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) What is VQ?

* Representation of
data in terms of
codewords

* A data point is
represented as the
index of the
nearest codeword

* In 2-D you end up
storing one
number, not two

Image from Wikipedia
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Why is it Useful?

Data compression
Data transmission

Discrete representation of data is convenient to work
with:
e Enumerated probability distributions over single events
e Language models and discrete HMMs for sequences
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K-Means Algorithm

Common form of vector quantization
Creates K centers
Initialization:

e Choose K distinct points at random for the first centers
Repeat:

* Assign each data point to the nearest center

e Reset each center to the mean of the points assigned to it
Stopping criteria can be:

e an absolute number of iterations

e or threshold on sum of all distances between centers and
assigned points (total distortion)
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Example of K-Means Algorithm

e - O o T
o © . &g ©
0y B - O
& o - ~O O
o o @ IS & - o
2 o @ o
o 8 B Tt
o o D.
Qo o
j-:::a © g 8 O
OO 800
'S o o
& oo m -
o - ©
DDD ') DD o o
o o o0 o O o
o ]

 http://home.dei.polimi.it/matteucc/Clustering/tutoria
1 html/AppletKM.html



http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Example of K-Means Algorithm

o Yo s )
® © O & e o
& o °m o “
o s © o ©
8 o o o
5 O
o 8 . S oaP
& o m O
)
O o
:}DD 8 & o
o O 2o
O & o
o o & i
a o o
6% . © L o ©
o o Yo o O o
& o

 http://home.dei.polimi.it/matteucc/Clustering/tutoria
1 html/AppletKM.html



http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Example of K-Means Algorithm

e - o o i
o & ©
: & o ¢ o DD o ©
O
o g . s
o o .D
o
o o
:}c} © & 3 o
oo B0 o
'S o o
& - @ O
@ o
DDDD o 70 “
'S, O o0 o © o
O o

 http://home.dei.polimi.it/matteucc/Clustering/tutoria
1 html/AppletKM.html



http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Example of K-Means Algorithm

e - o o Gy
o o & ©
i o
® 8{} = . O
) g ° o DD °
o
o @ D © @P
o i .D
o
O )
:}DD 8 B o
2 0
'S O o
< mo O O
o - ©
DDD o D{:} o 'S
o ) e o 0 .
o o

 http://home.dei.polimi.it/matteucc/Clustering/tutoria
1 html/AppletKM.html



http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

VQ Convergence

Consider the total “distortion”

Sum of distances between points and their assigned
centers

¥ (x—c(x))

Pt

Codewords

Voronoi -]
Region

Image from http://www.geocities.com/mohamedqgasem/vectorquantization/vq.html



Step 1: Assign each point to the
nearest center

Defines C(xi) explicitly to minimize (Xi — C(Xi)) :

Since the contribution of each point individually to the
distortion goes down, the total distortion must decrease



Step 2: Re-estimate each center as
the mean of its assighed points

* Consider what happens to one center ¢

Distortion contributed by each c

4
d
N d 2 S e
Zd_ (XI _C) —0 individually is minimized
—1

=> The total distortion is minimized



LBG

[teratively increases the number of codewords - 2,4,8,16...
Can be used to induce a tree structured quantizer

Initialize:
e Make one codeword in the center of everything
e Assign all the data to it

Repeat:

e Split each current codeword into two slightly different
variants

e Do k-means with the current codewords
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LBG Example

e http://www.data-compression.com/vq.shtml
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VQ: Some Things to be Aware Of
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Speeding Up VQ with a Tree

Recursively partition
the data as the tree is
built

Only follow one branch
when finding a codeword
after the tree is built




Gaussian Mixtures & EM
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Gaussian Mixtures

Codebook centers are gaussians

An example may be assigned partially to a center
A generative model

Implies a data likelihood




Gaussian Refresher
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Image from Wikipedia

*Parameterized by mean and covariance matrix

Integral over all space is 1 (probability density function)

*Diagonal covariance matrix most common in speech
*O(d) parameters rather than O(d”2)



Maximum Likelihood Parameter
Estimation (MLE) — Data Likelihood

log p, (x| ®) =) log p(x; | @)
k=1

— Z ]gg exp| — (Ik _ fi)_ (n 1-dimensional points)
2

=—"log(2m0") -

From Acero et al. Chapter 3



MLE — Take the Derivative

d "1
—logp (x| ®@)=> —(x, —
&‘{_f -._prr( | j ;{}'_( k ‘ur:}
) N e
a'f:.'l': lﬂgpﬁ(l | (Dj__zgl +§ 254

Set it equal to o and solve

1 H
Hyge = _Z X, = E(x)

H oo

) 1 & )
OriE :_ZU} — Uy ) = E[(I_ﬂ_ﬂ.ﬂ:ﬁj_]

(=

From Acero et al. Chapter 3
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Why Do We Care About Gaussians

A single gaussian is highly restricted

But with enough gaussians you can model any
probability distribution

=> A parametric modeling approach that becomes
non-parametric

And they are well understood in terms of
e Parameter estimation

e Computational complexity (and speedups)
e Discriminative training
e Adaptation to new data sets



o
K-Means for GMMs

Same process as for VQ, but “soft” assignment

Repeat:

e Assign each data point to each gaussian with some
weight

e Re-estimate the gaussian centers using the weighted
data assigned to each

65%

0% I % _.
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MLE with GMMs

Where we are going:
e Parameter estimation will be as before
e But the xxs below will be weighted by “degree of membership”
e And n will be the sum of the weights

1 H
Hyge = _Z X, = E(x)

H oo

: 1 & ) ,
Oy = _Z (N — e ) = E[(I_ﬂjﬂ_ﬁj_]

M g=1

From Acero et al. Chapter 3



Convergence of EM Process

Analysis will follow Sean Borman, “The Expectation Maximization Algorithm
A Short Tutorial”
See also:

* Jetf Bilmes “A Gentle Tutorial on the EM Algorithm” and
* Acero et al. Chapter 4.

The data likelihood will go up at each iteration,
analogous to distortion going down

L{g"] =InP (}{ | A Hidden variables - what gaussian a data

/ point comes from

P(X[6) =) _ P(X|z,6)P(z]6)

Images from http://www.seanborman.com/publications/EM_algorithm.pdf



Jensen’s Inequality

mZAIE_ }Z,x In(z;).

i=1

All As must be non-negative and sum to 1



Change in Likelihood

L(®)—L(H,) = In (Zp(mz,mmzm)_mman;]

= 111 (ZP X|Z Q)P Z|§:] Ezli g i) —lnp(}{wﬂ)

= In (Z P(z|X,0,) X|3|§£i Z|9}) —InP(X|0,,)

> Y P(z|X,0,)In (p Xgﬂii(z'g}) P(X]6n) (

B P(X|z,0)P(z|0)

_ ;p(zm, f,)1n (P{zm,ﬂnj}?(}ilﬁu}) (13)
2 A(0)8,). (14)

In going from Equation (12) to Equation (13) we made use of the fact that
S, P(z|X,0,) = 1sothat n'P(X|6,,) =3 P(z|X, 0, ) InP(X]|6,, ) which allows
the term In P(X|8,,) to be brought into the summation.

From http://www.seanborman.com/publications/EM_algorithm.pdf



Lower Bound on New Likelihood
L(8) > L(8,) + A(8]6,) 2 1(8]6,,)

We'll work by increasing this lower bound.
But will increasing a lower bound increase what we want?

02

/ Objective function decreases

Likelihood

Lower bound increases

Parameter value



Parameters is the Likelihood Itself!

[(6r]0n)

L(6,) + A(8,0,)

- P{X|3,HH}P(E|E}”]
= L(6,) +§P(E|X= O ) I X 6, P(X[00)
‘P(X1E|Hﬂ)

P(X,z|0,)
= L(0.)+ )Y P(zX,0,)In1

= L(0n)+ )Y P(zX.0,)In

— L(6y).

From http://www.seanborman.com/publications/EM_algorithm.pdf



The Real Picture

'L(gn—l)

‘E{QrH—l |§,1 }
L(6,) = 1(6.]0,)

L(#)
1(0)6,)

On i1

From http://www.seanborman.com/publications/EM_algorithm.pdf



Maximizing the Lower Bound on
Likelihood

0ni1 = arg Hx {1(06x)}

) ( P(X|z,0)P(z|6)
— argmax{ L(6,) + Z PlelX.bn) I 51 P @X. 6,) }

Now drop terms which are constant w.r.t. #

3

= argmax Z P(z|X,0,) InP(X]|z, 9]”P{z|ﬂ}}

X Z, H} 'P(z H
— argmgux< ZP z| X, 0,)1
Prob of z wrt current parameters
= arg max@ 0,)InP(X, z|d The Q Function
— argmax [Ezx.o, {InP(X,z/6)) Full data likelihood wrt new params

From http://www.seanborman.com/publications/EM_algorithm.pdf
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What This Tells Us

Compute the expected values of the hidden variables

Assume the hidden variables are seen with these
probabilities

Compute a new set of parameters 0 to optimize the
complete data likelihood

e The Q function is a function of 6

e [t is maximized wrt 6

This is guaranteed to increase the likelihood



Application to GMMs

K E :
plyv @)= Z e, p. (v ®,)= Z e, N, (v|n,.Z,) One dat.a point,
E=l k=l

K gaussians

;o y, @)

¥, = Posterior probability (count) of gaussian k
k ,
P (}',- D) wrt data point i

N
Z Z F.l-pﬁ- Y; | ¢k j Total number of points assigned to
= Py, |®) Gaussian k

From Acero et al. Chapter 4



Application to GMMs (2)

n i
%= i , N New prior for gaussian k
k=1 *
i?: iﬁkpk(‘i ‘I)Jr}‘:
= TS Py, | @) Mean is posterior-weighted average of the
M i}; ir"p*h |®@,) points
i=l ¥ i=1 1’;‘ | {I)J
S G2 (v, [P J(:r,-—u )y, —m, )
Z}’i(‘ —n )y, —m) Z = : P(y, |{I’; :
i=1
2, = i I_ = i CAL S Varie.m}fe zzllso
— Vi " Py [ @) a weighted sum

From Acero et al. Chapter 4



Break

* Then:

* Advanced topics in GMMs
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Fast Gaussian Computation

Competition-grade systems may have close to 1M
gausslans

Typically features are extracted 100 times a second

Evaluating and accumulating each dimension takes
something like 2 additions and 2 multiplies

39 dimensions

100 million gaussian evaluations per second amounts
to something like 15 billion ops/sec

This is a problem for real-time or near real-time
systems!



Some Options for Speeding Things Up

On-Demand Computation
e Only evaluate gaussians required by the search strategy

e But: introduces linkage between search and gaussian
computation, requires caching, and is complex

Dimension-wise pruning

 Likelihood computations involves sum of ((x-u)/c)”2 across
dimensions - big number means low likelihood

e Stop when you know the likelihood will be bad
e But: limited benefit in practice
Hierarchical evaluation

Cache optimization



Hierarchical Evaluation

==

Cluster them into a few high-level gaussians (e.g. 2000)

The gaussians we need to evaluate

Evaluate the top level gaussians against a frame
Select the top N (e.g. 100)

Evaluate the “real” gaussians assigned to these top N
Assume everything else is zero

20x speedup!

VW



How to Cluster the Gaussians?

K-Means of course!

Some distance metrics:
1.  Euclidian distance between means

>.  KL-Divergence between a gaussian and the centroid



Cache Optimization

Gaussians have means *and* variances
A frame takes %2 the memory!

15 as many cache misses

Maybe twice the speed

* For each gaussian Applicable to hierarchical evaluation too

e For each frame

« Do an evaluation
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Cache Optimization (2)

LSRN

Re-order for locality

A AN




- Low Memory Gaussian
Computation

« Think circa 1990
* Dragon Dictate and IBM ViaVoice just introduced
* Think Intel 486

e 20MHz, 16 MB RAM
* Memory was an issue!

* What to do?



Low Memory Gaussians (2)

Break gaussians into bands

e Eache.g. 2 dimensions

Cluster all the samples in each band
e Analogous to clustering the gaussians in the first place

Diagonal covariance gaussians decompose into sum of bands

Represent a gaussian as the sum of its bands
Gaussian quantized as one

bands ( ) e codeword from each band

O Codebooks for each band




Consider 1-Dimensional Quantization

The quantized mean/variance of the d-th dimension of the j-th gaussian is:

a(j) q(j)
¢ 'O

logN(x; £,) oc Dlog27z + > logod + > (% — 444 ) (o))~
d d

- D|0927Z'+Z|0903(j) _|_Z(Xd _ﬂg(j))z(o_j(n)—z
d d

Compute: logo ™V + (xa — i) (o7P)

Once for each codeword and re-use across gaussians
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Memory Requirements

Say 40 dimensions and bands are 2-dimensions
Quantize to 256 codewords per band

Each gaussian is now represented 20 bytes
Used to be 40*2*4 =320 (assuming floats)
Factor of 16 reduction



Compute requirements

Evaluate 25620 = 5120 2-dimensional gaussians
Add 20 numbers to get the score for a “real” gaussian

Repeatedly access the 5120 atomic numbers
e Good for cache!
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Further Speedups — Two
References

Aiyer, Gales & Picheny, “Rapid Likelihood

Computation of Subspace Clustered Gaussian
Components” (2000)

e Many gaussians use common sets of codewords
e Redundant computation

e Can be optimized with compiler technology for
evaluating common subexpressions once only

Saon, Zweig & Povey, “Anatomy of an Extremely Fast
LVCSR Decoder” (2003)

e Numerous tricks for efficient organization of complete
recognizer
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Full Covariance Matrices

N€uE 3 @ "Il ool -5 (x—p) 5" (x-9)

When ~-!is not diagonal
e Number of parameters is O(D?) not O(D)
e Need more data to estimate the parameters
e Evaluation is much slower
e Band quantization doesn’t work
e Adaptation methods are more complex

Nevertheless, people sometimes see improvements
e EMLLT is an interesting compromise



/ —

EMLLT
Z}l = leiakalr

Inverse covariance matrix is sum of outer products of basis
vectors

Can also think of as sum of basis matrices
Basis vectors shared across all gaussians

Potentially many fewer covariance parameters - just D
per gaussian

Plus the pool of basis vectors

See Olsen & Gopinath, “Modeling Inverse Covariance Matrices by Basis Expansion”



- |
Some EMLLT Results

Diagonal MLLT EMLLT
NGauss | WER lGauss | WER NGauss | ) | WER
10253 | 3.14% || 10253 | 2.84%

17028 | 3.08% || 17028 | 2.74% || 10253 | 2d | 2.54%
26460 | 3.01% || 26460 | 2.58% || 10253 | 4d | 2.34%
46500 | 2.84% || 46500 | 2.50% || 10253 | Bd | 2.15%
10253 | 14d | 2.04%
10253 | 20d | 2.11%

d is the vector dimensionality

From Olsen & Gopinath,
“Modeling Inverse Covariance Matrices by Basis Expansion”




Adaptation

® o
°
— = New data
°
°

How should we update our estimate
of what the gaussians are?

Old data modeled by

some gaussians
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Option 1: Replace the old data

Q New data,
O New gaussians

Old data modeled by

some gaussians



Option 2: Add the Data (MAP
Adaptation)

New data

Re-estimate gaussians,
combining old and new

data, possibly with a weighting
factor

See, e.g. Gauvain & Lee,
Old data modeled by Maxgnurp a POStGI‘%OI‘l ES:tlmatIOIl for
Multivariate Gaussian Mixture

some gaussians : ;
Observations of Markov Chains
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Option 3: Transform the Means

w=ALu")

New mean is linear transformation of old
An offset is added to the old mean as well

Transformation matrix chosen to maximize the likelihood
of the adaptation data under the transformed model

One transformation (e.g. 39x39) shared by many gaussians
(e.g. 1000s8)

See, e.g., Leggetter & Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
Markov models”

Similar transforms possible for covariance matrix



New data

New means are a

linear transform
", of the old ones

Old data modeled by

some gaussians




/mit All Together: Phone
Probabilities

Isitan /ah/?

- ‘ - Isitan /eh/?

’ Isita /p/?

Want: argmax, P(q|y)=argmax, P(q)P(y|q)
Need to model P(y| phone q)

Discrete (VQ) probabilities

Continuous (GMM) probabilities

Semi-Continuous probabilities



The Discrete Approach

u.‘ u.‘ u.‘ lq‘ H1 ‘-1 NOteI

*Spectral slices should change
142 27 111 45 142 12

*MFCCs would normally be used
t

* Vector-quantize the feature vectors
e Every1ioms or so

* P(yt| /ah/) = P(27 | /ah/)
e Learned by counting examples
e Covered in HMM lecture



Continuous Probabilities

* Each phone has its own gaussian mixture

K E
p(y| @)= Zﬁpk (¥|®,)= ZE#NI; (¥ m.2)
k=1 k=1

/ah//zw
/eh/?™~>

- > .-».’~ - . _;:-—,:‘.'_-. =
. Y\ 3o LSS s

' B . i A B

RN\ R w, Sl N R

..............

/ah/ gaussians /eh/ gaussians /p/ gaussians

Image from http://oregonstate.edu/~hohenlop/Gaussianmix.jpg



Semi-Continuous Probabilities

All models share the same gaussians

Models differ only in the weight assigned to each

Continuous gaussian models are a special case
e With lots of zeros as coefficients

Not much used anymore in ASR

/ah/

65%

0% I % _.



—Homework

Write a VQ program for 2-dimensional data

 First use Euclidean distortion D(x,y) between points x,y (eq'n. 4.77 of Acero, et
al.), squared Euclidean distance

Use the provided “points” file as input
Make a plot of the input
Fit 1,2,4,8 and 16 centroids to the data
» Plot the centers on top of the data
Now use log distance
e Log(1+ D(xy))
Can you find an analytical update, guaranteed to reduce distortion?

Find an update that is guaranteed to reduce distortion at each iteration
(analytical or not)

Fit 1, 2, 4, 8 and 16 centroids to the data
» Plot the centers on top of the data
e Plot the Euclidean and Log-distance centroids together

Finally, train a mixture of 1,2,4,8 and 16 gaussians with these points (using
either K-means or LBG). Be sure to adjust the variances.

* Plot the positions of the centers.
Turn in all 4 plots for 4 centers
Turn in a printout of your program

Turn in a printout of the total distortion after each iteration as the program
runs
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Project Reminder

Please think about your projects!

For Speech Recognition / Langauge ID / Speaker ID,
please contact me

o After class

e By email
On 5/7 I'd like to meet with everyone doing a relevant
project.


mailto:gzweig@microsoft.com

