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What is VQ?
 Representation of 

data in terms of 
codewords

 A data point is 
represented as the 
index of the 
nearest codeword

 In 2-D you end up 
storing one 
number, not two

Image from Wikipedia



Why is it Useful?
 Data compression

 Data transmission

 Discrete representation of data is convenient to work 
with:

 Enumerated probability distributions over single events

 Language models and discrete HMMs for sequences



K-Means Algorithm
 Common form of vector  quantization

 Creates K centers

 Initialization:
 Choose K distinct points at random for the first centers

 Repeat:
 Assign each data point to the nearest center

 Reset each center to the mean of the points assigned to it

 Stopping criteria can be:
 an absolute number of iterations 

 or threshold on sum of all distances between centers and 
assigned points (total distortion)



Example of K-Means Algorithm

 http://home.dei.polimi.it/matteucc/Clustering/tutoria
l_html/AppletKM.html
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VQ Convergence
 Consider the total “distortion”

 Sum of distances between points and their assigned 
centers 
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Image from http://www.geocities.com/mohamedqasem/vectorquantization/vq.html
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Step 1: Assign each point to the 
nearest center

Defines C(xi) explicitly to minimize

Since the contribution of each point individually to the 
distortion goes down,  the total distortion must decrease



Step 2: Re-estimate each center as 
the mean of its assigned points
 Consider what happens to one center c
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Distortion contributed by each c 
individually is minimized

=> The total distortion is minimized



LBG
 Iteratively increases the number of codewords – 2,4,8,16…

 Can be used to induce a tree structured quantizer

 Initialize:

 Make one codeword in the center of everything

 Assign all the data to it

 Repeat:

 Split each current codeword into two slightly different 
variants

 Do k-means with the current codewords



LBG Example

 http://www.data-compression.com/vq.shtml

http://www.data-compression.com/vq.shtml
http://www.data-compression.com/vq.shtml
http://www.data-compression.com/vq.shtml


VQ: Some Things to be Aware Of



Speeding Up VQ with a Tree

C1

C3C2

C4 C5 C6 C7

Recursively partition
the data as the tree is
built

Only follow one branch
when finding a codeword
after the tree is built



Gaussian Mixtures & EM



Gaussian Mixtures
 Codebook centers are gaussians

 An example may be assigned partially to a center

 A generative model

 Implies a data likelihood
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Gaussian Refresher

Image from Wikipedia
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•Parameterized by mean and covariance matrix
•Integral over all space is 1 (probability density function)
•Diagonal covariance matrix most common in speech

•O(d) parameters rather than O(d^2)



Maximum Likelihood Parameter 
Estimation (MLE) – Data Likelihood

From Acero et al. Chapter 3

(n 1-dimensional points)



MLE – Take the Derivative

Set it equal to 0 and solve

From Acero et al. Chapter 3



Why Do We Care About Gaussians
 A single gaussian is highly restricted

 But with enough gaussians you can model any 
probability distribution

 => A parametric modeling approach that becomes 
non-parametric

 And they are well understood in terms of
 Parameter estimation

 Computational complexity (and speedups)

 Discriminative training

 Adaptation to new data sets



K-Means for GMMs
 Same process as for VQ, but “soft” assignment

 Repeat:

 Assign each data point to each gaussian with some 
weight

 Re-estimate the gaussian centers using the weighted 
data assigned to each

65% 30%

3%

2%



MLE with GMMs
 Where we are going:

 Parameter estimation will be as before

 But the xk s below will be weighted by “degree of membership”

 And n will be the sum of the weights

From Acero et al. Chapter 3



Convergence of EM Process
Analysis will follow Sean Borman, “The Expectation Maximization Algorithm
A Short Tutorial”
See also:
* Jeff Bilmes “A Gentle Tutorial on the EM Algorithm” and 
* Acero et al. Chapter 4.

Images from http://www.seanborman.com/publications/EM_algorithm.pdf

The data likelihood will go up at each iteration, 
analogous to distortion going down

Hidden variables – what gaussian a data
point comes from 



Jensen’s Inequality

All s must be non-negative and sum to 1



Change in Likelihood

From http://www.seanborman.com/publications/EM_algorithm.pdf



Lower Bound on New Likelihood

We’ll work by increasing this lower bound.
But will increasing a lower bound increase what we want?

Lower bound increases

Objective function decreases

Parameter value
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Lower Bound Evaluated at Current 
Parameters is the Likelihood Itself!

From http://www.seanborman.com/publications/EM_algorithm.pdf



The Real Picture

From http://www.seanborman.com/publications/EM_algorithm.pdf



Maximizing the Lower Bound on 
Likelihood

From http://www.seanborman.com/publications/EM_algorithm.pdf

Prob. of z wrt current parameters

Full data likelihood wrt new params

The Q Function



What This Tells Us
 Compute the expected values of the hidden variables

 Assume the hidden variables are seen with these 
probabilities

 Compute a new set of parameters to optimize the 
complete data likelihood

 The Q function is a function of 

 It is maximized wrt

 This is guaranteed to increase the likelihood 



Application to GMMs

From Acero et al. Chapter 4

One data point,
K gaussians

Posterior probability (count) of gaussian k
wrt data point i

Total number of points assigned to
Gaussian k



Application to GMMs (2)

From Acero et al. Chapter 4

New prior for gaussian k

Mean is posterior-weighted average of  the
points 

Variance also
a weighted sum



Break

 Then:

 Advanced topics in GMMs



Fast Gaussian Computation 
 Competition-grade systems may have close to 1M 

gaussians

 Typically features are extracted 100 times a second

 Evaluating and accumulating each dimension takes 
something like 2 additions and 2 multiplies

 39 dimensions

 100 million gaussian evaluations per second amounts 
to something like 15 billion ops/sec

 This is a problem for real-time or near real-time 
systems! 



Some Options for Speeding Things Up
 On-Demand Computation 

 Only evaluate gaussians required by the search strategy

 But: introduces linkage between search and gaussian
computation, requires caching, and is complex

 Dimension-wise pruning
 Likelihood computations involves sum of ((x-u) )^2 across 

dimensions – big number means low likelihood

 Stop when you know the likelihood will be bad

 But: limited benefit in practice

 Hierarchical evaluation

 Cache optimization



Hierarchical Evaluation

The gaussians we need to evaluate

Cluster them into a few high-level gaussians (e.g. 2000)

1. Evaluate the top level gaussians against a frame
2. Select the top N (e.g. 100)
3. Evaluate the “real” gaussians assigned to these top N
4. Assume everything else is zero
5. 20x speedup!



How to Cluster the Gaussians?

 K-Means of course!

 Some distance metrics:

1. Euclidian distance between means

2. KL-Divergence between a gaussian and the centroid



Cache Optimization

 For each frame

 For each gaussian

 Do an evaluation

 For each gaussian

 For each frame

 Do an evaluation

Gaussians have means *and* variances 
A frame takes ½ the memory!
½ as many cache misses
Maybe twice the speed
Applicable to hierarchical evaluation too



Cache Optimization (2)

Re-order for locality



Low Memory Gaussian 
Computation

• Think circa 1990
• Dragon Dictate and IBM ViaVoice just introduced
• Think Intel 486
• 20MHz, 16MB RAM
• Memory was an issue!

• What to do?



Low Memory Gaussians (2)
 Break gaussians into bands

 Each e.g. 2 dimensions

 Cluster all the samples in each band

 Analogous to clustering the gaussians in the first place

 Diagonal covariance gaussians decompose into sum of bands

 Represent a gaussian as the sum of its bands

bands

Codebooks for each band

Gaussian quantized as one 
codeword from each band



Consider 1-Dimensional Quantization
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Memory Requirements
 Say 40 dimensions and bands are 2-dimensions

 Quantize to 256 codewords per band

 Each gaussian is now represented 20 bytes 

 Used to be 40*2*4 =320 (assuming floats)

 Factor of 16 reduction



Compute requirements
 Evaluate 256*20 = 5120 2-dimensional gaussians

 Add 20 numbers to get the score for a “real” gaussian

 Repeatedly access the 5120 atomic numbers

 Good for cache!



Further Speedups – Two 
References
 Aiyer, Gales & Picheny, “Rapid Likelihood 

Computation of Subspace Clustered Gaussian 
Components” (2000)
 Many gaussians use common sets of codewords

 Redundant computation 

 Can be optimized with compiler technology for 
evaluating common subexpressions once only

 Saon, Zweig & Povey, “Anatomy of an Extremely Fast 
LVCSR Decoder” (2003)
 Numerous tricks for efficient organization of complete 

recognizer



Full Covariance Matrices

 When is not diagonal
 Number of parameters is O(D2) not O(D)

 Need more data to estimate the parameters

 Evaluation is much slower

 Band quantization doesn’t work

 Adaptation methods are more complex

 Nevertheless, people sometimes see improvements
 EMLLT is an interesting compromise
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 Inverse covariance matrix is sum of outer products of basis 
vectors

 Can also think of as sum of basis matrices

 Basis vectors shared across all gaussians

 Potentially many fewer covariance parameters – just D 
per gaussian

 Plus the pool of basis vectors

See Olsen & Gopinath, “Modeling Inverse Covariance Matrices by Basis Expansion”



Some EMLLT Results

d is the vector dimensionality
From Olsen & Gopinath, 
“Modeling Inverse Covariance Matrices by Basis Expansion”



Adaptation

Old data modeled by 
some gaussians

New data

How should we update our estimate 
of what the gaussians are?



Option 1: Replace the old data

Old data modeled by 
some gaussians

New data,
New gaussians



Option 2: Add the Data (MAP 
Adaptation)

Old data modeled by 
some gaussians

New data

Re-estimate gaussians,
combining old and new
data, possibly with a weighting
factor

See, e.g. Gauvain & Lee,
Maximum a Posteriori Estimation for
Multivariate Gaussian Mixture 
Observations of Markov Chains



Option 3: Transform the Means

TTA )1('

 New mean is linear transformation of old
 An offset is added to the old mean as well
 Transformation matrix chosen to maximize the likelihood

of the adaptation data under the transformed model
 One transformation (e.g. 39x39) shared by many gaussians

(e.g. 1000s)
 See, e.g., Leggetter & Woodland, “Maximum likelihood linear 

regression for speaker adaptation of continuous density hidden 
Markov models”

 Similar transforms possible for covariance matrix



MLLR Picture

Old data modeled by 
some gaussians

New data

New means are a 
linear transform
of the old ones



Tying it All Together: Phone 
Probabilities

 Want:

 Need to model P(y| phone q)

 Discrete (VQ) probabilities

 Continuous  (GMM) probabilities

 Semi-Continuous probabilities

Is it an /ah/?
Is it an /eh/?
Is it a /p/?

)|()(maxarg)|(maxarg qyPqPyqP qq



The Discrete Approach

142 27 12111 45 142

Note:
•Spectral slices should change
•MFCCs would normally be used

 Vector-quantize the feature vectors 
 Every 10ms or so

 P(yt | /ah/) = P(27 | /ah/)
 Learned by counting examples
 Covered in HMM lecture

t



Continuous Probabilities
 Each phone has its own gaussian mixture

Image from http://oregonstate.edu/~hohenlop/Gaussianmix.jpg

/ah/ gaussians /eh/ gaussians /p/ gaussians

/ah/? /p/?

/eh/?



Semi-Continuous Probabilities
 All models share the same gaussians
 Models differ only in the weight assigned to each
 Continuous gaussian models are a special case

 With lots of zeros as coefficients

 Not much used anymore in ASR

65% 30%

3%

2%

/ah/



Homework
 Write a VQ program for 2-dimensional data

 First use Euclidean distortion D(x,y) between points x,y (eq’n. 4.77 of  Acero, et 
al.), squared Euclidean distance

 Use the provided “points” file as input
 Make a plot of the input
 Fit 1,2,4,8 and 16 centroids to the data

 Plot the centers on top of the data

 Now use log distance
 Log(1 + D(x,y))

 Can you find an analytical update, guaranteed to reduce distortion?
 Find an update that is guaranteed to reduce distortion at each iteration 

(analytical or not)
 Fit 1, 2, 4, 8 and 16 centroids to the data

 Plot the centers on top of the data
 Plot the Euclidean and Log-distance centroids together

 Finally, train a mixture of 1,2,4,8 and 16 gaussians with these points (using  
either K-means or LBG). Be sure to adjust the variances.
 Plot the positions of the centers.

 Turn in all 4 plots for 4 centers
 Turn in a printout of your program
 Turn in a printout of the total distortion after each iteration as the program 

runs



Project Reminder
 Please think about your projects!

 For Speech Recognition / Langauge ID / Speaker ID, 
please contact me

 After class

 By email gzweig@microsoft.com

 On 5/7 I’d like to meet with everyone doing a relevant 
project.

mailto:gzweig@microsoft.com

