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Abstract The Levenshtein distance between two
words is the minimal number of insertions, deletions or
substitutions that are needed to transform one word into
the other. Levenshtein automata of degree n for a word
W are defined as finite state automata that recognize
the set of all words V where the Levenshtein distance
between V and W does not exceed n. We show how to
compute, for any fixed bound n and any input word W ,
a deterministic Levenshtein automaton of degree n for
W in time linear to the length ofW . Given an electronic
dictionary that is implemented in the form of a trie or
a finite state automaton, the Levenshtein automaton for
W can be used to control search in the lexicon in such
a way that exactly the lexical words V are generated
where the Levenshtein distance between V and W does
not exceed the given bound. This leads to a very fast
method for correcting corrupted input words of unre-
stricted text using large electronic dictionaries. We then
introduce a second method that avoids the explicit com-
putation of Levenshtein automata and leads to even im-
proved efficiency. Evaluation results are given that also
address variants of both methods that are based on mod-
ified Levenshtein distances where further primitive edit
operations (transpositions, merges and splits) are used.

Keywords: Spelling correction – Levenshtein distance
– Optical character recognition – Electronic dictionaries

1 Introduction and motivation

The problem of how to find good correction candi-
dates for a garbled input word is important for many
fundamental applications, including spelling correction,
speech recognition, optical character recognition, error-
tolerant querying of search engines for the world wide
web and other kinds of information systems. Due to
its relevance, the problem has been considered by
many authors (e.g., [Bla60,RE71,Ull77,AFW83,SHC83,

Sri85,TIAY90,Kuk92,ZD95,DHH+97]). Most contribu-
tions suggest methods for correcting isolated words of a
text.1 Since purely statistical methods cannot offer suf-
ficient correction accuracy, modern approaches are gen-
erally built on top of lexical techniques.
If an electronic dictionary is available that covers the

possible input words, a simple procedure may be used for
detecting and correcting errors. Given an input wordW ,
it is first checked whether the word is in the dictionary.
In the negative case, the words of the dictionary that
are most similar to W are suggested as correction can-
didates. If necessary, appropriate statistical data can be
used for refinement of ranking. Similarity between two
words can be measured in several ways. Most useful are
(dis)similarity measures based on variants of the Leven-
shtein distance [Lev66,WF74,WBR95,SKS96,OL97] or
on n-gram distances [AFW83,Ukk92,KST92,KST94]. In
this paper, we take the Levenshtein distance as a basis.
The standard algorithm for computing the Leven-

shtein distance between two words by Wagner and
Fisher [WF74] uses a dynamic programming scheme that
leads to quadratic time complexity. Even with more so-
phisticated algorithms (cf. [Ukk85]), it is not realistic
to compute the Levenshtein distance between the in-
put word W and each of the words in the dictionary,
already for dictionaries of a modest size. The problem
becomes even more serious when using dictionaries for
highly inflectional or agglutinating languages (e.g., Rus-
sian, German, Turkish, Finnish, Hungarian), dictionaries
for languages that allow for composition of nouns (Ger-
man), multi-lingual dictionaries, or background dictio-
naries for correcting queries to search engines. In these
cases, dictionaries may contain up to several millions of
entries. The problem arises of how to compute the lexi-
cal Levenshtein neighbours of a garbled input word while

1 Some more recent work tries to use the sentence or docu-
ment context for correcting errors and resolving ambiguities,
such as [Hul92,KEW91,Hon95].
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respecting the efficiency constraints that arise from re-
alistic industrial applications.
Several solutions have been proposed for fast se-

lection of possible corrections. Often the dictionary is
offline partitioned using some kind of similarity key
(e.g., [Sin90,Kuk92,dBdBT95,ZD95]), or it is enriched
with a special index structure ([OM88,KST92,ZD95]).
Correction of a given input word is divided in two steps,
In a first step, the similarity key or the index is used
for coarse search, extracting a list of dictionary words
that is guaranteed to contain all interesting corrections
of the input string. In a second step (fine search), for
each candidate the distance to the garbled input word is
computed, using a fine-graded measure. Candidates are
ranked according to this distance and the best candi-
dates are suggested as correction words.
Oflazer suggested another method that can deal

even with infinite dictionaries of agglutinating lan-
guages [Ofl96]. The set of all dictionary words is treated
as a regular language over the alphabet of letters. As a
prerequisite, a deterministic finite state automaton rec-
ognizing this language has to be given.2 Faced with an
input word W , Oflazer starts an exhaustive traversal of
the dictionary automaton. At each step, the prefix of all
letters that are consumed on the path from the initial
state to the current state is maintained. A variant of
the Wagner–Fisher algorithm is used to control the walk
through the automaton in such a way that only prefixes
are generated that potentially lead to a correction candi-
date V where the Levenshtein distance between V and
W does not exceed a fixed bound n. Each dictionary
word V within the given distance to W is added to the
output list. Oflazer shows that for bounds n = 1, 2, 3 the
control mechanism helps to avoid the inspection of most
of the states of the dictionary automaton. The method
leads to an efficient generation of an appropriate list of
correction candidates, even for very large – or infinite –
dictionaries.
The first correction procedure that we suggest in

this paper can be considered as a variant of Oflazer’s
approach. We also assume that the dictionary is repre-
sented as a deterministic finite state automaton. How-
ever, we completely avoid the computation of the Leven-
shtein distance during the traversal of the automaton.
Given the input word W and a bound n, we first com-
pute a deterministic finite state automaton A that ac-
cepts exactly all words V where the Levenshtein distance
between V andW does not exceed n. A is called a Leven-
shtein automaton for W . Levenshtein automaton and
dictionary automaton are then traversed in parallel. In
this way, each move in the dictionary automaton is con-
trolled by the Levenshtein automaton and vice versa. We
obtain the intersection of the languages of the two au-

2 For finite dictionaries, an efficient algorithm for comput-
ing the minimal deterministic finite state automaton for the
dictionary has been described in [Mih98,DMWW00].

tomata as our list of correction candidates. Clearly, this
intersection is the set of all dictionary words V where the
Levenshtein distance between V and W does not exceed
n.
Our main algorithmic result shows that for any fixed

degree n and input W a deterministic Levenshtein au-
tomaton AW for W can be computed in linear time and
space in |W |. In order to maximize practical efficiency,
the computation of AW for fixed distance bound n is
based on a precompiled table Tn that contains a para-
metric and generic description of states and transitions
of AW . At run-time, given input W , parametric states
and transitions of Tn are instantiated, yielding the au-
tomaton AW . The instantiation of the parametric tran-
sition rules of Tn is triggered by Boolean vectors that
characterize the distribution of letters of W in subwords
of length 2n + 1. The table-based approach leads to an
improved variant of the correction method where the
traversal of the dictionary automaton is controlled using
the table Tn itself. Moves in AW are simulated and the
actual computation of the Levenshtein automaton AW

is avoided, thus improving efficiency.
The above results always refer to the “standard”

Levenshtein distance where the distance between two
words W and V is defined as the minimal number of
insertions, deletions and substitutions that are needed
to transform W into V . For specific applications, vari-
ants of this metrics are preferable. In a typesetting con-
text often two symbols are transposed. In the context
of optical character recognition, two symbols are often
merged into one symbol, or conversely one symbol is split
into two symbols. Motivated by these cases, we also de-
veloped Levenshtein automata for the modified Leven-
shtein distance where insertions, deletions, substitutions
and transpositions are used as primitive edit operations,
and for the variant where insertions, deletions, substitu-
tions, merges and splits are treated as primitive edit op-
erations. In both cases, techniques and results obtained
for the standard Levenshtein distance can be lifted.
Our evaluation results show that string correction

with (simulated) Levenshtein automata is in fact very
fast. For example, using a Bulgarian dictionary with
870 000 entries and (standard) distance bound n = 1, the
average time to compute and output all lexical Leven-
shtein neighbours of a garbled input word are around
0.4ms on a Pentium III. Using a German dictionary of
composite nouns with 6 058 198 entries the average time
was between 1.3ms (short words) and 2.5ms. Further
results for modified Levenshtein distances and other dis-
tance bounds are given below.
The paper is structured as follows. Section 2 pro-

vides some general technical background. In Sect. 3, we
formally define Levensthein automata, and we describe
the first string correction method sketched above in more
detail. Section 4 gives a generic description of a deter-
ministic Levenshtein automaton of arbitrary degree n for
arbitrary input word W . In Sect. 5, we show how to use
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this description to derive tables T1, T2, T3, . . . that re-
spectively contain parametric descriptions of states and
transitions of a deterministic Levenshtein automata of
degree n = 1, 2, 3 . . . for arbitrary input word W . Us-
ing these tables it is trivial to generate a deterministic
Levenshtein automaton for input W in time linear to
the length of W . Section 6 discusses the second correc-
tion method, where the actual computation of the Leven-
shtein automaton for the input word W is avoided. In
Sect. 7, we describe evaluation results for distinct no-
tions of Levenshtein distance, distance bounds and dic-
tionaries. We finish with a short conclusion where we
mention some side results of our work and comment on
related and future work. As to Levenshtein automata for
modified Levenshtein distances where transpositions or
merges and splits are treated as primitive edit opera-
tions, details are described in a technical report [SM01].

2 Formal preliminaries

We assume that the reader is familiar with the basic
notions of formal language theory as described, e.g.,
in [HU79,Koz97]. As usual, finite state automata (FSA)
are treated as tuples of the form A = 〈Σ,Q, q0, F,∆〉
where Σ is the input alphabet, Q is the set of states,
q0 ∈ Q is the initial state, F is the set of final states,
and ∆ ⊆ Q×Σε ×Q is the transition relation. Here “ε”
denotes the empty word and Σε := Σ ∪ {ε}. We write
L(A) for the language accepted by A.
A finite state automaton A is deterministic if the

transition relation is a function δ : Q×Σ → Q. Let A =
〈Σ,Q, q0, F, δ〉 be a deterministic FSA, let δ∗ : Q×Σ∗ →
Q denote the generalized transition function, which is
defined as usual. For q ∈ Q we write L(q) := {U ∈ Σ∗ |
δ∗(q, U) ∈ F} for the language of all words that lead
from q to a final state.
The length of a word W is denoted |W |. Regular

languages over Σ are defined as usual. With L1 ◦ L2 we
denote the concatenation of the languages L1 and L2.
Two words V and W are called isomorphic iff V can

be obtained from W by a permutation of the alphabet
Σ. The notion of isomorphism carries over to automata
in the obvious sense.

The Levenshtein distance between two words. The
Levenshtein distance between two words is based on the
notion of a primitive edit operation. In this paper, we
first consider the standard Levenshtein distance. Here
the primitive operations are the substitution of a symbol
by another symbol, the deletion of a symbol, and the in-
sertion of a symbol. Obviously, given two words W and
V over the alphabet Σ, it is always possible to rewrite
W into V using primitive edit operations.

Definition 1 Let V , W be words over the alphabet Σ.
The (standard) Levenshtein distance between V and W
is the minimal number of edit operations (substitutions,

Table 1 Computation of standard Levenshtein distance

dL(ε, W ) = |W |
dL(V, ε) = |V |

dL(aV, bW ) =




dL(V, W ) if a = b

1 + min(dL(V, W ), dL(aV, W ), dL(V, bW ))
if a �= b

for V, W ∈ Σ∗ and a, b ∈ Σ.

deletions, or insertions) that are needed to transform V
into W .

With dL(V,W ) we denote the Levenshtein distance bet-
ween V and W . It can be computed using the sim-
ple dynamic programming scheme given in Table 1
(cf. [WF74]).
The following simple observation follows immedi-

ately.

Lemma 1 Let W = UW ′ and V = UV ′. Then
dL(V,W ) = dL(V ′,W ′).

Let W = x1x2 · · ·xw and V = y1y2 · · · yv be two words
with Levenshtein distance n ≥ 0. Consider a sequence
ν of edit operations of minimal length leading from W
to V . If we substitute a letter xi by another symbol z,
the latter symbol will not be erased or subsituted by
one of the following edit operations of ν since otherwise
ν would not have minimal length. Hence there exists a
unique letter yj of V that represents the descendant of
z in V and the substitution result of xi. In the trace
representation (cf. [WF74]) of ν we introduce a stroke
from xi to yj . Similarly we introduce a stroke from xi

to yj if xi is not touched by any edit operation and if
yj represents the descendant of xi in the new word V .
Assume that all strokes of the above form are introduced.
Clearly, two strokes never cross. Moreover, each letter
xi of W that does not represent the starting point of a
stroke is deleted by some operation of ν, and each letter
yj of V that does not represent the end point of a stroke
is an inserted symbol.

Remark 1 Let W = x1x2 · · ·xw and V = y1y2 · · · yv be
two words with Levenshtein distance n ≥ 1. Assume that
V is not a prefix of W or vice versa. Let U = x1x2 · · ·xi

(where 0 ≤ i ≤ v, w) denote the maximal common pre-
fix of V and W . Then, in any trace representation of a
minimal sequence ν of edit operations leading from W
to V exactly one of the following three cases holds:

1. Insertion case. A stroke is starting at xi+1 that
points to some yi+j where j > 1.

2. Substitution case. Letters xi+1 and yi+1 are con-
nected by a stroke.
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Insertion
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Deletion

xi

yi

Fig. 1 Possible trace pictures for situation of Remark 1

3. Deletion case. A stroke ends at yi+1 that starts at
some xi+j where j > i+ 1.

In fact, the only remaining case would be the situation
where neither xi+1 nor yi+1 represent the end point of a
stroke. This would mean that xi+1 is deleted and yi+1 is
inserted in ν. Using one substitution instead, we would
get a shorter sequence of edit operations from V to W ,
which gives a contradiction. The three possible cases are
indicated in Fig. 1.

3 String correction with Levenshtein automata

As indicated in the introduction, we face a situation
where an electronic dictionary is used for detecting and
correcting misspelled words. Given any input word W ,
it is first checked if W is a word of the lexicon. In the
negative case, the lexicon is used to generate a list of
candidate corrections. The words V of the lexicon that
are most similar to W are considered to be good cor-
rection candidates. Dissimilarity is measured in terms of
the Levenshtein distance between W and V .
In the sequel, Σ denotes the background alphabet.

We assume that the dictionary is implemented in the
form of a deterministic FSA or a trie. A trie can be
considered as a finite state automaton as well. The lan-
guage of the automaton represents the set of all cor-
rect words. We assume that the automaton has the form
AD = 〈Σ,QD, qD

0 , FD, δD〉. AD will be called the dictio-
nary automaton in the sequel.

Definition 2 Let W be a word over the alphabet Σ.
With LLev(n,W ) we denote the set of all words V ∈ Σ∗

such that dL(W,V ) ≤ n.

push (<ε, qD
0 , qW

0 >);
while not empty(stack) do begin

pop (<V, qD, qW >);
for x in Σ do begin

qD
1 := δD(qD, x);

qW
1 := δW (qW , x);
if (qD

1 <> NIL) and (qW
1 <> NIL) then begin

V1 := concat(V, x);
push(<V1, q

D
1 , qW

1 >);
if (qD

1 ∈ F D) and (qW
1 ∈ F W )

then output(V1);
end;

end;
end;

Fig. 2 Backtracking procedure for parallel traversal of dic-
tionary automaton and Levenshtein automaton

We now introduce the central concept of this paper.

Definition 3 Let W be a word over the alphabet Σ, let
n ∈ N. A finite state automaton A is a Levenshtein au-
tomaton of degree n for W iff L(A) = LLev(n,W ).

The first correction method suggested in this paper fol-
lows a simple idea. In order to generate a list of cor-
rection candidates for a garbled input word W , we se-
lect a number n and compute a deterministic Leven-
shtein automaton AW = 〈Σ,QW , qW

0 , FW , δW 〉 of de-
gree n for W . Using the simple and well-established
backtracking procedure described in Fig. 2 we traverse
the two automata AW and AD in parallel. Starting with
the pair of initial states 〈qD

0 , qW
0 〉 and the empty word

ε, each step of the traversal adds a new letter x ∈ Σ
to the actual word V and leads from a pair of states
〈qD, qW 〉 ∈ QD×QW to 〈δD(qD, x), δW (qW , x)〉. We pro-
ceed as long as both components are distinct from the
empty failure state NIL.3 Whenever in both automata
a final state is reached, the actual word is added to the
output.
It is trivial to see that the list of all output words is

L(AD) ∩ L(AW ), hence it contains exactly the “gram-
matical” words in LLev(n,W ). With a good choice of n,
we obtain an appropriate set of correction candidates for
the input W .
The computational costs of the above algorithm is

bound by the size of the dictionary automaton AD and
depends on the bound n that is used. If n reaches the
length of the longest word in the dictionary, then in gen-
eral (e.g., for the empty input word) the algorithm gives
rise to a complete traversal of AD. In practical cases,
small bounds are used, and only a small portion of AD

will be visited. For bound 0, the algorithm only validates
in time O(|W |) if the input word W is in the dictionary.
We shall also introduce a second and related cor-

rection method. This method, which avoids the actual
computation of Levenshtein automata, can only be de-

3 A failure state is a state q whose language L(q) is empty.
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scribed once we have introduced a number of additional
concepts.

4 A family of deterministic Levenshtein
automata

In this section, we introduce a deterministic Levenshtein
automaton LEV n(W ) of degree n for an input word W .
The description is generic in the sense that we neither
make any specific assumption on the degree n nor on the
length or the form of the input wordW . The description
will be the basis for efficient computation of Levenshtein
automata for fixed degree n, to be described in the fol-
lowing section.
Profile sequences and characteristic vectors. We first in-
troduce some notions that help to characterize the struc-
tural properties of the input wordW that determine the
structure of the automaton LEV n(W ).

Definition 4 Let U = z1 · · · zu ∈ Σu be a sequence of
characters. The profil Pr(U) of U is the sequence of nat-
urals (n1 · · ·nu) obtained in the following way. Define
n1 := 1. Assume that n1, . . . , nk are defined for some
1 ≤ k < u. If zk+1 ∈ {z1, . . . , zk}, say zk+1 = zi (where
1 ≤ i ≤ k), then nk+1 := ni. In the other case, we define
nk+1 := max{ni | 1 ≤ i ≤ k}+ 1.
Example 1 We have

Pr(aachen) = (112345),
Pr(odd) = (122),
Pr(even) = (1213).

Let W and W ′ denote two words of the same length.
It should be clear that for any fixed degree n we can
use isomorphic deterministic Levenshtein automata for
input words W and W ′ whenever Pr(W ) = Pr(W ′).
A stronger relationship can be established. We shall see
that the structure of the deterministic Levenshtein au-
tomaton for an input word W to be described below
depends – in a sense to be made precise – only on local
subprofiles of the input word.

Definition 5 Let U = z1 · · · zu, let k ≥ 1. The k-profile
sequence of W is the sequence of profiles

Pr(z1 · · · zk),Pr(z2 · · · zk+1), . . . ,Pr(zu−k+1 · · · zu)

for k ≤ u. For k > u, the k-profile sequence of U is
Pr(z1 · · · zu).

The k-profile sequences of two words can be identical
even for non-isomorphic words.

Example 2 The 3-profile sequence of the word butter is

(1, 2, 3), (1, 2, 2), (1, 1, 2), (1, 2, 3).

The 3-profile sequence of setter is the same sequence.

The following notion plays a key role when defining the
images of the states of Levenshtein automata under in-
put symbols x ∈ Σ.

Definition 6 Let x ∈ Σ and let V = y1 . . . yv ∈ Σ∗.
The characteristic vector of x with respect to V is the
bit-vector χ(x, V ) := 〈b1, . . . , bv〉 where bj := 1 iff yj = x
and bj := 0 otherwise.

The following remark shows how the information con-
tained in a profile can be modularized using character-
istic vectors. The technique will be used when we define
the transitions of LEV n(W ).

Remark 2 Given the profile of a word V we can derive all
characteristic vectors of the form χ(x, V ), just using the
characteristic vectors of numbers 1, 2, . . . with respect to
Pr(V ). For example, if Pr(V ) = (1, 2, 1, 2, 3, 1, 2), then
the characteristic vectors χ(x, V ) have the form

〈1, 0, 1, 0, 0, 1, 0〉
〈0, 1, 0, 1, 0, 0, 1〉
〈0, 0, 0, 0, 1, 0, 0〉
〈0, 0, 0, 0, 0, 0, 0〉

(assuming that Σ has at least four letters). Conversely,
given the set of all characteristic vectors of the form
χ(x, V ), we may obviously derive Pr(V ).

Non-deterministic Levenshtein automata. The deter-
ministic Levenshtein automata to be introduced below
can be considered as the result of a specialized and op-
timized power set construction that is applied to non-
deterministic Levenshtein automata. The construction
of non-deterministic Levenshtein automata for a given
input word W and degree n is straightforward and long-
established in approximate string matching. As an ex-
ample, Fig. 3 depicts such an automaton, A, for an ar-
bitrary input word W = w1w2w3w4w5 of length 5 and
degree n = 2. The states of A are expressions of the form
i�e. The exponent  e indicates the number e of edit op-
erations that have been registered on the way from the
initial state 0�0 to i�e. All transitions are left-to-right
and/or bottom-up. Transitions from states i�e to i�e+1

represent insertions. In order to indicate that these tran-
sitions can be applied consuming any input symbol we
use bold lines. A transition from state i�e to (i+ 1)�e+1

labeled with the empty word ε represents a deletion of
the symbol wi+1. A similar transition with label ¬wi+1
represents a substitution of wi+1, hence any symbol dis-
tinct from wi+1 can be consumed. Final states are 5�0,
5�1, and 5�2. Note that it would not make a difference to
use 3�0, 4�0, and 4�1 as additional final states.
The automaton A is uniform in the sense that – mod-

ulo the given assignment of transition labels – the graph
structure of A is the same for arbitrary input of length 5.
In order to understand the role of the following construc-
tion, it is important to note that the result of a deter-
minization of A using the usual power set construction
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Fig. 3 Non-deterministic Levenshtein automaton of degree 2 for arbitrary input W = w1w2w3w4w5 of length 5
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Fig. 4 Positions and accepting positions for n = 5 and w = 8

heavily depends on identities between letters w1, . . . , w5.
For this reason, a uniform deterministic Levenshtein au-
tomaton for arbitrary input of length 5 cannot be given.
Two examples of deterministic Levenshtein automata for
input of length 5 (of degree 1) can be found in Figs. 8
and 9.

Positions and states. In order to characterize the states
of our deterministic Levenshtein automata we now fix an
arbitrary input wordW = x1 · · ·xw and a number n ∈ N

that denotes the maximal Levenshtein distance that we
want to capture. In the sequel, numbers i ∈ {0, . . . , w}
will be called the boundaries of W . In order to distin-
guish between states of deterministic Levenshtein au-
tomata and states of the kind of non-deterministic Lev-
enshtein automata described above, the latter will be
called positions henceforth.

Definition 7 A position is an expression of the form
i�e where 0 ≤ i ≤ w and 0 ≤ e ≤ n. Position i�e is
raised iff e > 0, otherwise it is called a base position.

Base positions can be considered as “error-free” posi-
tions.

Definition 8 A position i�e is accepting iff w−i ≤ n−e.
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Fig. 5 Subsumption triangles (cf. Example 4)

Accepting positions can be considered as final states of
the non-deterministic Levenshtein automata described
above.

Example 3 For n = 5 and w = 8, the set of all positions
is depicted in Fig. 4. Accepting positions are marked.

Definition 9 A position i�e subsumes a position j�f iff
e < f and |j − i| ≤ f − e. The set of all positions that
are subsumed by i�e is called the subsumption triangle of
i�e.

Example 4 Let n = 5 and assume that w = 8. Figure 5
illustrates the subsumption triangles of 1�2, 3�3 and 8�1.
Since subsumption is irreflexive, the positions 1�2, 3�3

and 8�1 do not belong to the respective triangles.

The following lemma indicates the background for the
notion of subsumption.

Lemma 2 Let W = x1 · · ·xw and n as above. Let Φ
denote the function that assigns to each position i�e the
language

Φ(i�e) := LLev(n − e, xi+1 · · ·xw).

Let π := i�e and π′ := j�f be two distinct positions. If π
subsumes π′, then Φ(π′) is a subset of Φ(π).
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Proof Assume that π = i�e subsumes π′ = j�f . Then
e < f and |j − i| ≤ f − e. Since xj+1 · · ·xw can be
obtained from xi+1 · · ·xw by a series of |j − i| insertions
(for j ≤ i) or deletions (for j > i) it follows easily that
Φ(π′) is a subset of Φ(π). ��
The states of LEV n(W ) are sets of positions of a

particular type.

Definition 10 Let 0 ≤ i ≤ w. A state with base posi-
tion i�0 is a set M of positions, not necessarily contain-
ing i�0, that satisfies the following properties:

1. For each position j�e in M , we have |i− j| ≤ e. That
is, each position of M , with the possible exception of
i�0, lies in the subsumption triangle of i�0.

2. M does not contain any position that is subsumed by
another element of M .

Let us note that a state may have several possible base
positions.

Example 5 First assume that n = 1 and w = 2. Then
the states are

∅, {0�0}, {1�0}, {2�0}, {0�1}, {1�1},
{2�1}, {0�1, 1�1}, {0�1, 2�1},
{1�1, 2�1}, {0�1, 1�1, 2�1}.

Assume now that w = 0. Let n be any natural number.
Then the set of non-empty states is {{0�e} | 0 ≤ e ≤
n}. Assume that n = 0. Let w be any natural number,
denoting the length of the input word. Then the set of
non-empty states is {{i�0} | 0 ≤ i ≤ w}.
Definition 11 Let M be a non-empty state. The min-
imal number i such that M contains a position of the
form i�e (for some e) is called the minimal boundary of
M .

It is trivial to verify the following lemma.

Lemma 3 Let M be a state with minimal boundary i
and let j�f ∈ M . Then j − i ≤ n+ f .

At various places we shall consider the union of two
states M and N with a common base position i�0. We
write M � N for the set that is obtained from M ∪ N
by omission of states that are subsumed by other states.
Since the subsumption relation is well-founded, this op-
eration is well-defined. Note that M �N is again a state
with base position i�0. M � N will be called the reduced
union of M and N .
Elementary transitions. The transitions of the Leven-
shtein automaton of degree n will be defined with the
help of transitions that act on single positions. The latter
transitions are called elementary transitions of degree n.
Intuitively, elementary transitions correspond to sets of
transitions of a non- deterministic Levenshtein automa-
ton starting from the same source state. The image of
a position under an elementary transition with an input
symbol x depends on the distribution of x in a subword
of W .
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Fig. 6 Relevant subwords for elementary transitions (cf. Ex-
ample 6)

Definition 12 Let W = x1 · · ·xw as above. Let π := i�e

be a position, and let k := min{n − e + 1, w − i}. The
relevant subword of W for position π, denoted W[π], is
the subword xi+1 · · ·xi+k of W .

Note that the length of W[π] cannot exceed n+ 1.

Example 6 Let w = 8 and n = 5. Then the relevant
subwords for positions 2�2 and 3�0 are x3x4x5x6 and
x4x5x6x7x8 respectively, as illustrated in Fig. 6.

Definition 13 Let W and n be as above. An elemen-
tary transition assigns to each position π = i�e and each
symbol x ∈ Σ a state δ(i�e, x). The complete set of el-
ementary transitions is specified in Table 2. Notation
〈0, b2, . . . , bk〉 : j indicates that j is the minimal index in
the set {2, . . . , k} where bj = 1. This implies that such
an index exists.

Table 2 Table of elementary transitions for π = i�e

(I) 0 ≤ e ≤ n − 1

i ≤ w − 2 δ(i�e, x) :=




{(i + 1)�e}
for χ(x, W[π]) = 〈1, b2, . . . , bk〉,

{i�e+1, (i + 1)�e+1, (i + j)�e+j−1}
for χ(x, W[π]) = 〈0, b2, . . . , bk〉 : j,

{i�e+1, (i + 1)�e+1}
for χ(x, W[π]) = 〈0, . . . , 0〉.

i = w − 1 δ(i�e, x) :=




{(i + 1)�e}
for χ(x, W[π]) = 〈1〉,

{i�e+1, (i + 1)�e+1}
for χ(x, W[π]) = 〈0〉.

i = w δ(w�e, x) := {w�e+1}
(II) e = n

i ≤ w − 1 δ(i�n, x) :=

{
{(i + 1)�n} for χ(x, W[π]) = 〈1〉,
∅ for χ(x, W[π]) = 〈0〉.

i = w δ(w�n, x) := ∅.
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The following – informal – comments explain the intu-
ition behind these transitions. In Part I of the table for
i ≤ w − 1 we distinguish three situations:
1. The first entry of χ(x,W[π]) is 1.
2. The first entry of χ(x,W[π]) is 0, but χ(x,W[π]) has
an entry 1, the minimal one has index j.

3. All entries of χ(x,W[π]) are 0.

In Situation 3, x does not occur in W[π]. The transition
can be interpreted as a default transition. Image element
i�e+1 captures the insertion of x at boundary i, image
element (i+1)�e+1 captures the substitution of xi+1 with
x. Other possible explanations for the occurrence of x
are covered via subsumption. For example, assume that
xi+1 is deleted and xi+2 is substituted by x. The position
reached in this case is (i + 2)�e+2. We do not add this
position to the image set since it is subsumed by (i +
1)�e+1. Note that default transitions for e = n lead to
the failure state ∅ (cf. Part II).
In Situation 2, the image element i�e+1 again cov-

ers the situation where symbol x is inserted before xi+1.
Element (i + 1)�e+1 covers the situation where xi+1 is
substituted by x. Element (i + j)�e+j−1 covers the sit-
uation where the elements xi+1, . . . , xi+j−1 are dele-
ted. The reader might wonder why only the entry 1
with minimal index j is essential. This entry corre-
sponds to the first occurrence of x in W[π]. Assume that
j = j1 < . . . < jh is the list of all indices where χ(x,W[π])
has an entry 1. In this situation position (i + j)�e+j−1

subsumes all positions (i + jl)�e+jl−1 for 1 �= l. Hence,
elimination of subsumed positions leads to the state
{i�e+1, (i+ 1)�e+1, (i+ j)�e+j−1} which is used as image
above. See Example 7 below for an illustration.
In Situation 1 we might expect that the image is

rather the set {i�e+1, (i+1)�e+1, (i+1)�e}. But note that
(i+1)�e subsumes both other elements. Hence, via elim-
ination of subsumed positions we arrive at {(i+ 1)�e}.
Example 7 Let w = 8 and n = 5. In Fig. 7 we consider
the image of π = 2�0 under x ∈ Σ. We have

W[π] = x3 · · ·x8.

We assume that

χ(x,W[π]) = 〈0, 0, 1, 0, 1, 1〉.
This means that x5, x7 and x8 are the symbols of
W[π] that are identical to x. In this situation we have
δ(2�0, x) = {2�1, 3�1, 5�2} as illustrated in Fig. 7.
The proof of the next lemma is straightforward.

Lemma 4 Let M be a set of positions. Assume that all
elements of M are subsumed by i�e where i < w. Then
the image of any element of M under any elementary
transition contains only positions that are subsumed by
(i+1)�e. If all elements of M are subsumed by w�e, then
the image of any element of M under any elementary
transition has only positions that are subsumed by w�e.
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Fig. 7 Geometric interpretation of elementary transitions
(cf. Example 7)

We now ask how the elementary transitions for Leven-
shtein automata of different degrees n for the same in-
put word W are related. In order to avoid notational
ambiguities we write δ(n) for the function that describes
the elementary transitions for the Levenshtein automa
ton of degree n. If e is a natural number, we write
[i�f ]�e for the “lifted” position i�f+e (it will be guar-
anteed that each such expression in fact denotes a po-
sition). If M is a state, we define the lifted version
[M ]�e := {[π]�e | π ∈ M}. The following lemma shows
that once the elementary transitions from positions i�0

for degrees 0, . . . , n − 1 are fixed, the elementary tran-
sitions of degree n for positions i�e for 1 ≤ e ≤ n are
simply defined by “raising”.

Lemma 5 (Raising Lemma for elementary tran-
sitions) Let n > 0 and 1 ≤ e ≤ n. Then for any position
i�e of degree n and any x ∈ Σ we have

δ(n)(i�e, x) = [δ(n−e)(i�0, x)]�e.

Proof Since min{n − e+ 1, w − i} = min{(n − e)− 0 +
1, w − i} it follows that the relevant subword for i�e for
degree n is identical to the relevant subword of i�0 for
degree n − e. We may denote it in the form Wr. First
assume that i ≤ w − 2 and the first entry of χ(x,Wr) is
1. Then we have

δ(n)(i�e, x) = {(i+ 1)�e}
= [{(i+ 1)�0}]�e
= [δ(n−e)(i�0, x)]�e.

The remaining cases are similar. ��

The Levenshtein automaton. We now introduce the fam-
ily of Levenshtein automata that we use for string cor-
rection.

Definition 14 Let W = x1 · · ·xw where w ≥ 0, let
n ≥ 0. Then LEV n(W ) is the deterministic finite state
automaton 〈Σ,Q, q0, F,∆〉 with the following properties:
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1. The set of states Q contains all states in the sense
of Definition 10.

2. The initial state is q0 := {0�0}.
3. The set F of final states contains all states M ∈ Q

that contain an accepting position.
4. The transition function ∆ is defined in the following

way: for any symbol y ∈ Σ and any state M ∈ Q,
∆(M,y) :=

⊔
π∈M δ(π, y).

Theorem 1 LEV n(W ) is a deterministic and acyclic
Levenshtein automaton of degree n for W . For fixed de-
gree n, the size of LEV n(W ) is linear in |W |.

The proof of Theorem 1 is given in the Appendix.
The rest of this section will be used to introduce some
notions that help to obtain a concrete description of
the transition function ∆ of LEV n(W ) in the situation
where the degree n is fixed. Recall that the above defini-
tion of ∆ is indirect in the sense that the image of a state
is only defined in terms of the images of its members un-
der elementary transitions. Clearly, if M is a state and
x ∈ Σ, in order to directly define the image ∆(M,x) we
have to distinguish appropriate subcases that take the
distribution of the occurrences of x in W into account.
As it turns out, it suffices to consider the occurrences of
x in a particular subword of W .

Definition 15 Let W and n as above. Let M be a non-
empty state with minimal boundary i. Let k := min{2n+
1, w − i}. The relevant subword of M , denoted W[M ], is
the subword

xi+1 · · ·xi+k

of W .

Since the relevant subword does not depend on the state
M itself, but only on the minimal boundary i of M ,
we also write W[i] for W[M ]. Note that the length of
W[i] cannot exceed 2n+1. It follows from Lemma 3 and
from Definitions 12 and 15 that for each position π ∈
M always W[π] is a subword of W[M ]. Table 2 shows
that for any position π the image δ(π, x) only depends
on vector χ(x,W[π]). Thus, given a state M , the image
∆(M,x) is completely determined by the characteristic
vector χ(x,W[M ]). In the following section we shall see
that for fixed degree n this observation can be used to
describe ∆ in terms of a finite table.

Remark 3 The transition function ∆ is completely de-
termined by the characteristic vectors χ(x,W[i]) of sym-
bols x ∈ Σ with respect to the subwordsW[i] of the form
W[i] = xi+1 · · ·xi+k where k := min{2n + 1, w − i}. If
W and W ′ are two words of the same length, and if the
(2n + 1)-profile sequences of W and W ′ are identical,
then LEV n(W ) and LEV n(W ′) are isomorphic modulo
transition labels.

5 Computation of deterministic Levenshtein
automata of fixed degree

The general description of the Levensthein automaton
LEV n(W ) given in the previous section can be used to
derive, for any fixed bound n, an algorithm that actu-
ally computes LEV n(W ) in linear time, given any input
word W . The principle will first be illustrated for degree
n = 1.

5.1 Computing the Levensthein automaton of degree 1

Using the general description of the automaton
LEV n(W ), we derive a generic description of LEV 1(W )
for arbitrary input W in terms of the following:

– A parametric list of states, with a fixed initial state
{0�0}

– A parametric list of final states
– A table T1 which gives a parametric description of
the transition function ∆

Parametric list of states and final states. For inputW =
x1 · · ·xw and n = 1 the list of positions is

0�0, . . . , w�0,

0�1, . . . , w�1.

It follows easily from Definition 10 that we have the fol-
lowing states:

∅ failure state,
Ai := {i�0} (0 ≤ i ≤ w),
Bi := {i�1} (0 ≤ i ≤ w),
Ci := {i�1, (i+ 1)�1} (0 ≤ i ≤ w − 1),
Di := {i�1, (i+ 2)�1} (0 ≤ i ≤ w − 2),
Ei := {i�1, (i+ 1)�1, (i+ 2)�1}

(0 ≤ i ≤ w − 2).
The initial state is A0. Accepting positions are w�1, w�0,
as well as (w − 1)�0 for w ≥ 1. It follows immediately
that the final states are

Aw, Aw−1, Bw, Cw−1, Dw−2, Ew−2

for w ≥ 2,
Aw, Aw−1, Bw, Cw−1

for w = 1,
Aw, Bw

for w = 0.

Parametric description of the transitions function. In
order to derive the parametric description of the tran-
sition function, we first refine the general description of
elementary descriptions given in Table 2. For the case
n = 1, we obtain the set of elementary transitions given
in Table 3. Using this table it is simple to compute a
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Table 3 Table of elementary transitions for degree 1

(I) e = 0

i ≤ w − 2 δ(i�0, x) :=




{(i + 1)�0}
for χ(x, xi+1xi+2) = 〈1, b2〉,

{i�1, (i + 1)�1, (i + 2)�1}
for χ(x, xi+1xi+2) = 〈0, 1〉,

{i�1, (i + 1)�1}
for χ(x, xi+1xi+2) = 〈0, 0〉.

i = w − 1 δ(i�0, x) :=




{(i + 1)�0}
for χ(x, xi+1) = 〈1〉,

{i�1, (i + 1)�1}
for χ(x, xi+1) = 〈0〉.

i = w δ(w�0, x) := {w�1}
(II) e = 1

i ≤ w − 1 δ(i�1, x) :=

{
{(i + 1)�1} for χ(x, xi+1) = 〈1〉,
∅ for χ(x, xi+1) = 〈0〉.

i = w δ(w�1, x) := ∅.

parametric description of the full transition function ∆,
following the remarks at the end of the previous sec-
tion. The description is given in Table 4. Images∆(M,x)
are specified using a subcase analysis where the possible
characteristic vectors χ(x,W[M ]) are distinguished. The
following example shows how the entries of Table 4 are
computed.

Example 8 Assume we ask for the image ∆(Ci, x) of
state Ci = {i�1, (i+ 1)�1} under x ∈ Σ, where i ≤ w − 3
and

χ(x,W[Ci]) = χ(x, xi+1xi+2xi+3)
= 〈1, 1, 0〉.

We have

W[i�1] = xi+1

W[(i+1)�1] = xi+2,

hence

χ(x,W[i�1]) = 〈1〉 = χ(x,W[(i+1)�1]).

Using Table 3 we obtain

∆(Ci, x) = δ(i�1, x) � δ((i+ 1)�1, x)
= {(i+ 1)�1} � {(i+ 2)�1}
= {(i+ 1)�1, (i+ 2)�1}
= Ci+1.

In the same way, all other entries of Table 4 can be com-
puted.

Table 4 Parametric transitions for LEV 1(W )

0 ≤ i ≤ w − 3
χ(x, xi+1xi+2xi+3) Ai Bi Ci Di Ei

〈0, 0, 0〉 Ci ∅ ∅ ∅ ∅
〈1, 0, 0〉 Ai+1 Bi+1 Bi+1 Bi+1 Bi+1

〈0, 1, 0〉 Ei ∅ Bi+2 ∅ Bi+2

〈0, 0, 1〉 Ci ∅ ∅ Bi+3 Bi+3

〈1, 1, 0〉 Ai+1 Bi+1 Ci+1 Bi+1 Ci+1

〈1, 0, 1〉 Ai+1 Bi+1 Bi+1 Di+1 Di+1

〈0, 1, 1〉 Ei ∅ Bi+2 Bi+3 Ci+2

〈1, 1, 1〉 Ai+1 Bi+1 Ci+1 Di+1 Ei+1

i = w − 2
χ(x, xi+1xi+2) Ai Bi Ci Di Ei

〈0, 0〉 Ci ∅ ∅ ∅ ∅
〈1, 0〉 Ai+1 Bi+1 Bi+1 Bi+1 Bi+1

〈0, 1〉 Ei ∅ Bi+2 ∅ Bi+2

〈1, 1〉 Ai+1 Bi+1 Ci+1 Bi+1 Ci+1

i = w − 1
χ(x, xi+1) Ai Bi Ci

〈0〉 Ci ∅ ∅
〈1〉 Ai+1 Bi+1 Bi+1

i = w

χ(x, ε) Ai Bi

〈〉 Bi ∅

Computation of the actual automaton. Obviously, given
the above generic description of LEV 1 it is possible
to generate for any concrete input W the automaton
LEV 1(W ) in time O(|W |).
Theorem 2 There exists an algorithm that computes
for any input word W the automaton LEV 1(W ) in time
and space O(|W |).
Corollary 1 For any input W , the minimal determin-
istic Levenshtein automaton of degree 1 for W can be
computed in time and space O(|W |).
Proof A result by D. Revuz shows that acyclic deter-
ministic finite state automata can be minimalized in lin-
ear time [Rev92]. Since LEV 1(W ) is deterministic and
acyclic the result follows. ��
Example 9 Figure 8 describes the automaton LEV 1(W )
for the input word atlas. For each word W of length 5
with 3-profile sequence

(1, 2, 3), (1, 2, 3), (1, 2, 3)

the automaton LEV 1(W ) has the same structure, mod-
ulo renaming of transition labels. Similarly Fig. 9 de-
scribes the structure of LEV 1(W ) for the word otter.
Here for each wordW of length 5 with 3-profile sequence

(1, 2, 2), (1, 1, 2), (1, 2, 3)



Fast string correction with Levenshtein automata 77

the automaton LEV 1(W ) has the same structure, mod-
ulo renaming of transition labels.

5.2 Computing Levensthein automata of higher degree

For any fixed degree n ≥ 2, the computation of
LEV n(W ) essentially follows the same ideas as in the
case n = 1. Given the degree n, an offline computation
is used to compute the following:

1. A parametric description of the set of all states of
LEV n(W ) for arbitrary input word W , using the
minimal boundary i of states as a parameter

2. A parametric description of the set of all final states
3. A parametric transition table Tn that defines the im-
ages of parametric states M under input x ∈ Σ,
subject to the form of the characteristic vectors
χ(x,W[M ])

In each case, the initial state is {0�0}. Once we have the
parametric description of LEV n(W ) for arbitrary W at
our disposal, we may use it to compute for any concrete
input word W the automaton LEV n(W ) in time linear
in |W |.
Theorem 3 For any fixed degree n, there exists an al-
gorithm that computes for input word W the automaton
LEV n(W ) in time and space O(|W |).
Corollary 2 For any input W , the minimal determin-
istic Levenshtein automaton of fixed degree n for W can
be computed in time and space O(|W |).
Proof As in the case n = 1. ��
Remark 4 Whereas five parametric states (i.e., Ai, Bi,
Bi, Di, and Ei) are sufficient for degree n = 1, the
number of parametric states that are needed for degrees
2, 3, 4, . . . grows quickly. For n = 2 there are 30 para-
metric states (ignoring state ∅), which are listed in Ta-
ble 5. Since relevant subwords W[M ] may have length
2n + 1 = 5, the boolean vectors that have to be con-
sidered when defining the transition function have max-
imal length 5. Hence the maximal subtable of ∆ has
dimension 30× 32. For n = 3, the number of parametric
states is 196, the maximal subtable for ∆ has dimension
196 × 128. For n = 4, there are alread 1353 paramet-
ric states, the maximal subtable for ∆ has dimension
1352× 512.

6 String correction using imitation
of Levensthein automata

We now introduce a variant of the correction method
described in Sect. 3. The main advantage of the new
method is that it avoids the actual computation of
Levenshtein automata. As before we assume that for

Table 5 Non-empty parametric states of LEV 2(W )

{i�0} (0 ≤ i ≤ w),

{i�1} (0 ≤ i ≤ w),

{i�1, (i + 1)�1} (0 ≤ i ≤ w − 1),

{i�1, (i + 2)�1} (0 ≤ i ≤ w − 2),

{i�1, (i + 1)�1, (i + 2)�1} (0 ≤ i ≤ w − 2),

{i�2, (i + 2)�1} (0 ≤ i ≤ w − 2),

{i�2, (i + 3)�1} (0 ≤ i ≤ w − 3),

{i�2, (i + 4)�2, (i + 2)�1} (0 ≤ i ≤ w − 4),

{i�2, (i + 1)�2, (i + 3)�1} (0 ≤ i ≤ w − 3),

{i�2, (i + 2)�1, (i + 3)�1} (0 ≤ i ≤ w − 3),

{i�1, (i + 3)�2} (0 ≤ i ≤ w − 3),

{i�1, (i + 2)�2} (0 ≤ i ≤ w − 2),

{i�1, (i + 1)�1, (i + 3)�2} (0 ≤ i ≤ w − 3),

{i�1, (i + 2)�2, (i + 3)�2} (0 ≤ i ≤ w − 3),

{i�2} (0 ≤ i ≤ w),

{i�2, (i + 1)�2} (0 ≤ i ≤ w − 1),

{i�2, (i + 2)�2} (0 ≤ i ≤ w − 2),

{i�2, (i + 3)�2} (0 ≤ i ≤ w − 3),

{i�2, (i + 4)�2} (0 ≤ i ≤ w − 4),

{i�2, (i + 1)�2, (i + 2)�2} (0 ≤ i ≤ w − 2),

{i�2, (i + 1)�2, (i + 3)�2} (0 ≤ i ≤ w − 3),

{i�2, (i + 1)�2, (i + 4)�2} (0 ≤ i ≤ w − 4),

{i�2, (i + 2)�2, (i + 3)�2} (0 ≤ i ≤ w − 3),

{i�2, (i + 2)�2, (i + 4)�2} (0 ≤ i ≤ w − 4),

{i�2, (i + 3)�2, (i + 4)�2} (0 ≤ i ≤ w − 4)

{i�2, (i + 1)�2, (i + 2)�2, (i + 3)�2} (0 ≤ i ≤ w − 3),

{i�2, (i + 1)�2, (i + 2)�2, (i + 4)�2} (0 ≤ i ≤ w − 4),

{i�2, (i + 1)�2, (i + 3)�2, (i + 4)�2} (0 ≤ i ≤ w − 4),

{i�2, (i + 2)�2, (i + 3)�2, (i + 4)�2} (0 ≤ i ≤ w − 4),

{i�2, (i + 1)�2, (i + 2)�2, (i + 3)�2, (i + 4)�2} (0 ≤ i ≤ w − 4).

some fixed degree n we have at our disposal a generic
description of the automaton

LEV n(W ) = 〈Σ,QW , {0�0}, FW , ∆W 〉
for arbitrary input W , as presented in the previous sec-
tion for degree n = 1. With ∆W

χ we denote the variant of
the transition function where characteristic vectors are
treated as input. Note that the tables Tn yield paramet-
ric descriptions of ∆W

χ . For example, from Table 4 we
see that A0 is mapped to C0 under vector 〈0, 0, 0〉.
As in Sect. 3 we assume that the dictionary is im-

plemented in the form of a deterministic finite state au-
tomaton AD = 〈Σ,QD, qD

0 , FD, δD〉.
Given any concrete input word W , we first compute

the set of all characteristic vectors of the form χ(x,W[i])
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Fig. 8 Deterministic Levenshtein automaton LEV 1(W ) for input W = “atlas”

o

t

t

e

t e r4

t t e r

t

t e ro

t

t
0#1,1#1 2#1,3#1 3#1,4#1

4#1,5#10#1,1#1,2#1

1#1,2#1

2#1,3#1,4#1 3#1,4#1,5#1

r

0#0 1#0 2#0 3#0 4#0 5#0

1#1 2#1 3#1 4#1 5#1

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C0

C1

C2 C3
C4

E3E2E0

Fig. 9 Deterministic Levenshtein automaton LEV 1(W ) for input W = “otter”

where x ∈ Σ and i denotes a boundary of W . Using this
vectors, the backtracking procedure given in Sect. 3 can
now be replaced by the variant depicted in Fig. 10: Note
that in contrast to the situation described in Sect. 3, we
do not assume that the Levenshtein automaton for the
concrete input word W is available. Given the generic
description of LEV n, states of LEV n(W ) are only in-
troduced on demand in line 6. It is important to note
that each image state ∆W

χ (M,χ(x,W[M ])) can be found
in constant time since both χ(x,W[M ]) and the table Tn

for ∆χ have been precomputed. The following example
illustrates the modified acceptance procedure.

Example 10 We consider the case n = 1. Assume that
the (misspelled) input word W has the form chold. We
consider the path of the dictionary automaton for the
dictionary entry child, which is assumed to lead to a
final state. The following transition sequence illustrates

push (<ε, qD
0 , {0�0}}>);

while not empty(stack) do begin
pop (<V, qD, M>);
for x in Σ do begin

qD
1 := δD(qD, x);

M ′ := ∆W
χ (M, χ(x, W[M ]));

if (qD
1 <> NIL) and (M ′ <> NIL) then begin

V1 := concat(V, x);
push(<V1, q

D
1 , M ′>);

if (qD
1 ∈ F D) and (M ′ ∈ F W )

then output(V1);
end;

end;
end;

Fig. 10 Backtracking procedure for lexical traversal with
imitation of Levenshtein automata
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Table 6 Number and lengths of test words for evaluation
with BL

Length 3 4 5 6 7 8
� prefixes 3152 12 121 30 243 59 835 101 763 150 046
Length 9 10 11 12 13 14
� prefixes 190 318 203 520 184 138 139 982 91 252 52 603
Length 15 16 17 18 19 20
� prefixes 27 997 14 763 8179 4601 2790 1585

Table 7 Results for BL, standard Levenshtein distance,
bound n = 1

Length LA PT TCT1 TCT2 NC
3 0.228 0.152 0.381 0.324 10.31
4 0.251 0.183 0.434 0.351 8.66
5 0.272 0.201 0.473 0.351 6.97
6 0.294 0.213 0.507 0.355 6.66
7 0.318 0.222 0.540 0.362 6.44
8 0.340 0.233 0.573 0.375 6.34
9 0.362 0.244 0.607 0.389 5.84
10 0.385 0.255 0.639 0.403 5.25
11 0.410 0.261 0.671 0.413 4.65
12 0.430 0.270 0.700 0.421 4.01
13 0.452 0.273 0.726 0.424 3.61
14 0.474 0.273 0.748 0.422 3.24
15 0.497 0.270 0.767 0.414 2.98
16 0.520 0.266 0.786 0.404 2.73
17 0.544 0.260 0.804 0.400 2.62
18 0.565 0.263 0.828 0.398 2.51
19 0.588 0.262 0.849 0.394 2.35

how states of LEV 1(chold) are generated on demand,
using precomputed characteristic vectors and Table 4.

A0 input χ(c, cho) = 〈1, 0, 0〉 �→ A1

A1 input χ(h, hol) = 〈1, 0, 0〉 �→ A2

A2 input χ(i, old) = 〈0, 0, 0〉 �→ C2

C2 input χ(l, old) = 〈0, 1, 0〉 �→ B4

B4 input χ(d, d) = 〈1〉 �→ B5

Now B5 is a final state. Hence, in the above procedure,
the word child is suggested as one correction of the input
chold. Assume now that the dictionary also contains the
word cold. In this case we reach the following states of
LEV 1(chold):

A0 input χ(c, cho) = 〈1, 0, 0〉 �→ A1

A1 input χ(o, hol) = 〈0, 1, 0〉 �→ E1

E1 input χ(l, hol) = 〈0, 0, 1〉 �→ B4

B4 input χ(d, d) = 〈1〉 �→ B5

Since B5 is final, also cold is suggested as a correction
candidate.

Table 8 Results for BL, standard Levenshtein distance,
bound n = 2

Length LA PT TCT1 TCT2 NC
3 1.40 2.18 3.57 3.19 227
4 1.62 2.56 4.18 3.68 175
5 1.78 2.76 4.55 3.74 111
6 1.94 2.85 4.80 3.75 76.2
7 2.10 2.91 5.02 3.65 57.3
8 2.26 3.00 5.26 3.64 48.2
9 2.42 3.08 5.50 3.66 39.1
10 2.58 3.16 5.74 3.72 32.2
11 2.74 3.22 5.95 3.77 26.2
12 2.89 3.25 6.15 3.80 20.7
13 3.06 3.27 6.33 3.81 16.3
14 3.21 3.25 6.46 3.77 12.8
15 3.37 3.19 6.56 3.70 10.7
16 3.53 3.12 6.65 3.63 9.19
17 3.68 3.08 6.77 3.58 8.29
18 3.84 3.05 6.89 3.54 7.84
19 4.00 3.03 7.03 3.52 7.35

Table 9 Results for BL, standard Levenshtein distance,
bound n = 3

Length LA PT TCT1 TCT2 NC
3 13.3 11.6 25.0 16.1 2411
4 14.8 13.8 28.6 18.9 2108
5 16.3 15.0 31.4 20.4 1397
6 18.0 15.7 33.7 21.2 852
7 19.2 16.0 35.2 20.9 538
8 20.3 16.4 36.7 20.9 381
9 21.5 16.7 38.2 20.6 269
10 22.8 16.9 39.7 20.4 192
11 23.9 17.1 41.1 20.3 138
12 27.6 22.8 50.4 25.6 96.0
13 30.9 21.7 52.6 25.2 63.7
14 32.2 21.9 54.2 25.1 41.8
15 33.6 20.9 54.5 24.0 28.6
16 34.8 21.2 56.0 24.0 21.8
17 36.8 20.1 56.9 23.8 18.3
18 38.1 19.8 57.8 23.0 16.0
19 39.0 19.9 58.9 22.9 14.6

7 Experimental results

Experimental results were made using a Bulgarian lexi-
con (BL) with 870 000 word entries and a dictionary of
German composite nouns (GL) with 6 058 198 entries.
The following algorithms were implemented in C and
tested on 500MHz (BL) and 600MHz (GL) Pentium III
machines under Linux:

– The algorithm for computing, given input W , the
automaton LEV n(W ) (n = 1, 2, 3)
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Table 10 Results for BL, Levenshtein distance where trans-
positions are treated as primitive edit operations, bounds
n = 1, 2, 3, times in milliseconds

Length n = 1 time NC n = 2 time NC n = 3 time NC
3 0.330 10.4 4.03 231 17.0 2143
4 0.362 8.75 4.58 178 21.0 2139
5 0.357 7,04 4.67 114 23.5 1428
6 0.360 6.69 4.69 77.3 21.5 869
7 0.367 6.46 4.57 57.8 21.2 547
8 0.379 6.36 4.58 48.6 21.5 386
9 0.394 5.85 4.62 39.4 21.1 272
10 0.407 5.25 4.69 32.3 22.6 194
11 0.416 4.66 4.85 26.4 20.9 140
12 0.428 4.10 4.78 20.8 20.7 96.8
13 0.430 3.62 4.78 16.3 20.5 64.1
14 0.428 3.24 4.73 12.8 21.9 42.0
15 0.424 2.98 4.74 10.8 21.3 26.7
16 0.416 2.73 4.59 9.21 20.9 21.8
17 0.410 2.62 4.54 8.30 21.0 18.3
18 0.404 2.51 4.50 7.85 24.5 15.9
19 0.405 2.35 4.43 7.36 26.7 14.6

Table 11 Results for BL, Levenshtein distance where
merges and splits are treated as primitive edit operations,
bounds n = 1, 2, 3, times in milliseconds

Length n = 1 time NC n = 2 time NC n = 3 time NC
3 1.86 48.1 30.3 3216 139 > 104

4 1.79 31.6 32.3 2125 161 > 104

5 1.79 21.3 33.7 1195 167 9998
6 1.78 16.7 34.0 667 175 8050
7 1.82 14.8 31.8 404 182 8106
8 2.32 13.9 31.4 278 186 5606
9 2.38 12.6 31.5 197 184 3654
10 2.41 11.1 31.8 144 174 2291
11 2.43 9.64 34.2 107 168 1433
12 2.47 8.19 34.3 77.5 169 872
13 2.47 6.88 33.8 53.8 175 493
14 2.45 5.85 35.4 36.8 171 257
15 2.39 5.20 30.6 26.1 170 116
16 2.34 4.65 30.1 20.2 165 54.7
17 2.29 4.26 29.7 17.0 166 35.8
18 2.25 4.17 29.5 14.8 166 27.9
19 2.22 3.85 29.3 13.7 163 24.3

– The correction algorithm based on Levenshtein au-
tomata described in Sect. 3 (n = 1, 2, 3)

– The correction algorithm based on imitation of Lev-
ensthein automata described in Sect. 6 (n = 1, 2, 3)

– The variants of the above algorithms for the modified
Levenshtein distances where transpositions (merges
and splits) are treated as additional edit operations

Table 12 Results for Bulgarian word list with random er-
rors introduced, standard Levenshtein distance, bounds n =
1, 2, 3

Length n = 1 time NC n = 2 time NC n = 3 time NC
5 0.30 5.34 3.80 107.11 22.31 1490.85
6 0.31 3.97 3.81 61.73 23.25 812.17
7 0.32 3.11 3.77 37.06 23.02 432.94
8 0.32 2.68 3.78 25.05 22.93 246.79
9 0.33 2.22 3.79 16.53 22.60 134.84
10 0.33 1.75 3.76 10.72 22.27 71.42
11 0.34 1.44 3.81 7.32 21.96 37.67
12 0.34 1.17 3.79 5.12 21.86 20.44
13 0.34 1.03 3.77 4.01 21.85 13.19
14 0.35 0.94 3.88 3.47 21.92 9.93
15 0.35 0.85 3.77 3.04 21.60 7.93
16 0.37 0.83 3.87 2.89 22.02 7.34
17 0.39 0.76 3.92 2.50 21.95 6.47
18 0.40 0.74 3.92 2.25 22.06 5.58
19 0.25 0.58 3.84 1.94 21.70 4.93

(see [SM01] for a detailed description of Levenshtein
automata for these modified distances)

Evaluation of correction with BL. For the Bulgarian lex-
icon, we used the prefixes of length 3, 4, . . . , 19 of all dic-
tionary words as garbled input “words” and computed
the correction candidates. The number of test words of
each length is given in Table 6.
The tables given below describe the results for the

following corrections:

1. Correction with BL and standard Levenshtein dis-
tance with bound n = 1, 2, 3 (Tables 7, 8 and 9)

2. Correction with BL and Levenshtein distance where
transpositions are treated as primitive edit opera-
tions, with bounds n = 1, 2, 3 (Table 10)

3. Correction with BL and Levenshtein distance where
merges and splits are treated as primitive edit oper-
ations, with bound n = 1, 2, 3 (Table 11)

In Tables 7, 8 and 9, column 1 gives the length of
the input words. Column 2 (LA) describes the average
time that is needed to compute the Levenshtein automa-
ton for an input word. Column 3 describes the average
time that is needed for parallel traversal (PT) of dictio-
nary automaton and Levenshtein automaton. Column 4
(TCT1) gives the average total correction time for the
correction method based on computation of Levenshtein
automata. Column 6 (TCT2) gives the average total cor-
rection time for the correction method based on imi-
tation of Levenshtein automata. Column 7 (NC) yields
the average number of correction candidates (dictionary
words within the given distance bound) per input word.
Times are in milliseconds. It is important to note that
the time that is needed to output the correction candi-
dates is always included.
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As a summary, the second correction method based
on simulation of Levenshtein automata is more efficient.
The smaller number of correction candidates for large
prefixes leads to the effect that for prefixes of length> 13
correction times decrease for longer input words when
using the second correction method. The use of transpo-
sitions as primitive edit operations does not influence
correction times and the number of correction candi-
dates in a significant way. In contrast, a much longer
search is needed when treating merges and splits as ad-
ditional primitive edit operations. Both correction times
and number of correction candidates grow.
In another series of experiments, all lexical words of a

large Bulgarian corpus were garbled in order to simulate
recognition errors. For each word, we randomly chose a
number m ∈ {1, 2, 3} of edit operations (substitutions,
deletions, insertions) to be applied. The type and posi-
tion of the edit operations, as well as the image symbols
for substitutions and insertions were also randomly se-
lected. The resulting list of garbled words was sorted
according to the length of the words. The number of
words per equivalence class was between 159 (length 19)
and 19 220 (length 8). We then used the second correc-
tion method based on imitation of Levenshtein automata
with bounds n = 1, 2, 3 (standard distance) and com-
puted correction candidates. Table 12 gives the average
correction times and the average number of correction
candidates per word, for each equivalence class (lengths
5, . . . , 19).
Evaluation of correction with GL. Table 13 describes
the results for correction with the german dictionary
of composite nouns GL with 6 058 198 entries. For each
length l = 5, . . . , 19, we randomly selected 1000 prefixes
of length l of entries and computed for each prefix all
entries of GL where the standard Levenshtein distance
does not exceed bound n = 1, 2, 3. We give the correction
time (including output of correction candidates) and the
average number of corrections.

Remark 5 Oflazer gives the following average correction
times for a German dictionary with 174 573 words. For
distance bound n = 1, 27.09 milliseconds, for n = 2,
169.88ms, for n = 3, 582.45ms. Oflazer’s experiments
were made on a SPARCstation 10/41. Since we used for
our test series a faster machine, yet also much larger
dictionaries, an exact comparison of both approaches is
impossible. We think, however, that our results show
that our method is clearly superior in terms of efficiency.

8 Conclusion

We introduced two related methods for correcting gar-
bled words using an electronic dictionary that is imple-
mented as a deterministic finite state automaton. The
correction procedures are similar to Oflazer’s approach
[Ofl96], but completely avoid the computation of Leven-
shtein distances. Instead, Levenshtein automata for the

Table 13 Results for GL, standard Levenshtein distance,
bounds n = 1, 2, 3, times in milliseconds

Length n = 1 time NC n = 2 time NC n = 3 time NC
5 1.33 4.41 41.5 51.3 313 434
6 1.44 3.40 42.5 34.7 321 337
7 1.59 2.95 39.9 21.9 307 216
8 1.63 2.71 38.7 13.1 307 120
9 1.66 2.48 40.4 9.86 306 80.2
10 1.73 2.32 39.0 7.46 288 50.3
11 1.77 2.14 39.5 6.15 290 36.7
12 1.82 2.01 39.1 4.67 288 23.8
13 1.85 1.89 39.8 4.34 293 19.5
14 1.89 1.80 40.2 3.72 296 14.2
15 1.92 1.71 40.2 3.17 295 10.7
16 1.95 1.65 40.0 2.82 291 7.77
17 1.99 1.60 38.9 2.52 285 6.22
18 2.02 1.56 38.3 2.37 281 5.36
19 2.04 1.34 37.8 1.89 274 3.77

input words are used to control lexical search. We have
shown that appropriate deterministic Levenshtein au-
tomata can be computed in time linear to the length
of the input. Our second method shows that even the
actual computation of a deterministic Levenshtein au-
tomaton for the input word can be avoided since pre-
compiled tables may be used to simulate transitions in
the automaton. The experimental results show that our
techniques lead to a very fast selection of correction can-
didates for garbled words.
The complexity results for computing the (minimal)

deterministic Levensthein automaton for a given input
word immediately lead to the following (known) side re-
sults.

Lemma 6 For any fixed number n, given two words W
and V of length w and v respectively, it is decidable in
time O(max(w, v)) if the Levenshtein distance between
W and V is ≤ n.

Lemma 7 For any fixed number n, given a text (se-
quence of words) of length h and a word W of length
w we can compute in time O(max(h,w)) all words V of
the text where the Levenshtein distance between V and
W does not exceed n.

The results obtained in this paper could be extended
in several directions. The situation could be considered
where edit operations come with specific costs that de-
pend on the symbols of the operation. Eventually, in ap-
plication scenarios different methods for ranking correc-
tion candidates could be tested that take the frequency
of occurrences of a given correction candidate into ac-
count.
The problem considered in this paper is sometimes

called the “n-differences” problem. See, e.g., [GP90]
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and [WM92] for other approaches. As to more closely
related work, two other contributions, both using meth-
ods from automata theory for string correction should
be mentioned. Bunke has shown that for any given word
W the columns of the table computed in the Fisher–
Wagner algorithm can be compiled into a deterministic
finite state automaton [Bun93]. For any word V the au-
tomaton may be used to compute the Levenshtein dis-
tance between V and W in time linear to the length |V |
of V . Given a dictionary of words W1, . . . ,Wd, a similar
automaton can be given that computes the Levenshtein
distance between V and each of the words Wi in time
O(|V |). The problem with the approach is that the size
of the automaton is exponential in the sum of the length
of the words in the dictionary. Hence the approach can
only be used for very small dictionaries.
Another interesting approach is described

in [CSY99]. Recall that we assign to each input
word a Levenshtein automaton and leave the dictionary
automaton unmodified. In [CSY99] a construction is
given for computing, given a finite state automaton
A, a lifted version A[n] that accepts all words V that
have Levenshtein distance ≤ n to some word accepted
by A.4 In principle, this construction can be used to
lift a dictionary automaton A in order to compute a
correction transducer A[n] that yields, given input V ,
all dictionary words with Levenshtein distance ≤ n to
V . Assuming that A[n] is deterministic, a run – hence
correction of an input word – does not involve any
search, or backtracking. However, determinization of
a non-deterministic correction transducer is likely to
be too space-comsuming for large dictionaries. Never-
theless, it seems promising to consider variants of the
techniques described in [CSY99] for lexical correction.

9 Appendix

We here prove Theorem 1. We proceed in several steps.

Lemma 8 LEV n(W ) is a deterministic finite state au-
tomaton.

Proof It follows from Lemma 4 that ∆ assigns to each
state M ∈ Q and each y ∈ Σ again a state M ∈ Q.
In fact, a state with base position i�0 (i < w) is always
mapped to a state with base position (i+1)�0, and states
with base position w�0 are mapped to states with base
position w�0. This shows that LEV n(W ) is a determin-
istic finite state automaton. ��
We now show how the transition functions for Leven-

sthein automata of different degrees for the same input
word W are related. We write ∆(n) for the transition
function of the Levenshtein automaton of degree n.

4 This description is simplified. In [CSY99] distinct metrics
for defining neighbourhoods are considered, and a generaliza-
tion of finite state automata, called lexical analyzers, is used.

Lemma 9 (Raising Lemma for transitions) Let
n > 0 and 1 ≤ e ≤ n. Then for any state of degree
n of the form [M ]�e and any x ∈ Σ we have

∆(n)([M ]�e, x) = [∆(n−e)(M,x)]�e.

Proof Using our earlier notation and Lemma 5 we obtain

∆(n)([M ]�e, x) =
⊔

π∈M

δ(n)([π]�e, x)

=
⊔

π∈M

[δ(n−e)(π, x)]�e

= [
⊔

π∈M

δ(n−e)(π, x)]�e

= [∆(n−e)(M,x)]�e

The result follows. ��
In the sequel, let LEV n(W ) = 〈Σ,Q, q0, F,∆〉 as in

Definition 14.

Proposition 1 The following properties hold:

1. L(∅) = ∅.
2. For all states M,N with a common base position and

all y ∈ Σ:

∆(M � N, y) = ∆(M,y) � ∆(N, y).

3. For all states M,N with a common base position and
all V ∈ Σ∗:

∆∗(M � N,V ) = ∆∗(M,V ) � ∆∗(N,V ).

4. For all states M ⊆ Q \ {{0�0}, . . . , {w�0}}: L(M) =⋃
π∈M L({π}).

Proof Property 1 is trivial.

Proof of Property 2. Since M and N have a common
base position it follows that M � N is again a state. We
have

∆(M � N, y) =
⊔

π∈M�N

δ(π, y)

=
⊔

π∈M

δ(π, y) �
⊔

π∈N

δ(π, y)

= ∆(M,y) � ∆(N, y).

Proof of Property 3. Follows from Property 2 by a trivial
induction on the length of V .
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Proof of Property 4. Let RA denote the set of all raised
accepting positions. Using Property 3 we obtain

V ∈ L(M)
⇔ ∆∗(M,V ) ∈ F

⇔
⊔

π∈M

∆∗({π}, V ) ∈ F

⇔ ∃f ∈ RA: f ∈
⊔

π∈M

∆∗({π}, V )

∗⇔ ∃f ∈ RA: f ∈
⋃

π∈M

∆∗({π}, V )

⇔ ∃f ∈ RA,∃π ∈ M : f ∈ ∆∗({π}, V )
⇔ ∃π ∈ M : ∆∗({π}, V ) ∈ F

⇔ ∃π ∈ M : V ∈ L({π})
⇔ V ∈

⋃

π∈M

L({π}).

To see the marked equivalence notice that all positions
in

⋃
π∈M ∆∗({π}, V ) are raised. Each position of this

set that subsumes a raised accepting position is itself a
raised accepting position. ��
Proposition 2 For all 0 ≤ i ≤ w and all 0 ≤ e ≤ n we
have

L({i�e}) = LLev(n − e, xi+1 · · ·xw).

Proof We proceed by induction on n. The case n = 0 is
simple: the set of positions is {i�0 | 0 ≤ i ≤ w}. Only
w�0 is an accepting position. States have the form ∅ or
{i�0} (0 ≤ i ≤ w). Transitions from states {i�0} can be
considered as elementary transitions from positions i�0.
By Property 1 of Proposition 1, L(∅) = ∅. Part II of
Table 2 shows that only transitions leading from states
{i�0} for i < w with input xi+1 to {(i+1)�0} are relevant
– all other transitions lead to the failure state ∅. Hence
L({i�0}) = {xi+1 · · ·xw} = LLev(0, xi+1 · · ·xw) for all
0 ≤ i ≤ w.
Now let n ≥ 1 and assume that the proposition is

correct for all 0 ≤ n′ < n. The case e = n is simple since
all relevant transitions are of the form {i�n} �→ {(i+1)�n}
under xi+1 (i < w). Hence assume that e < n. Since for
1 ≤ e < n transitions from states {i�e} are defined by
raising of transitions of degree n′ = n−e (cf. Lemma 9),
the induction hypothesis shows that

L({i�e}) = LLev(n − e, xi+1 · · ·xw)
(0 ≤ i ≤ w, 1 ≤ e ≤ n). (†)

Hence it only remains to prove that for all 0 ≤ i ≤ w we
have

L({i�0}) = LLev(n, xi+1 · · ·xw).

In the sequel, let Wi denote the suffix xi+1 · · ·xw of W
(0 ≤ i ≤ w). From (†) and Lemma 2 we obtain the
following: for all positions i�e and j�f such that e �= 0 �=
f , if i�e is subsumed by j�f , then L({i�e}) is a proper
subset of L({j�f}) (††).

I. We first show that LLev(n,Wi) ⊆ L({i�0}). Let
V ∈ LLev(n,Wi).

Case 1.1: V is obtained from Wi by deleting a suffix
of length k (0 ≤ k ≤ n) of Wi. Starting from state
{i�0} and consuming V we reach state {(w−k)�0}. Since
(w − k)�0 is an accepting position, state {(w − k)�0} is
final, hence V ∈ L({i�0}).

Case 1.2: Wi is obtained from V by deleting a suffix
of length k (1 ≤ k ≤ n) of V . Starting from state {i�0}
and first consumingWi we reach {w�0}. The k additional
transitions lead to {w�k}. Since w�k is an accepting po-
sition, the latter state is final, hence V ∈ L({i�0}).

Case 2: In the remaining cases there exists an index
j < w such that V = xi+1 · · ·xjyV

′ where y �= xj+1.
We have yV ′ ∈ LLev(n, xj+1 · · ·xw) by Lemma 1.

We fix a sequence ν of edit operations leading from
xj+1 · · ·xw to yV ′ of minimal length and consider the
three cases described in Remark 1.
2.1. If the occurrence of y is an insertion before xj+1

(where i ≤ j ≤ w), then V ′ ∈ LLev(n − 1, xj+1 · · ·xw).
Since y �= xj+1, starting from state {i�0} and con-
suming the letters xi+1, . . . xj , y we reach states {(i +
1)�0}, . . . , {j�0},M where M contains j�1 (cf. elemen-
tary transitions). It follows from (†) and Property 4 of
Proposition 1 that V ′ ∈ L(M). Hence V ∈ L({i�0}).
2.2. If the occurrence of y substitutes xj+1 (where

i ≤ j < w), then V ′ belongs to LLev(n − 1, xj+2 · · ·xw).
Starting from state {i�0} and consuming the letters
xi+1, . . . xj , y we reach states {(i + 1)�0}, . . . , {j�0},M
where M contains (j + 1)�1. It follows from (†) and
Property 4 of Proposition 1 that V ′ ∈ L(M). Hence
V ∈ L({i�0}).
2.3. In the remaining cases, by Remark 1 there exists

some 1 ≤ k ≤ n such that we have a stroke from xj+k+1
to y in the trace representation of ν, as we see in Fig. 11.
This means that the k letters xj+1, xj+2, . . . , xj+k are
erased. The distance between xj+k+1 · · ·xw and yV ′ is
bounded by n − k. In the sequel, let k0 be the smallest
index in {1, . . . , k + 1} such that xj+k+1 = xj+k0 . It
follows from the definition of elementary transitions (cf.
Table 2) that we reach state M := {j�1, (j + 1)�1, (j +
k0)�k0−1} from {j�0} by consuming xj+k0 = xj+k+1.
2.3.1. Assume first that xj+k+1 = y. Then the dis-

tance between xj+k+2 · · ·xw and V ′ is bounded by n−k.
By (†), V ′ ∈ L({(j + k + 1)�k}). Since (j + k + 1)�k is
subsumed by (j+ k0)�k0−1, also V ′ ∈ L({(j+ k0)�k0−1})
by (††), and V ′ ∈ L(M) by Property 4 of Proposition 1.
It follows that V ∈ L({i�0}).
2.3.2. Assume that xj+k+1 �= y. Then the distance

between xj+k+2 · · ·xw and V ′ is bounded by n − k −
1. Starting from state {i�0} and consuming the letters
xi+1, . . . xj , y we eventually reach a state M containing
(j + 1)�1. This position subsumes (j + k + 1)�k+1. It
follows from (†), (††) and Property 4 of Proposition 1
that V ′ ∈ L(M). Hence V ∈ L({i�0}).
II. It remains to prove that L({i�0}) ⊆ LLev(n,Wi)

for 0 ≤ i ≤ w. Let V ∈ L({i�0}). If V is accepted – start-
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Wi

V

xj+1 …xjxi+1

xi+1 xj

y V’

xj+k+1 … xw

Fig. 11 Illustration for Subcase 2.3

ing from {i�0} – on a path of singleton sets with basic
positions {(i + 1)�0}, {(i + 2)�0}, . . . , {k�0}, then k�0 is
accepting, which implies that V has the form xi+1 · · ·xk

where w − k ≤ n. This shows that V ∈ LLev(n,Wi).
In the other case, starting from state {i�0} and con-
suming the prefix V ′y of V = V ′yV ′′, we reach states
{(i+ 1)�0}, . . . {j�0},M where M �= {(j + 1)�0}.

Case (a): j < w and M has the form {j�1, (j+1)�1}.
In this case, by (†) and Property 4 of Proposition 1,
either V ′′ has distance ≤ n − 1 to xj+1 · · ·xw or V ′′ has
distance ≤ n− 1 to xj+2 · · ·xw. In the former case, with
an additional insertion of y we see that V has distance ≤
n toWi. In the latter case, using a substitution xj+1 �→ y
we see V has distance ≤ n to Wi.

Case (b): j < w and M has the form {j�1, (j +
1)�1, (j + k)�k−1}. Here we have to consider the ad-
ditional case where V ′′ has distance ≤ n − (k − 1) to
xj+k+1 · · ·xw. However, we know that y = xj+k. Delet-
ing xj+1, . . . , xj+k−1, we see that yV ′ has distance ≤ n
to xj+1 . . . xw, hence the same holds for V and Wi.

Case (c): j = w. In this case M = {w�1} and V ′ =
Wi. It follows from (†) that V ′′ has distance ≤ n − 1 to
the empty word ε. Hence V has distance ≤ n to Wi. ��
Theorem 4 LEV n(W ) is a deterministic and acyclic
Levenshtein automaton of degree n for W . For fixed de-
gree n, the size of LEV n(W ) is linear in |W |.
Proof Proposition 2 shows that

L(LEV n(W )) = L({0}) = LLev(n,W ),

hence LEV n(W ) is a deterministic Levenshtein automa-
ton of degree n for W . If j�f is in the image set of posi-
tion i�e, then i+ e < j + f . Hence it is easy to see that
LEV n(W ) is acyclic. Obviously the number of possible
base positions for states is linear in |W |, and for fixed
degree n there exists a uniform bound on the number of
distinct states with a fixed base position i�0. It follows
that the number of states of LEV n(W ) is linear in |W |.
Since the alphabet Σ is fixed, the size of LEV n(W ) is
linear in |W |. ��

References

[AFW83] Angell RC, Freund GE, Willett P (1983) Auto-
matic spelling correction using a trigram simi-
larity measure. Inf Process Manage 19:255–261

[Bla60] Blair CR (1960) A program for correcting
spelling errors. Inf Control 3:60–67

[Bun93] Bunke H (1993) A fast algorithm for finding
the nearest neighbor of a word in a dictionary.
In: Proceedings of 2nd International Conference
on Document Analysis and Recognition ICDAR
’93, pp 632–637. IEEE Computer Society Press

[CSY99] Calude CS, Salomaa K, Yu S (1999) Metric lex-
ical analysis. In: 4th International Workshop
on Implementing Automata, WIA’99. Lecture
Notes in Computer Science, vol 2214. Springer,
Berlin Heidelberg New York

[dBdBT95] de Bertrand de Beuvron F, Trigano P (1995)
Hierarchically coded lexicon with variants. Int
J Pattern Recogn Artif Intell 9(1):145–165

[DHH+97] Dengel A, Hoch R, Hönes F, Jäger T, Malburg
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