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What is VQ?
 Representation of 

data in terms of 
codewords

 A data point is 
represented as the 
index of the 
nearest codeword

 In 2-D you end up 
storing one 
number, not two

Image from Wikipedia



Why is it Useful?
 Data compression

 Data transmission

 Discrete representation of data is convenient to work 
with:

 Enumerated probability distributions over single events

 Language models and discrete HMMs for sequences



K-Means Algorithm
 Common form of vector  quantization

 Creates K centers

 Initialization:
 Choose K distinct points at random for the first centers

 Repeat:
 Assign each data point to the nearest center

 Reset each center to the mean of the points assigned to it

 Stopping criteria can be:
 an absolute number of iterations 

 or threshold on sum of all distances between centers and 
assigned points (total distortion)



Example of K-Means Algorithm

 http://home.dei.polimi.it/matteucc/Clustering/tutoria
l_html/AppletKM.html
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VQ Convergence
 Consider the total “distortion”

 Sum of distances between points and their assigned 
centers 
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Image from http://www.geocities.com/mohamedqasem/vectorquantization/vq.html
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Step 1: Assign each point to the 
nearest center

Defines C(xi) explicitly to minimize

Since the contribution of each point individually to the 
distortion goes down,  the total distortion must decrease



Step 2: Re-estimate each center as 
the mean of its assigned points
 Consider what happens to one center c
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Distortion contributed by each c 
individually is minimized

=> The total distortion is minimized



LBG
 Iteratively increases the number of codewords – 2,4,8,16…

 Can be used to induce a tree structured quantizer

 Initialize:

 Make one codeword in the center of everything

 Assign all the data to it

 Repeat:

 Split each current codeword into two slightly different 
variants

 Do k-means with the current codewords



LBG Example

 http://www.data-compression.com/vq.shtml

http://www.data-compression.com/vq.shtml
http://www.data-compression.com/vq.shtml
http://www.data-compression.com/vq.shtml


VQ: Some Things to be Aware Of



Speeding Up VQ with a Tree

C1

C3C2

C4 C5 C6 C7

Recursively partition
the data as the tree is
built

Only follow one branch
when finding a codeword
after the tree is built



Gaussian Mixtures & EM



Gaussian Mixtures
 Codebook centers are gaussians

 An example may be assigned partially to a center

 A generative model

 Implies a data likelihood
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Gaussian Refresher

Image from Wikipedia
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•Parameterized by mean and covariance matrix
•Integral over all space is 1 (probability density function)
•Diagonal covariance matrix most common in speech

•O(d) parameters rather than O(d^2)



Maximum Likelihood Parameter 
Estimation (MLE) – Data Likelihood

From Acero et al. Chapter 3

(n 1-dimensional points)



MLE – Take the Derivative

Set it equal to 0 and solve

From Acero et al. Chapter 3



Why Do We Care About Gaussians
 A single gaussian is highly restricted

 But with enough gaussians you can model any 
probability distribution

 => A parametric modeling approach that becomes 
non-parametric

 And they are well understood in terms of
 Parameter estimation

 Computational complexity (and speedups)

 Discriminative training

 Adaptation to new data sets



K-Means for GMMs
 Same process as for VQ, but “soft” assignment

 Repeat:

 Assign each data point to each gaussian with some 
weight

 Re-estimate the gaussian centers using the weighted 
data assigned to each

65% 30%

3%

2%



MLE with GMMs
 Where we are going:

 Parameter estimation will be as before

 But the xk s below will be weighted by “degree of membership”

 And n will be the sum of the weights

From Acero et al. Chapter 3



Convergence of EM Process
Analysis will follow Sean Borman, “The Expectation Maximization Algorithm
A Short Tutorial”
See also:
* Jeff Bilmes “A Gentle Tutorial on the EM Algorithm” and 
* Acero et al. Chapter 4.

Images from http://www.seanborman.com/publications/EM_algorithm.pdf

The data likelihood will go up at each iteration, 
analogous to distortion going down

Hidden variables – what gaussian a data
point comes from 



Jensen’s Inequality

All s must be non-negative and sum to 1



Change in Likelihood

From http://www.seanborman.com/publications/EM_algorithm.pdf



Lower Bound on New Likelihood

We’ll work by increasing this lower bound.
But will increasing a lower bound increase what we want?

Lower bound increases

Objective function decreases

Parameter value
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Lower Bound Evaluated at Current 
Parameters is the Likelihood Itself!

From http://www.seanborman.com/publications/EM_algorithm.pdf



The Real Picture

From http://www.seanborman.com/publications/EM_algorithm.pdf



Maximizing the Lower Bound on 
Likelihood

From http://www.seanborman.com/publications/EM_algorithm.pdf

Prob. of z wrt current parameters

Full data likelihood wrt new params

The Q Function



What This Tells Us
 Compute the expected values of the hidden variables

 Assume the hidden variables are seen with these 
probabilities

 Compute a new set of parameters to optimize the 
complete data likelihood

 The Q function is a function of 

 It is maximized wrt

 This is guaranteed to increase the likelihood 



Application to GMMs

From Acero et al. Chapter 4

One data point,
K gaussians

Posterior probability (count) of gaussian k
wrt data point i

Total number of points assigned to
Gaussian k



Application to GMMs (2)

From Acero et al. Chapter 4

New prior for gaussian k

Mean is posterior-weighted average of  the
points 

Variance also
a weighted sum



Break

 Then:

 Advanced topics in GMMs



Fast Gaussian Computation 
 Competition-grade systems may have close to 1M 

gaussians

 Typically features are extracted 100 times a second

 Evaluating and accumulating each dimension takes 
something like 2 additions and 2 multiplies

 39 dimensions

 100 million gaussian evaluations per second amounts 
to something like 15 billion ops/sec

 This is a problem for real-time or near real-time 
systems! 



Some Options for Speeding Things Up
 On-Demand Computation 

 Only evaluate gaussians required by the search strategy

 But: introduces linkage between search and gaussian
computation, requires caching, and is complex

 Dimension-wise pruning
 Likelihood computations involves sum of ((x-u) )^2 across 

dimensions – big number means low likelihood

 Stop when you know the likelihood will be bad

 But: limited benefit in practice

 Hierarchical evaluation

 Cache optimization



Hierarchical Evaluation

The gaussians we need to evaluate

Cluster them into a few high-level gaussians (e.g. 2000)

1. Evaluate the top level gaussians against a frame
2. Select the top N (e.g. 100)
3. Evaluate the “real” gaussians assigned to these top N
4. Assume everything else is zero
5. 20x speedup!



How to Cluster the Gaussians?

 K-Means of course!

 Some distance metrics:

1. Euclidian distance between means

2. KL-Divergence between a gaussian and the centroid



Cache Optimization

 For each frame

 For each gaussian

 Do an evaluation

 For each gaussian

 For each frame

 Do an evaluation

Gaussians have means *and* variances 
A frame takes ½ the memory!
½ as many cache misses
Maybe twice the speed
Applicable to hierarchical evaluation too



Cache Optimization (2)

Re-order for locality



Low Memory Gaussian 
Computation

• Think circa 1990
• Dragon Dictate and IBM ViaVoice just introduced
• Think Intel 486
• 20MHz, 16MB RAM
• Memory was an issue!

• What to do?



Low Memory Gaussians (2)
 Break gaussians into bands

 Each e.g. 2 dimensions

 Cluster all the samples in each band

 Analogous to clustering the gaussians in the first place

 Diagonal covariance gaussians decompose into sum of bands

 Represent a gaussian as the sum of its bands

bands

Codebooks for each band

Gaussian quantized as one 
codeword from each band



Consider 1-Dimensional Quantization
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Once for each codeword and re-use across gaussians



Memory Requirements
 Say 40 dimensions and bands are 2-dimensions

 Quantize to 256 codewords per band

 Each gaussian is now represented 20 bytes 

 Used to be 40*2*4 =320 (assuming floats)

 Factor of 16 reduction



Compute requirements
 Evaluate 256*20 = 5120 2-dimensional gaussians

 Add 20 numbers to get the score for a “real” gaussian

 Repeatedly access the 5120 atomic numbers

 Good for cache!



Further Speedups – Two 
References
 Aiyer, Gales & Picheny, “Rapid Likelihood 

Computation of Subspace Clustered Gaussian 
Components” (2000)
 Many gaussians use common sets of codewords

 Redundant computation 

 Can be optimized with compiler technology for 
evaluating common subexpressions once only

 Saon, Zweig & Povey, “Anatomy of an Extremely Fast 
LVCSR Decoder” (2003)
 Numerous tricks for efficient organization of complete 

recognizer



Full Covariance Matrices

 When is not diagonal
 Number of parameters is O(D2) not O(D)

 Need more data to estimate the parameters

 Evaluation is much slower

 Band quantization doesn’t work

 Adaptation methods are more complex

 Nevertheless, people sometimes see improvements
 EMLLT is an interesting compromise
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EMLLT
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 Inverse covariance matrix is sum of outer products of basis 
vectors

 Can also think of as sum of basis matrices

 Basis vectors shared across all gaussians

 Potentially many fewer covariance parameters – just D 
per gaussian

 Plus the pool of basis vectors

See Olsen & Gopinath, “Modeling Inverse Covariance Matrices by Basis Expansion”



Some EMLLT Results

d is the vector dimensionality
From Olsen & Gopinath, 
“Modeling Inverse Covariance Matrices by Basis Expansion”



Adaptation

Old data modeled by 
some gaussians

New data

How should we update our estimate 
of what the gaussians are?



Option 1: Replace the old data

Old data modeled by 
some gaussians

New data,
New gaussians



Option 2: Add the Data (MAP 
Adaptation)

Old data modeled by 
some gaussians

New data

Re-estimate gaussians,
combining old and new
data, possibly with a weighting
factor

See, e.g. Gauvain & Lee,
Maximum a Posteriori Estimation for
Multivariate Gaussian Mixture 
Observations of Markov Chains



Option 3: Transform the Means

TTA )1('

 New mean is linear transformation of old
 An offset is added to the old mean as well
 Transformation matrix chosen to maximize the likelihood

of the adaptation data under the transformed model
 One transformation (e.g. 39x39) shared by many gaussians

(e.g. 1000s)
 See, e.g., Leggetter & Woodland, “Maximum likelihood linear 

regression for speaker adaptation of continuous density hidden 
Markov models”

 Similar transforms possible for covariance matrix



MLLR Picture

Old data modeled by 
some gaussians

New data

New means are a 
linear transform
of the old ones



Tying it All Together: Phone 
Probabilities

 Want:

 Need to model P(y| phone q)

 Discrete (VQ) probabilities

 Continuous  (GMM) probabilities

 Semi-Continuous probabilities

Is it an /ah/?
Is it an /eh/?
Is it a /p/?

)|()(maxarg)|(maxarg qyPqPyqP qq



The Discrete Approach

142 27 12111 45 142

Note:
•Spectral slices should change
•MFCCs would normally be used

 Vector-quantize the feature vectors 
 Every 10ms or so

 P(yt | /ah/) = P(27 | /ah/)
 Learned by counting examples
 Covered in HMM lecture

t



Continuous Probabilities
 Each phone has its own gaussian mixture

Image from http://oregonstate.edu/~hohenlop/Gaussianmix.jpg

/ah/ gaussians /eh/ gaussians /p/ gaussians

/ah/? /p/?

/eh/?



Semi-Continuous Probabilities
 All models share the same gaussians
 Models differ only in the weight assigned to each
 Continuous gaussian models are a special case

 With lots of zeros as coefficients

 Not much used anymore in ASR

65% 30%

3%

2%

/ah/



Homework
 Write a VQ program for 2-dimensional data

 First use Euclidean distortion D(x,y) between points x,y (eq’n. 4.77 of  Acero, et 
al.), squared Euclidean distance

 Use the provided “points” file as input
 Make a plot of the input
 Fit 1,2,4,8 and 16 centroids to the data

 Plot the centers on top of the data

 Now use log distance
 Log(1 + D(x,y))

 Can you find an analytical update, guaranteed to reduce distortion?
 Find an update that is guaranteed to reduce distortion at each iteration 

(analytical or not)
 Fit 1, 2, 4, 8 and 16 centroids to the data

 Plot the centers on top of the data
 Plot the Euclidean and Log-distance centroids together

 Finally, train a mixture of 1,2,4,8 and 16 gaussians with these points (using  
either K-means or LBG). Be sure to adjust the variances.
 Plot the positions of the centers.

 Turn in all 4 plots for 4 centers
 Turn in a printout of your program
 Turn in a printout of the total distortion after each iteration as the program 

runs



Project Reminder
 Please think about your projects!

 For Speech Recognition / Langauge ID / Speaker ID, 
please contact me

 After class

 By email gzweig@microsoft.com

 On 5/7 I’d like to meet with everyone doing a relevant 
project.

mailto:gzweig@microsoft.com

