 0(m2) to
0{m logm). The main work done in a row is to update the E values and to update the
current block-partition with its associated pointers. We first focus on updating the block-
partition and the b pointers; after that, the treatment of the E values will be easy. So for
now, assume that all the E values are maintained for free.

Consider the point where j is the current cell, but before it sends forward any candidate
values. After E{j) (and F(j) and then V(j)) have been computed, the algorithm must
update the block-partition and the needed b pointers. To see the new idea, take the case of
j = 1. At this point, there is only one block (containing cells 1 through m), with common
b pointer set to cell zero (i.e., b(j') = 0 for each cell j ' in the block). After £(1) is set
to £(1) = Cand(0, 1), any E(j') value that then changes will cause the block-partition
to change as well. In particular, if E(j') changes, then b(j') changes from zero to one.
But since the b values in the new block-partition must be nonincreasing from left to right,
there are only three possibilities for the new block-partition:9

• Cells 2 through m might remain in a single block with common pointer b = 0. By Lemma
12.6.1, this happens if and only if Cand(1,2) < E(2).

9 The E values in these three cases are the values before any E changes.

12.6. CONVEX GAP WEIGHTS 299

a)
0 1 2

b)
0 1 2

c)

0 1 2
Figure 12.19: The three possible ways that the block partition changes after £(1) is set. The curves with
arrows represent the common pointer for the block and leave from the last entry in the block.

• Cells 2 through m might get divided into two blocks, where the common pointer for the
first block is b = 1, and the common pointer for the second is b = 0. This happens (again
by Lemma 12.6.1) if and only if for some k < m Cand{\, j') > E(j') for / from 2 to k
and Cand{\, j') < E(j') for / from k + 1 to m.

• Cells 2 through m might remain in a single block, but now the common pointer b is set to
1. This happens if and only if Cand{\, j') > E(j') for / from 2 to m.

Figure 12.19 illustrates the three possibilities.
Therefore, before making any changes to the £ values, the new partition of the cells

from 2 to m can be efficiently computed as follows: The algorithm first compares £(2)
and Cand{\, 2). If £(2) > Cand{\, 2) then all the cells to the right of 2 remain in a single
block with common b pointer set to zero. However, if £(2) <Cand{\, 2) then the algorithm
searches for the left-most cell / > 2 such that £ (/) > Cand{\, j ') . If / is found, then
cells 2 through j ' — l form a new block with common pointer to cell one, and the remaining
cells form another block with common pointer to cell zero. If no / is found, then all cells
2 through m remain in a single block, but the common pointer is changed to one.

Now for the punch line: By Corollary 12.6.1, this search for / can be done by binary
search. Hence only O(logm) comparisons are used in searching for / . And, since we
only record one b pointer per block, at most one pointer update is needed.

Now consider the general case of j > 1. Suppose that E(j) has just been set and that
the cells j + 1 , . . . , m are presently partitioned into r maximal blocks ending at cells
P\ < p2 < • • • < pr = m. The block ending at p, will be called the ith block. We use bt

to denote the common pointer for cells in block i. We assume that the algorithm has a list
of the end-of-block positions p\ < pi < • • • < pr and a parallel list of common pointers
b\ > b2 > • • • > br.

After E(j) is set, the new partition of cells j + 1 through m is found in the following
way: First, if E(j + 1) > Cand(j, j + 1) then, by Lemma 12.6.1, £(; ') > Cand{j, j')
for all / > j , so the partition of cells greater than j remains unchanged. Otherwise (if

j + 1) < Cand(j, j + 1)), the algorithm successively compares £(p,) to Cand(j, /?,)

300 REFINING CORE STRING EDITS AND ALIGNMENTS

end of block positions
P\ Pi P3 PA P5

H 1 h
j +1 coalesced block m

Figure 12.20: To update the block-partition the algorithm successively examines cell p, to find the first
index s where E(ps) >Cand(j, ps). In this figure, s is 4. Blocks 1 through s - 1 = 3 coalesce into a single
block with some initial part of block s = 4. Blocks to the right of s remain unchanged.

for i from 1 to r, until either the end-of-block list is exhausted, or until it finds the first
index s with E(ps) > Cand(j, ps). In the first case, the cells j +1,..., m fall into a single
block with common pointer to cell j . In the second case, the blocks s +1 through r remain
unchanged, but all the blocks 1 through s - 1 coalesce with some initial part (possibly all)
of block s, forming one block with common pointer to cell j (see Figure 12.20). Note that
every comparison but the last one results in two neighboring blocks coalescing into one.

Having found block s, the algorithm finds the proper place to split block s by doing
binary search over the cells in the block. This is exactly as in the case already discussed
forj = 1.

12.6.4. Final implementation details and time analysis

We have described above how to update the block-partition and the common b pointers,
but that exposition uses E values that we assumed could be maintained for free. We now
deal with that problem.

The key observation is that the algorithm retrieves E(j) only when j is the current
cell and retrieves E(j') only when examining cell / in the process of updating the block-
partition. But the current cell j is always in the first block of the current block-partition
(whose endpoint is denoted p\), so b(j) = b\, and E{j) equals Cand(b\, j), which can
be computed in constant time when needed. In addition, when examining a cell / in the
process of updating the block-partition, the algorithm knows the block that j ' falls into,
say block i, and hence it knows bt. Therefore, it can compute E(j') in constant time by
computing Cand(bj, j ') . The result is that no explicit E values ever need to be stored.
They are simply computed when needed. In a sense, they are only an expositional device.
Moreover, the number of E values that need to be computed on the fly is proportional to
the number of comparisons that the algorithm does to maintain the block-partition. These
observations are summarized in the following:

Revised forward dynamic programming for a fixed row

Initialize the end-of-block list to contain the single number m.
Initialize the associated pointer list to contain the single number 0.

For j := 1 to m do
begin

Set k to be the first pointer on the ^-pointer list.
:=Cand(k, j);

12.6. CONVEX GAP WEIGHTS 301

V(j) := max[G(;), £(;), F(j)];
{As before we assume that the needed F and G values have been computed.}

{Now see how y's candidates change the block-partition.}
Set / equal to the first entry on the end-of-block list.

{look for the first index s in the end-of-block list where j loses}
If Cand(b(j'), j + I) < Cand(j, j + 1) then'{y"s candidate wins one}
begin

While
The end-of-block list is not empty and Cand(b(j'), j') < Cand(j, j') do

begin
remove the first entry on the end-of-block list,
and remove the corresponding b-pointer
If the end-of-block list is not empty then
set j ' to the new first entry on the end-of-block list,
end;

end {while};
If the end-of-block list is empty then
place m at the head of that list;
Else {when the end-of-block list is not empty}

begin
Let ps denote the first end-of-block entry.
Using binary search over the cells in block s, find the
right-most point p in that block such that Cand(j, p) > Cand(bs, p).
Add p to the head of the end-of-block list;
end;

Add j to the head of the b pointer list.

end;
end.

Time analysis
An E value is computed for the current cell, or when the algorithm does a comparison
involved in maintaining the current block-partition. Hence the total time for the algorithm
is proportional to the number of those comparisons. In iteration j , when j is the current
cell, the comparisons are divided into those used to find block s and those used in the
binary search to split block s. If the algorithm does / > 2 comparisons to find s in iteration
j , then at least / — 1 full blocks coalesce into a single block. The binary search then splits
at most one block into two. Hence if, in iteration j , the algorithm does / > 2 comparisons
to find s, then the total number of blocks decreases by at least / — 2. If it does one or
two comparisons, then the total number of blocks at most increases by one. Since the
algorithm begins with a single block and there are m iterations, it follows that over the
entire algorithm there can be at most O(m) comparisons done to find every s, excluding
the comparisons done during the binary searches. Clearly, the total number of comparisons
used in the m binary searches is O(m logm). Hence we have

Theorem 12.6.1. For any fixed row, all the E(j) values can be computed in O(m log m)
total time.

302 REFINING CORE STRING EDITS AND ALIGNMENTS

The case of F values is essentially symmetric

A similar algorithm and analysis is used to compute the F values, except that for F(i, j)
the lists partition column j from cell i through n. There is, however, one point that might
cause confusion: Although the analysis for F focuses on the work in a single column
and is symmetric to the analysis for £ in a single row, the computations of E and F are
actually interleaved since, by the recurrences, each V(i, j) value depends on both E(i, j)
and F(i, j). Even though both the E values and the F values are computed rowwise (since
V is computed rowwise), one row after another, E(i, j) is computed just prior to the
computation of E(i, j + 1), while between the computation of F(i, j) and F(i + 1, j),
m — 1 other F values will be computed (m - j in row i and j — 1 in row / + 1). So
although the analysis treats the work in a column as if it is done in one contiguous time
interval, the algorithm actually breaks up the work in any given column.

Only 0(nm) total time is needed to compute the G values and to compute every V(i, j)
once E(i, j) and F(i, j) is known. In summary we have

Theorem 12.6.2. When the gap weight w is a convexfunction of the gap length, an optimal
alignment can be computed in 0(nm log m) time, where m > n are the lengths of the two
strings.

12.7. The Four-Russians speedup

In this section we will discuss an approach that leads both to a theoretical and to a prac-
tical speedup of many dynamic programming algorithms. The idea, comes from a paper
[28] by four authors, Arlazarov, Dinic, Kronrod, and Faradzev, concerning boolean ma-
trix multiplication. The general idea taken from this paper has come to be known in the
West as the Four-Russians technique, even though only one of the authors is Russian.l0

The applications in the string domain are quite different from matrix multiplication, but
the general idea suggested in [28] applies. We illustrate the idea with the specific prob-
lem of computing (unweighted) edit distance. This application was first worked out by
Masek and Paterson [313] and was further discussed by those authors in [312]; many
additional applications of the Four-Russians idea have been developed since then (for
example [340]).

12.7.1. f-blocks

Definition A t-block is a / by t square in the dynamic programming table.

The rough idea of the Four-Russians method is to partition the dynamic programming
table into t-blocks and compute the essential values in the table one t-block at a time,
rather than one cell at a time. The goal is to spend only O(t) time per block (rather than
®(t2) time), achieving a factor of t speedup over the standard dynamic programming
solution. In the exposition given below, the partition will not be exactly achieved, since
neighboring f-blocks will overlap somewhat. Still, the rough idea given here does capture
the basic flavor and advantage of the method presented below. That method will compute
the edit distance in O(n2/ log n) time, for two strings of length n (again assuming a fixed
alphabet).

10 This reflects our general level of ignorance about ethnicities in the then Soviet Union.

12.7. THE FOUR-RUSSIANS SPEEDUP 303

Figure 12.21: A single block with f = 4 drawn inside the full dynamic programming table. The distance
values in the part of the block labeled F are determined by the values in the parts labeled A, B, and C
together with the substrings of Ŝ and S2 in D and E. Note that A is the intersection of the first row and
column of the block.

Consider the standard dynamic programming approach to computing the edit distance of
two strings S\ and S2. The value D(i, j) given to any cell (i, j), when i and j are both greater
than 0, is determined by the values in its three neighboring cells, (i — I, j — 1), (i — 1, j),
and (i, j — 1), and by the characters in positions i and j of the two strings. By extension,
the values given to the cells in an entire f-block, with upper left-hand corner at position
(i, j) say, are determined by the values in the first row and column of the f-block together
with the substrings S\[i..i + t — 1] and S2[j-J + t — 1] (see Figure 12.21). Another way
to state this observation is the following:

Lemma 12.7.1. The distance values in a t-blockstarting inposition (i, j)are afunction of
the values in its first row and column and the substrings Si [i.. i +1 — 1] and S2 [j • • j +1 — 1].

Definition Given Lemma 12.7.1, and using the notation shown in Figure 12.21, we
define the block function as the function from the five inputs (A, B, C, D, E) to the
output F.

It follows that the values in the last row and column of a f-block are also a function of
the inputs (A, B, C, D, E). We call the function from those inputs to the values in the last
row and column of a f-block, the restricted block function.

Notice that the total size of the input and the size of the output of the restricted block
function is 0 (0 -

Computing edit distance with the restricted block function

By Lemma 12.7.1, the edit distance between 5i and S2 can be computed using the restricted
block function. For simplicity, suppose that 5i and S2 are both of length n = k(t — 1), for
some k.

304 REFINING CORE STRING EDITS AND ALIGNMENTS

S2

Figure 12.22: An edit distance table for n = 9. With t = 4, the table is covered by nine overlapping blocks.
The center block is outlined with darker lines for clarity. In general, if n = k(f - 1) then the (n +1) by (n +1)
table will be covered by k2 overlapping /-blocks.

Block edit distance algorithm

Begin

1. Cover the (n + 1) by (n + 1) dynamic programming table with f-blocks, where the last
column of every f-block is shared with the first column of the r-block to its right (if any),
and the last row of every f-block is shared with the first row of the f-block below it (if
any). (See Figure 12.22). In this way, and since n = k(t — 1), the table will consist of k
rows and k columns of partially overlapping /-blocks.

2. Initialize the values in the first row and column of the full table according to the base
conditions of the recurrence.

3. In a rowwise manner, use the restricted block function to successively determine the values
in the last row and last column of each block. By the overlapping nature of the blocks, the
values in the last column (or row) of a block are the values in the first column (or row) of
the block to its right (or below it).

4. The value in cell (n, n) is the edit distance of S\ and Si.

end.

Of course, the heart of the algorithm is step 3, where specific instances of the restricted
block function must be computed. Any instance of the restricted block function can be
computed O(t2) time, but that gains us nothing. So how is the restricted block function
computed?

12.7.2. The Four-Russians idea for the restricted block function

The general Four-Russians observation is that a speedup can often be obtained by precom-
puting and storing information about all possible instances of a subproblem that might
arise in solving a problem. Then, when solving an instance of the full problem and spe-
cific subproblems are encountered, the computation can be accelerated by looking up the
answers to precomputed subproblems, instead of recomputing those answers. If the sub-
problems are chosen correctly, the total time taken by this method (including the time for
the precomputations) will be less than the time taken by the standard computation.

12.7. THE FOUR-RUSSIANS SPEEDUP 305

In the case of edit distance, the precomputation suggested by the Four-Russians idea
is to enumerate all possible inputs to the restricted block function (the proper size of the
block will be determined later), compute the resulting output values (a r-length row and a
f-length column) for each input, and store the outputs indexed by the inputs. Every time
a specific restricted block function must be computed in step 3 of, the block edit distance
algorithm, the value of the function is then retrieved from the precomputed values and
need not be computed. This clearly works to compute the edit distance D(n, n), but is it
any faster than the original O(n2) method? Astute readers should be skeptical, so please
suspend disbelief for now.

Accounting detail

Assume first that all the precomputation has been done. What time is needed to execute
the block edit distance algorithm1? Recall that the sizes of the input and the output of the
restricted block function are both O(t). It is not difficult to organize the input-output values
of the (precomputed) restricted block function so that the correct output for any specific
input can be retrieved in 0{t) time. Details are left to the reader. There are ®(n2/t2) blocks,
hence the total time used by the block edit distance algorithm is O(n2/t). Setting t to
©(log «), the time is O(n2/ log n). However, in the unit-cost RAM model of computation,
each output value can be retrieved in constant time since t = O(logn). In that case, the
time for the method is reduced to 0(n2/(logn)2).

But what about the precomputation time? The key issue involves the number of input
choices to the restricted block function. By definition, every cell has an integer from zero
to n, so there are (n + 1)' possible values for any ^-length row or column. If the alphabet
has size a, then there are a' possible substrings of length t. Hence the number of distinct
input combinations to the restricted block function is (n + \)2'a2'. For each input, it takes
@(t2) time to evaluate the last row and column of the resulting f-block (by running the
standard dynamic program). Thus the overall time used in this way to precompute the
function outputs to all possible input choices is 0((n + l)2'a2't2). But t must be at least
one, so £2(n2) time is used in this way. No progress yet! The idea is right, but we need
another trick to make it work.

12.7.3. The trick: offset encoding

The dominant term in the precomputation time is (n + I)2', since a is assumed to be fixed.
That term comes from the number of distinct choices there are for two f-length subrows
and subcolumns. But (n + 1)' overcounts the number of different f-length subrows (or
subcolumns) that could appear in a real table, since the value in a cell is not independent
of the values of its neighbors. We next make this precise.

Lemma 12.7.2. In any row, column, or diagonal of the dynamic programming table for
edit distance, two adjacent cells can have a value that differs by at most one.

PROOF Certainly, D(i, j) < D(i, j — 1) + 1. Conversely, if the optimal alignment of
Si [1.. i] and S2 [1.. j] matches S2 (j) to some character of Si, then by simply omitting 52 (j)
and aligning its mate against a space, the distance increases by at most one. If S2O) is not
matched then its omission reduces the distance by one. Hence D(i, j — 1) < D(i, j) + 1,
and the lemma is proved for adjacent row cells. Similar reasoning holds along a column.

In the case of adjacent cells in a diagonal, it is easy to see that D(i, j) < D(i — 1,
j — 1) + 1. Conversely, if the optimal alignment of 5i[l..i] and.S2ll.-j] aligns/ against j ,

306 REFINING CORE STRING EDITS AND ALIGNMENTS

then D(i - 1 , j -1) < D(i, j)+l. If the optimal alignment doesn't align i against;, then at
least one of the characters, S\(i) or Si(j), must align against a space, and D{i — 1, j — 1) <
D(i,j). D

Given Lemma 12.7.2, we can encode the values in a row of a t-block by a t-length
vector specifying the value of the first entry in the row, and then specifying the difference
(offset) of each successive cell value to its left neighbor: A zero indicates equality, a one
indicates an increase by one, and a minus one indicates a decrease by one. For example,
the row of distances 5, 4, 4, 5 would be encoded by the row of offsets 5, — 1, 0, +1 .
Similarly, we can encode the values in any column by such offset encoding. Since there
are only (n + 1)3'~' distinct vectors of this type, a change to offset encoding is surely a
move in the right direction. We can, however, reduce the number of possible vectors even
further.

Definition The offset vector is a /-length vector of values from {—1,0, 1}, where the
first entry must be zero.

The key to making the Four-Russians method efficient is to compute edit distance using
only offset vectors rather than actual distance values. Because the number of possible offset
vectors is much less than the number of possible vectors of distance values, much less
precomputation will be needed. We next show that edit distance can be computed using
offset vectors.

Theorem 12.7.1. Consider a t-block with upper left corner in position (i, j). The two
offset vectors for the last row and last column of the block can be determined from the two
offset vectors for the first row and column of the block and from substrings S][l..j] and
S2U ••./]• That is, no D value is needed in the input in order to determine the offset vectors
in the last row and column of the block.

PROOF The proof is essentially a close examination of the dynamic programming recur-
rences for edit distance. Denote the unknown value of D(i, j) by C. Then for column q in
the block, D{i, q) equals C plus the total of the offset values in row i from column j + 1 to
column q. Hence even if the algorithm doesn't know the value of C, it can express D(i,q)
as C plus an integer that it can determine. Each D(q, j) can be similarly expressed. Let
D(i, j + 1) be C + J and let D(i + 1, j) be C + I, where the algorithm can know / and
J. Now consider cell (i + 1, j + 1). D(i + 1, j + 1) is equal to D(i, j) = C if character
S\(i) matches S2O'). Otherwise D(i + 1, j + 1) equals the minimum of D(i, j + 1) + 1,
D(i + 1, ;) + 1, and D(i, j) + 1, i.e., the minimum of C + / + 1, C + J + 1, and C + 1.
The algorithm can make this comparison by comparing / and J (which it knows) to the
number zero. So the algorithm can correctly express D(i + 1, j + 1) as C, C + / + 1,
C + 7 + l , o r C + l. Continuing in this way, the algorithm can correctly express each
D value in the block as an unknown C plus some integer that it can determine. Since
every term involves the same unknown constant C, the offset vectors can be correctly
determined by the algorithm. •

Definition The function that determines the two offset vectors for the last row and last
column from the two offset vectors for the first row and column of a block together with
substrings 5i[l..i] and ^ [l . j] is called the offset function.

We now have all the pieces of the Four-Russians-type algorithm to compute edit dis-
tance. We again assume, for simplicity, that each string has length n = k(t — 1) for
some k.

12.7. THE FOUR-RUSSIANS SPEEDUP 307

Four-Russians edit distance algorithm

1. Cover the n by n dynamic programming table with t -blocks, where the last column of
every t-block is shared with the first column of the f-block to its right (if any), and the last
row of every f-block is shared with the first row of the f-block below it (if any).

2. Initialize the values in the first row and column of the full table according to the base
conditions of the recurrence. Compute the offset values in the first row and column.

3. In a rowwise manner, use the offset block function to successively determine the offset
vectors of the last row and column of each block. By the overlapping nature of the blocks,
the offset vector in the last column (or row) of a block provides the next offset vector in
the first column (or row) of the block to its right (or below it). Simply change the first
entry in the next vector to zero.

4. Let<2bethetotaloftheoffsetvaluescomputedforcellsinrown.D(n,n) = D(n,0)+Q =
n + Q.

Time analysis

As in the analysis of the block edit distance algorithm, the execution of the four-Russians
edit distance algorithm takes O(n2/\ogn) time (or 0[n2/(logn)2] time in the unit-cost
RAM model) by setting t to @(logn). So again, the key issue is the time needed to
precompute the block offset function. Recall that the first entry of an offset vector must be
zero, so there are 3 2 (' - 1) possible offset vectors. There are a' ways to specify a substring
over an alphabet with a characters, and so there are 32('~"cr2' ways to specify the input to
the offset function. For any specific input choice, the output is computed in O(t2) time (via
dynamic programming), hence the entire precomputation takes O(32'a2't2) time. Setting
/ equal to (log3(T n)/2, the precomputation time is just 0(n(log n)2). In summary, we have

Theorem 12.7.2. The edit distance of two strings of length n can be computed in 0 (jf-^)
time or 0 (" , 2) time in the unit-cost RAM model.

Extension to strings of unequal lengths is easy and is left as an exercise.

12.7.4. Practical approaches

The theoretical result that edit distance can be computed in O (j ^) time has been extended
and applied to a number of different alignment problems. For truly large strings, these
theoretical results are worth using. But the Four-Russians method is primarily a theoretical
contribution and is not used in its full detail. Instead, the basic idea of precomputing either
the restricted block function or the offset function is used, but only for fixed size blocks.
Generally, t is set to a fixed value independent of n and often a rectangular 2 by t block
is used in place of a square block. The point is to pick t so that the restricted block or
offset function can be determined in constant time on practical machines. For example, t
could be picked so that the offset vector fits into a single computer word. Or, depending
on the alphabet and the amount of space available, one might hash the input choices for
rapid function retrieval. This should lead to a computing time of O (y) , although practical
programming issues become important at this level of detail. A detailed experimental
analysis of these ideas [339] has shown that this approach is one of the most effective ways
to speed up the practical computation of edit distance, providing a factor of t speedup over
the standard dynamic programming solution.

