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ABSTRACT
Search result diversification has gained attention as a way
to tackle the ambiguous or multi-faceted information needs
of users. Most existing methods on this problem utilize a
heuristic predefined ranking function, where limited features
can be incorporated and extensive tuning is required for dif-
ferent settings. In this paper, we address search result di-
versification as a learning problem, and introduce a novel
relational learning-to-rank approach to formulate the task.
However, the definitions of ranking function and loss func-
tion for the diversification problem are challenging. In our
work, we firstly show that diverse ranking is in general a
sequential selection process from both empirical and theo-
retical aspects. On this basis, we define ranking function as
the combination of relevance score and diversity score be-
tween the current document and those previously selected,
and loss function as the likelihood loss of ground truth based
on Plackett-Luce model, which can naturally model the se-
quential generation of a diverse ranking list. Stochastic gra-
dient descent is then employed to conduct the unconstrained
optimization, and the prediction of a diverse ranking list
is provided by a sequential selection process based on the
learned ranking function. The experimental results on the
public TREC datasets demonstrate the effectiveness and ro-
bustness of our approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval – Retrieval Models

General Terms
Algorithms, Experimentation, Performance, Theory
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Diversity, Relational Learning-to-Rank, Sequential Selection,
Plackett-Luce Model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR’14, July 6–11, 2014, Gold Coast, Queensland, Australia.
Copyright 2014 ACM 978-1-4503-2257-7/14/07 ...$15.00.
http://dx.doi.org/10.1145/2600428.2609634 .

1. INTRODUCTION
Most users leverage Web search engine as a predominant

tool to fulfill their information needs. Users’ information
needs, typically described by keyword based queries, are of-
ten ambiguous or multi-faceted. On the one hand, for some
ambiguous queries, there are multiple interpretations of the
underlying needs (e.g., query “band” may refer to the rock
band, frequency band or rubber band). On the other hand,
queries even with clear definition might still be multi-faceted
(e.g., “britney spears”), in the sense that there are many as-
pects of the information needs (e.g., news, videos, photos of
britney spears). Therefore, search result diversification has
attracted considerable attention as a means to tackle the
above problem [1]. The key idea is to provide a diversified
result list, in the hope that different users will find some
results that can cover their information needs.

Different methods on search result diversification have
been proposed in literature, which are mainly non-learning
methods, and can be divided into two categories: implicit
methods and explicit methods. Implicit methods [3] assume
that similar documents cover similar aspects, and rely on
inter-document similarity for selecting diverse documents.
While explicit methods [29] directly model the aspects of
user queries and select documents that cover different as-
pects for diversification. However, most existing methods
utilize a heuristic predefined utility function, and thus lim-
ited features can be incorporated and extensive tuning is
required for different retrieval settings.

In this paper, we address search result diversification as
a learning problem where a ranking function is learned for
diverse ranking. Different from traditional relevance rank-
ing based on the assumption of independent document rele-
vance [17], diverse ranking typically considers the relevance
of a document in light of the other retrieved documents
[29]. Therefore, we introduce a novel Relational Learning-
to-Rank framework (R-LTR for short) to formulate the task
of search result diversification. R-LTR considers the inter-
relationships between documents in the ranking process, be-
sides the content information of individual documents used
in traditional learning-to-rank framework. However, the def-
initions of ranking function and loss function for the diver-
sification problem are challenging.

From the top-down user browsing behavior and the ubiq-
uitous greedy approximation for diverse ranking, we find
that search result diversification is in general a sequential
ranking process. Therefore, we propose to define the rank-
ing function and loss function in a sequential way: (1) The
ranking function is defined as the combination of relevance
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score and diversity score, where the relevance score only de-
pends on the content of the document, and the diversity
score depends on the relationship between the current doc-
ument and those previously selected. We describe different
ways to represent the diversity score. (2) The loss function
is defined as the likelihood loss of ground truth based on
Plackett-Luce model [18], which can naturally model the se-
quential generation of a diverse ranking list. On this basis,
stochastic gradient descent is employed to conduct the un-
constrained optimization, and the prediction of diverse rank-
ing list is provided by a sequential selection process based
on the learned ranking function.
To evaluate the effectiveness of the proposed approach, we

conduct extensive experiments on the public TREC datasets.
The experimental results show that our methods can sig-
nificantly outperform the state-of-the-art diversification ap-
proaches, with Official Diversity Metrics (ODM for short) of
TREC diversity task including ERR-IA[1, 6], α-NDCG[11]
andNRBP [12]. Furthermore, our methods also achieve best
in the evaluations of traditional intent-aware measures such
as Precision-IA [1] and Subtopic Recall [37]. In addition, we
give some discussions on the robustness of our methods and
the importance of the proposed diversity features. Finally,
we also study the efficiency of our approach based on the
analysis of running time.
The main contributions of this paper lie in:

1. the proposal of a novel R-LTR framework to formu-
late search result diversification as a learning prob-
lem, where both content information and relationship
among documents are considered;

2. the new definitions of ranking function and loss func-
tion based on the foundation of sequential selection
process for diverse ranking;

3. an empirical verification of the effectiveness of the pro-
posed approach based on public datasets.

The rest of the paper is organized as follows. We first
review some related work in Section 2. We then introduce
the R-LTR framework in Section 3, and describe the specific
definitions of ranking function and loss function, learning
and prediction procedures in Section 4. Section 5 presents
the experimental results. Section 6 concludes the paper.

2. RELATED WORK
Most existing diversification methods are non-learning meth-

ods, which can be mainly divided into two categories: im-
plicit approaches and explicit approaches.
The implicit methods assume that similar documents cover

similar aspects and model inter-document dependencies. For
example, Maximal Marginal Relevance (MMR) method [3]
proposes to iteratively select a candidate document with the
highest similarity to the user query and the lowest similar-
ity to the already selected documents, in order to promote
novelty. In fact, most of the existing approaches are some-
how inspired by the MMR method. Zhai et al. [37] select
documents with high divergence from one language model
to another based on the risk minimization consideration.
The explicit methods explicitly model aspects of a query

and then select documents that cover different aspects. The
aspects of a user query can be achieved with a taxonomy [1,
32], top retrieved documents [5], query reformulations [24,

29], or multiple external resources [15]. Overall, the explicit
methods have shown better experimental performances com-
paring with implicit methods.

There are also some other methods which attempt to bor-
row theories from economical or political domains. The work
in [26, 33] applies economical portfolio theory for search re-
sult ranking, which views search diversification as a means of
risk minimization. The approach in [13] treats the problem
of finding a diverse search result as finding a proportional
representation for the document ranking, which is like a crit-
ical part of most electoral processes.

The authors of [2, 27] try to construct a dynamic ranked-
retrieval model, while our paper focuses on the common
static ranking scenario. There are also some on-line learn-
ing methods that try to learn retrieval models by exploiting
users’ online feedback [25, 31, 35, 30, 28]. These research
work can tackle diversity problem to some extent, but they
focus on an ‘on-line’ or ‘coactive’ scenario, which is different
from our work (i.e. offline supervised learning scenario).

Recently, some researchers have proposed to utilize ma-
chine learning techniques to solve the diversification prob-
lem. Yue et al. [36] propose to optimize subtopic coverage
as the loss function, and formulate a discriminant function
based on maximizing word coverage. However, their work
only focuses on diversity, and discards the requirements of
relevance. They claim that modeling both relevance and di-
versity simultaneously is a more challenging problem, which
is exactly what we try to tackle in this paper. In this pa-
per, we propose a novel R-LTR approach to conduct search
result diversification, which is different from traditional ap-
proaches and shows promising experimental performance.

3. RELATIONAL LEARNING-TO-RANK
Traditional relevance ranking has been well formulated as

a learning-to-rank (LTR for short) problem [17], where a
ranking function is defined on the content of each individual
document and learned toward some loss functions. However,
in diverse ranking scenario, the overall relevance of a doc-
ument ranking for a given query, should depend not only
on the individual ranked documents, but also on how they
related to each other [29]. Therefore, in this paper, we in-
troduce a novel R-LTR framework to formulate the diverse
ranking problem. The difference between LTR and R-LTR
is that the latter considers both contents of individual doc-
ument and relations between documents. In the following
paper, we use superscript to denote the id of a query and
subscript to denote the id of a document.

Formally, let X = {x1, · · · ,xn}, where xi denotes the d
dimensional feature vector of a candidate document xi for
query q; Let R ∈ Rn×n×l denote a 3-way tensor representing
relationships between the n documents, where Rijk stands
for the k-th feature of relation between documents xi and
xj . Let y be a ground-truth of the query q, in the form of
a vector of ranking scores or a ranking list. Supposing that
f(X,R) is a ranking function, and the goal of R-LTR is to
output the best ranking function from a function space F .

In training procedure, given the labeled data withN queries
as: (X(1), R(1),y(1)), (X(2), R(2),y(2)), · · · , (X(N), R(N),y(N)).
A loss function L is defined, and the learning process is con-
ducted by minimizing the total loss with respect to the given
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training data.

f̂ = argmin
f∈F

N∑

i=1

L(f(X(i), R(i)),y(i)). (1)

In prediction, given X(t) and R(t) of nt documents for
query qt, we output ŷ(t) based on the learned ranking func-
tion f̂(X(t), R(t)).
In fact, the proposed R-LTR framework is very general,

in the sense that many traditional ranking problems are its
special cases.
(1) It is obvious to see that the conventional LTR frame-

work is a special case of R-LTR. Specifically, if we ignore the
relation tensor R, then we get the same function as that in
traditional LTR, i.e. f(X,R) = f(X).
(2) The ‘learning to rank relational objects’ framework

[22, 23] is also a special case of R-LTR. Specifically, if we
restrict the relation tensor R to be a matrix, with Rij rep-
resenting the relation between document xi and xj , then we
get the same function as that in the problem of learning to
rank relational objects.
The above framework gives a formulation of ranking prob-

lems involving relationship. When solving the specific prob-
lem, one needs to define the corresponding ranking function
and loss function according to the task.

4. SEARCH RESULT DIVERSIFICATION
VIA R-LTR FRAMEWORK

As mentioned in the previous section, it is natural to for-
mulate search result diversification under R-LTR framework.
In this paper, we mainly focus on the diverse ranking sce-
nario. To apply the above framework to this specific task,
the most challenging problem is the definition of ranking
function and loss function.

4.1 Motivation
In order to properly define the ranking function and loss

function, we first look into the diverse ranking problem.
(1) Empirically, users usually browse the Web search re-

sults in a top-down manner, and perceive diverse informa-
tion from each individual document based on what he/she
have obtained in the preceding results [8].
(2) Theoretically, diverse ranking can be naturally stated

as a bi-criterion optimization problem, and it is NP-hard
[1, 4]. Therefore, in practice, most previous approaches on
search result diversification are based on greedy approxima-
tion, which sequentially select a ‘local-best’ document from
the remanent candidate set [29].
From both empirical and theoretical analysis above, we

can see that it is better to view diverse ranking as a sequen-
tial selection process, in the sense that the ranking list is
generated in a sequential order, with each individual docu-
ment ranked according to its relevance to the query and the
relation between all the documents ranked before it.

4.2 Definition of Ranking Function
As discussed above, diverse ranking is in general a se-

quential selection process, where each individual document
is ranked according to its relevance to the query and the
relation between all the documents ranked before it. The
intuitive idea is illustrated in Figure 1, when ranking doc-
uments in X\S given the already ranked results S, both
content-based relevance and diversity relation between this

X\S

Diversity

Relevance

Diversity

Relevance

X
d11

d2

d4

d6d7

d8

2
d3

d5

S

Figure 1: An illustration of the sequential way to de-
fine ranking function. All the rectangles represent
candidate documents of a user query, and different
colors represent different subtopics. The solid rect-
angle is relevant to the query, and the hollow rectan-
gle is irrelevant to the query, and larger size means
more relevance. X denotes all the candidate docu-
ment collection. S denotes previously selected doc-
uments, and X\S denotes the remanent documents.

document and the previously selected documents in S should
be considered. Noting that larger size of the rectangle means
the document is more relevant to the query, and different col-
ors represent different subtopics. Therefore, the document
8 may be more preferred than document 4 given S, since it
is relevant to the query, and also provides different aspects
additionally comparing with the selected set S.

Based on this ranking process, here we give the precise
definition of ranking function. Given a query q, we assume
that a set of documents have been selected, denoted as S,
the scoring function on the candidate document in X\S, is
then defined as the combination of the relevance score and
the diversity score between the current document and those
previously selected, shown as follows.

fS(xi, Ri) = ωT
r xi + ωT

d hS(Ri), ∀xi ∈ X\S, (2)

where xi denotes the relevance feature vector of the can-
didate document xi, Ri stands for the matrix of relation-
ships between document xi and other selected documents,
with each Rij stands for the relationship vector between
document xi and xj , represented by the feature vector of
(Rij1, · · · , Rijl), xj ∈ S, and Rijk stands for the k-th rela-
tion feature between documents xi and xj . hS(Ri) stands
for the relational function on Ri, ω

T
r and ωT

d stands for the
corresponding relevance and diversity weight vector. When
S = ∅, fS(xi, Ri) is directly represented as ωT

r xi. Then the
ranking function can be represented as the set of scoring
function:

f(X,R) = (fS∅ , fS1 , · · · , fSn−1)

where Si, denotes the previously selected document collec-
tion with i documents. From the above definition, we can
see that if we do not consider diversity relation, our ranking
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function reduce to f(X) = (f(x1), · · · , f(xn)), which is the
traditional ranking function in learning-to-rank.

4.2.1 Relational function hS(Ri)

Please note that the relational function hS(Ri) denotes
the way of representing the diversity relationship between
the current document xi and the previously selected docu-
ments in S. If we treat diversity relation as distance, hS(Ri)
can be viewed as the distance of xi to the set S. According
to different definitions of the distance between an item and
a set of items, hS(Ri) can be defined as the following three
ways.
Minimal Distance. The distance between a document

xi and a set S is defined as the minimal distance of all the
document pairs (xi, xj), xj ∈ S.

hS(Ri) = (min
xj∈S

Rij1, · · · , min
xj∈S

Rijl).

Average Distance. The distance between a document
xi and a set S is defined as the average distance of all the
document pairs (xi, xj), xj ∈ S.

hS(Ri) = (
1
|S|

∑

xj∈S

Rij1, · · · ,
1
|S|

∑

xj∈S

Rijl).

Maximal Distance. The distance between a document
xi and a set S is defined as the maximal distance of all the
document pairs (xi, xj), xj ∈ S.

hS(Ri) = (max
xj∈S

Rij1, · · · ,max
xj∈S

Rijl).

4.2.2 Diversity Feature Vector Rij

How to define discriminative features that can well cap-
ture diversity relation is critical for the success of R-LTR.
In this work, we provides several representative features for
the learning process, including semantic diversity features
(i.e. subtopic diversity, text diversity, title diversity, anchor
text diversity and ODP-based diversity) and structural di-
versity features (i.e. link-based diversity and url-based di-
versity).
Subtopic Diversity. Different documents may associate

with different aspects of the given topic. We use Proba-
bilistic Latent Semantic Analysis (PLSA) [16] to model im-
plicit subtopics distribution of candidate objects, which is
important for the diversification task as mentioned before.
Therefore, we define the diversity feature based on implicit
subtopics as follows.

Rij1 =

√√√√
m∑

k=1

(p(zk|xi)− p(zk|xj))2

Text Diversity. Text dissimilarity is also meaningful for
diversity. We propose to represent it as the cosine dissim-
ilarity based on weighted term vector representations, and
define the feature as follows.

Rij2 = 1− di · dj

∥di∥∥dj∥
,

where di, dj are the weighted document vectors based on tf∗
idf , and tf denotes the term frequencies, idf denotes inverse
document frequencies. There also exists other computing
ways such as the work in [14], which is based on sketching
algorithm and Jaccard similarity.

Title Diversity. The way of computing title diversity
feature is similar as that for text diversity feature, which is
denoted as Rij3.

Anchor Text Diversity. The anchor text can accurately
describe the content of corresponding page and is important.
This type of feature is computed similarly as text and title
diversity features, denoted as Rij4.

ODP-Based Diversity. The existing ODP taxonomy1

offers a succinct encoding of distances between documents.
Usually, the distance between documents on similar topics
in the taxonomy is likely to be small. For two categories u
and v, we define the categorical distance between them as
following:

c dis(u, v) = 1− |l(u, v)|
max{|u|, |v|}

where l(u, v) is the length of their longest common prefix.
|u| and |v| is the length of category u and v. Then given two
documents xi and xj and their category information sets
Ci and Cj respectively, we define the ODP-based diversity
feature as:

Rij5 =

∑
u∈Ci

∑
v∈Cj

c dis(u, v)

|Ci| · |Cj |

where |Ci| and |Cj | are the number of categories in corre-
sponding category sets.

Link-Based Diversity. By constructing a web link graph,
we can calculate the link similarity of any document pair
based on direct inlink or outlink information. The link-based
diversity feature is then defined as follows.

Rij6 =

{
0 if xi ∈ inlink(xj) ∪ outlink(xj),

1 otherwise

URL-Based Diversity. Given the url information of
two documents, we can judge whether they belong to the
same domain or the same site. The url-based diversity fea-
ture is then defined as follows.

Rij7 =

⎧
⎪⎨

⎪⎩

0 if one url is another’s prefix

0.5 if they belong to the same site or domain

1 otherwise

Based on these diversity features, we can obtain the di-
versity feature vector Rij = (Rij1, Rij2, · · · , Rij7). All the
feature values are normalized to the range of [0,1]. Please
note that there might be some other useful resources for the
definition of diversity features, e.g., clickthrough logs, which
will be further considered in our future work.

4.3 Definition of Loss Function
Motivated by the analysis that the process for diverse

ranking is in general a sequential selection process, we pro-
pose to model the generation of a diverse ranking list in a
sequential way, and define the loss function as the likelihood
loss of the generation probability.

L(f(X,R),y) = − logP (y|X). (3)

Intuitively, the generation probability of a ranking list can
be viewed as a process to iteratively select the top ranked

1http://www.dmoz.org/
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documents from the remaining documents. The precise def-
inition is given as follows.

P (y|X)=P (xy(1), xy(2), · · · , xy(n)|X) (4)

=P (xy(1)|X)P (xy(2)|X\S1) · · ·P (xy(n−1)|X\Sn−2),

where y(i) stands for the index of document which is ranked
in position i in the ranking list y, X denotes all the candidate
documents, Si = {xy(1), · · · , xy(i)}, denotes the previously
selected document collection with i documents, P (xy(1)|X)
stands for the probability that xy(1) is ranked first among
the documents in X, and P (xy(j)|X\Sj−1) stands for the
probability that document xy(j) is ranked first among the
documents in X\Sj−1.

4.3.1 Plackett-Luce based Probability P (y|X)

The above sequential definition approach can be well cap-
tured by the Plackett-Luce Model [18]. Therefore, we pro-
pose to define P (xy(1)|X) and P (xy(j)|X\Sj−1) in a similar
way, shown as follows, j ≥ 2.

P (xy(1)|X) =
exp{f∅(xy(1))}∑n

k=1 exp{f∅(xy(k))}
, (5)

P (xy(j)|X\Sj−1) =
exp{fSj−1(xy(j), Ry(j))}∑n

k=j exp{fSk−1(xy(k), Ry(k))}
. (6)

Incorporating Eq.(5) and Eq.(6) into Eq.(4), the generation
probability of a diverse ranking list is formulated as follows.

P (y|X) =
n∏

j=1

exp{fSj−1(xy(j), Ry(j))}∑n
k=j exp{fSk−1(xy(k), Ry(k))}

, (7)

where S0 = ∅, f∅(x,R) = ωT
r x.

4.3.2 Relation to ListMLE in Learning-to-Rank
Incorporating Eq.(7) into the definition of the loss func-

tion Eq.(3), we can obtain the precise definition of the loss
function as follows.

L(f(X,R),y)=−
n∑

j=1

log

{
exp{fSj−1(xy(j), Ry(j))}∑n
k=jexp{fSk−1(xy(k),Ry(k))}

}
(8)

We can see that our loss function is similar to that in
ListMLE [34], which is formulated as follows.

L(f(X), y) = −
n∑

j=1

log

{
exp{f(xy(j))}∑n

k=j exp{f(xy(k))}

}
,

where f(x) is the score function in traditional learning-to-
rank, i.e. f(x) = ωTx.
Therefore, if we do not consider diversity relation in our

framework, our loss function will reduce to the same form of
that in ListMLE. That is to say, ListMLE is a special case
of our loss function.

4.4 Learning and Prediction
Based on the definitions of ranking function and loss func-

tion, we present the learning and prediction process in this
section. Specifically, we first describe how to construct the
training data, and then introduce the optimization proce-
dure. Finally, we show how to make predictions based on
the learned ranking function.

Algorithm 1 Construction of Approximate Ideal
Ranking List

Input:
(qi, X

(i),Ti, P (x(i)
j |t)), t ∈ Ti, x

(i)
j ∈ X(i)

Output: y(i)

1: Initialize S0 ← ∅,y(i) = (1, · · · , ni)
2: for k = 1, ..., ni do
3: bestDoc← argmaxx∈X(i)\Sk−1

ODM(Sk−1 ∪ x)

4: Sk ← Sk−1 ∪ bestDoc
5: y(i)(k) = the index of bestDoc
6: end for
7: return y(i) = (y(i)(1), · · · , y(i)(ni)).

Algorithm 2 Optimization Algorithm

Input: training data {(X(i), R(i),y(i))}Ni=1,
parameter: learning rate η, tolerance rate ϵ

Output: model vector: ωr, ωd

1: Initialize parameter value ωr, ωd

2: repeat
3: Shuffle the training data
4: for i = 1, ..., N do
5: Compute gradient ∆ωr

(i) and ∆ωd
(i)

6: Update model: ωr = ωr − η ×∆ωr
(i),

ωd = ωd − η ×∆ωd
(i)

7: end for
8: Calculate likelihood loss on the training set
9: until the change of likelihood loss is below ϵ

4.4.1 Training Data
The labeled data in search result diversification such as

TREC diversity task are usually provided in the form of
(qi, X

(i),Ti, P (x(i)
j |t)), t ∈ Ti, x

(i)
j ∈ X(i), where X(i) is a

candidate document set of query qi, Ti is the subtopics of
query qi, t is a specific subtopic inTi, and P (x(i)

j |t) describes
the relevance of document x(i)

j to subtopic t. We can see that
the above form of labeled data deviates the formulation of
y(i) in our R-LTR framework, which requires a ranking list
of candidate documents. In order to apply R-LTR, we need
to construct y(i) from the provided form of labeled data.

We propose to construct an approximate ideal ranking list
by maximizing the ODM measures (e.g., ERR-IA), and use
the approximate ideal ranking list as the training ground-
truth y(i) for query qi, as described in Algorithm 1.

According to the results in [20], if a submodular func-
tion is monotonic (i.e., f(S) ≤ f(T ), whenever S ⊆ T ) and
normalized (i.e., f(∅) = 0), greedily constructing gives an
(1− 1/e)-approximation to the optimal. Since any member
of ODM is a submodular function, we can easily prove that
Algorithm 1 is (1− 1/e)-approximation to the optimal (We
omit the proof here). And the quality of training ground-
truth can be guaranteed.

4.4.2 Learning
Given the training data {(X(i), R(i),y(i))}Ni=1, the total

loss is represented as follows.

−
N∑

i=1

ni∑

j=1

log

⎧
⎨

⎩

exp{ωT
r x

(i)
y(j) + ωT

d hS
(i)
j−1

(R(i)
y(j))}

∑ni
k=j exp{ωT

r x
(i)
y(k) + ωT

d hS
(i)
k−1

(R(i)
y(k))}

⎫
⎬

⎭ (9)
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Algorithm 3 Ranking Prediction via Sequential Se-
lection

Input: X(t), R(t),ωr,ωd

Output: y(t)

1: Initialize S0 ← ∅,y(t) = (1, · · · , nt)
2: for k = 1, ..., nt do
3: bestDoc← argmaxx∈Xt

fSk−1(x,R)
4: Sk ← Sk−1 ∪ bestDoc
5: y(t)(k)← the index of bestDoc
6: end for
7: return y(t) = (y(t)(1), · · · , y(t)(nt))

For such a unconstrained optimization problem, we em-
ploy Stochastic Gradient Descent (SGD) to conduct opti-
mization as shown in Algorithm 2. According to Eq.(9), the
gradient at training sample X(i) is computed as follows.

∆ω
(i)
r =

ni∑

j=1

⎧
⎪⎨

⎪⎩

∑ni
k=j x

(i)
y(k) exp{ω

T
r x

(i)
y(k) + ωT

d h
S
(i)
k−1

(R
(i)
y(k))}

∑ni
k=j exp{ωT

r x
(i)
y(k) + ωT

d h
S
(i)
k−1

(R
(i)
y(k))}
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4.4.3 Prediction
As the ranking function is defined sequentially, traditional

prediction approach (i.e., calculating the ranking score of
each independent document simultaneously and sorting them
in descending order to obtain a ranking list) fails in our
framework. According to the sequential selection essence of
diverse ranking, we propose a sequential prediction process,
as described in Algorithm 3. Specifically, in the first step,
the most relevant document with maximal relevance score
will be selected and ranked first. If the top k items have
been selected, then the document in position k + 1 should
be with maximum fSk . At last, all the documents are ranked
accordingly, and we obtain the final ranking list.
Assuming that the size of output ranking is K, the size

of candidate set is n, then this type of sequential selection
algorithm 3 will have time complexity of O(n ∗K). Usually,
the original value of n is large, therefore, an initial retrieval
can be applied to provide a filtered candidate set with rela-
tively small size (e.g., top 1000 or 3000 retrieved documents).
With a small K, the prediction time is linear.

5. EXPERIMENTS
In this section, we evaluate the effectiveness of our ap-

proach empirically. We first introduce the experimental
setup. We then compare our approach with baseline meth-
ods under different diversity evaluation measures. Further-
more, we analyze the performance robustness of different

diversity methods and the importance of our proposed di-
versity features. Finally, we study the efficiency of our ap-
proach based on the analysis of running time.

5.1 Experimental Setup
Here we give some introductions on the experimental setup,

including data collections, evaluation metrics, baseline mod-
els and detailed implementation.

5.1.1 Data Collections
Our evaluation was conducted in the context of the diver-

sity tasks of the TREC2009Web Track (WT2009), TREC2010
Web Track (WT2010), and TREC2011Web Track (WT2011),
which contain 50, 48 and 50 test queries (or topics), respec-
tively. Each topic includes several subtopics identified by
TREC assessors, with binary relevance judgements provided
at the subtopic level2. All the experiments were carried out
on the ClueWeb09 Category B data collection3, which com-
prises a total of 50 million English Web documents.

5.1.2 Evaluation Metrics
The current official evaluation metrics of the diversity task

include ERR-IA [6], α-NDCG [11] and NRBP [12]. They
measure the diversity of a result list by explicitly rewarding
novelty and penalizing redundancy observed at every rank.
We also use traditional diversity measures for evaluation:
Precision-IA [1] and Subtopic Recall [37].They measure the
precision across all subtopics of the query and the ratio of
the subtopics covered in the results, respectively. All the
measures are computed over the top-k search results (k =
20). Moreover, the associated parameters α and β are all
set to be 0.5, which is consistent with the default settings in
official TREC evaluation program.

5.1.3 Baseline Models
To evaluate the performance of our approach, we compare

our approach with the state-of-the-art approaches, which are
introduced as follows.

QL. The standard Query-likelihood language model is
used for the initial retrieval, which provides the top 1000
retrieved documents as a candidate set for all the diversifi-
cation approaches. It is also used as a basic baseline method
in our experiment.

MMR. MMR is a classical implicit diversity method in
the diversity research. It employs a linear combination of
relevance and diversity as the metric called “marginal rele-
vance” [3]. MMR will iteratively select document with the
largest “marginal relevance”.

xQuAD. The explicit diversification approaches are pop-
ular in current research field, in which xQuAD is the most
representative and used as a baseline model in our experi-
ments [29].

PM-2. PM-2 is also a explicit method that proposes to
optimize proportionality for search result diversification [13].
It has been proved to achieve promising performance in their
work, and is also chosen as baseline in our experiment.

2For WT2011 task, assessors made graded judgements.
While in the official TREC evaluation program, it mapped
these graded judgements to binary judgements by treating
values > 0 as relevant and values ≤ 0 as not relevant.
3http://boston.lti.cs.cmu.edu/Data/clueweb09/
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Table 1: Relevance Features for learning on
ClueWeb09-B collection [21, 19].

Category Feature Description Total
Q-D TF-IDF 5
Q-D BM25 5
Q-D QL.DIR 5
Q-D MRF 10
D PageRank 1
D #Inlinks 1
D #Outlinks 1

ListMLE. ListMLE is a plain learning-to-rank approach
without diversification considerations, and is a representa-
tive listwise relevance approach in LTR field [17].
SVMDIV. SVMDIV is a representative supervised ap-

proach for search result diversification [36]. It proposes
to optimize subtopic coverage by maximizing word cover-
age. It formulates the learning problem and derives a train-
ing method based on structural SVMs. However, SVMDIV
only models diversity and discards the requirement of rele-
vance. For fair performance comparison, we will firstly apply
ListMLE to do the initial ranking to capture relevance, and
then use SVMDIV to re-rank top-K retrieved documents to
capture diversity.
The above three diversity baselines: MMR, xQuAD and

PM-2, all require a prior relevance function to implement
their diversification steps. In our experiment, we choose
ListMLE as the relevance function to implement them, and
denote them as: MMRlist, xQuADlist and PM-2list, respec-
tively.
According to the different ways in defining the relational

function hS(R
i) in section 4.2.1, our R-LTR diversification

approach has three variants, denoted as R-LTRmin, R-LTRavg

and R-LTRmax, respectively.

5.1.4 Implementation
In our experiments, we use Indri toolkit (version 5.2)4

as the retrieval platform. For the test query set on each
dataset, we use a 5-fold cross validation with a ratio of 3:1:1,
for training, validation and testing. The final test perfor-
mance is reported as the average over all the folds.
For data preprocessing, we apply porter stemmer and

stopwords removing for both indexing and query process-
ing. We then extract features for each dataset as follows.
For relevance, we use several standard features in LTR re-
search [21], such as typical weighting models (e.g., TF-IDF,
BM25, LM), and term dependency model [19, 38], as sum-
marized in Table 1, where Q-D means that the feature is
dependent on both query and document, and D means that
the feature only depends on the document. For all the Q-D
features, they are applied in five fields: body, anchor, ti-
tle, URL and the whole document, resulting in 5 features in
total, respectively. Additionally, the MRF feature has two
types of values: ordered phrase and unordered phrase [19],
so the total feature number is 10.
For three baseline models: MMR, xQuAD and PM-2, they

all have a single parameter λ to tune. We perform a 5-
fold cross validation to train λ through optimizing ERR-IA.
Additionally, for xQuAD and PM-2, the official subtopics
are used as a representation of taxonomy classes to simu-
4http://lemurproject.org/indri

late their best-case scenarios, and uniform probability for
all subtopics is assumed as [29, 13].

For ListMLE and SVMDIV, we utilize the same training
data generated by Algorithm 1 to train their model, and
also conduct 5-fold cross validation. ListMLE adopts the
relevance features summarized in Table 1. SVMDIV adopts
the representative word level features with different impor-
tance criterion, as listed in their paper and released code
[36]. As described in above subsection, SVMDIV will re-
rank top-K retrieved documents returned by ListMLE. We
test K ∈ {30, 50, 100}, and find it performs best at K = 30.
Therefore, the following results of SVMDIV are achieved
with K = 30.

For our approach, the learning rate η parameter in Algo-
rithm 2 is chosen from 10−7 to 10−1, and the best learning
rate is obtained based on the performance of validation set.

5.2 Performance Comparison

5.2.1 Evaluation on Official Diversity Metrics
We now compare our approaches to the baseline methods

on search result diversification. The results of performance
comparison are shown in Table 2, 3, and 4. We also present
the performance of top performing systems on Category-
B reported by TREC [7, 10, 9], which are just taken as
indicative references. The number in the parentheses are the
relative improvements compared with the baseline method
QL. Boldface indicates the highest scores among all runs.

From the results we an see that, our R-LTR outperform
the plain LTR approach without diversification considera-
tion, i.e. ListMLE, which can be viewed as a special case
of our approach. Specifically, the relative improvement of
R-LTRmin over ListMLE is up to 41.87%, 49.71%, 29.17%,
in terms of ERR-IA on WT2009, WT2010, and WT2011,
respectively. It indicates that our approach can tackle multi-
criteria ranking problem effectively, with the consideration
of both content-based information and diversity relationship
among candidate objects.

Regarding the comparison among representative implicit
and explicit diversification approaches, explicit methods (i.e.
xQuAD and PM-2) show better performance than the im-
plicit method (i.e. MMR) in terms of all the evaluation
measures. MMR is the least effective due to its simple
predefined “marginal relevance”. The two explicit methods
achieve comparable performance: PM-2list wins on WT2010
and WT2011, while xQuADlist wins on WT2009, but their
overall performance differences are small.

Furthermore, our approach outperforms the state-of-the-
art explicit methods in terms of all the evaluation measures.
For example, with the evaluation of ERR-IA, the relative
improvement of R-LTRmin over the xQuADlist is up to
17.18%, 11.26%, 13.38%, on WT2009, WT2010, WT2011,
respectively, and the relative improvement of R-LTRmin over
the PM-2list is up to 18.31%, 10.65%, 10.59% on WT2009,
WT2010, WT2011, respectively. Although xQuADlist and
PM-2list all utilize the official subtopics as explicit query
aspects to simulate their best-case scenarios, their perfor-
mances are still much lower than our learning-based ap-
proaches, which indicates that there might be certain gap
between their heuristic predefined utility functions and the
final evaluation measures.

Comparing with the learning-based diversification base-
line method, our R-LTR approach also show better per-
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Table 2: Performance comparison of all methods in official TREC diversity measures for WT2009.
Method ERR-IA α-NDCG NRBP

QL 0.1637 0.2691 0.1382
ListMLE 0.1913 (+16.86%) 0.3074 (+14.23%) 0.1681 (+21.64%)
MMRlist 0.2022 (+23.52%) 0.3083 (+14.57%) 0.1715 (+24.09%)
xQuADlist 0.2316 (+41.48%) 0.3437 (+27.72%) 0.1956 (+41.53%)
PM-2list 0.2294 (+40.13%) 0.3369 (+25.20%) 0.1788 (+29.38%)
SVMDIV 0.2408 (+47.10%) 0.3526 (+31.03%) 0.2073 (+50.00%)
R-LTRmin 0.2714 (+65.79%) 0.3915 (+45.48%) 0.2339 (+69.25%)
R-LTRavg 0.2671 (+63.16%) 0.3964 (+47.31%) 0.2268 (+64.11%)
R-LTRmax 0.2683 (+63.90%) 0.3933 (+46.15%) 0.2281 (+65.05%)
TREC-Best 0.1922 0.3081 0.1617

Table 3: Performance comparison of all methods in official TREC diversity measures for WT2010.
Method ERR-IA α-NDCG NRBP

QL 0.1980 0.3024 0.1549
ListMLE 0.2436 (+23.03%) 0.3755 (+24.17%) 0.1949 (+25.82%)
MMRlist 0.2735 (+38.13%) 0.4036 (+33.47%) 0.2252 (+45.38%)
xQuADlist 0.3278 (+65.56%) 0.4445 (+46.99%) 0.2872 (+85.41%)
PM-2list 0.3296 (+66.46%) 0.4478 (+48.08%) 0.2901 (+87.28%)
SVMDIV 0.3331 (+68.23%) 0.4593 (+51.88%) 0.2934 (+89.41%)
R-LTRmin 0.3647 (+84.19%) 0.4924 (+62.83%) 0.3293 (+112.59%)
R-LTRavg 0.3587 (+81.16%) 0.4781 (+58.10%) 0.3125 (+101.74%)
R-LTRmax 0.3639 (+83.79%) 0.4836 (+59.92%) 0.3218 (+107.74%)
TREC-Best 0.2981 0.4178 0.2616

formance than the SVMDIV approach. The relative im-
provement of R-LTRmin over the SVMDIV is up to 12.71%,
9.49%, 10.02%, in terms of ERR-IA on WT2009, WT2010,
WT2011, respectively. SVMDIV simply uses weighted word
coverage as a proxy for explicitly covering subtopics, while
our R-LTR approach directly models the generation proba-
bility of the diverse ranking based on the sequential ranking
formulation. Therefore, our R-LTR approach shows deeper
understanding and better formulation of diverse ranking,
and leads to better performance. We further conduct sta-
tistical tests on the results, which indicates that all these
improvements are statistically significant (p-value < 0.01).
Among the R-LTR approaches, R-LTRmin obtains bet-

ter performance than the other two variants especially on
WT2010 and WT2011 data collection, although their per-
formance difference is small. It indicates that when defining
the diversity relation between a document and a set of doc-
uments, the minimal distance would be a better choice.

5.2.2 Evaluation on Traditional Diversity Metrics.
Additionally, we also evaluate all the methods under tra-

ditional diversity measures, i.e. Precision-IA and Subtopics
Recall. The experimental results are shown in Figure 2 and
3. We can see that our approaches outperform all the base-
line models on all the data collections in terms of both met-
rics, which is consistent with the evaluation results in Table
2, 3, and 4. It can further demonstrate the effectiveness of
our approach on search result diversification from different
aspects. When comparing the three variants of our R-LTR
approaches, they all show similar performance and none ob-
tains consistent better performance than the others under
these two measures.

5.3 Robustness Analysis
In this section we analyze the robustness of these diversifi-

cation methods, i.e., whether the performance improvement
is consistent as compared with the basic relevance baseline

Table 5: The robustness of the performance of all
diversity methods in Win/Loss ratio

WT2009 WT2010 WT2011 Total
ListMLE 20/18 27/16 26/11 73/45
MMRlist 22/15 29/13 29/10 80/38
xQuADlist 28/11 31/12 31/12 90/35
PM-2list 26/15 32/12 32/11 90/38
SVMDIV 30/12 32/11 32/11 94/34
R-LTRmin 34/9 35/10 35/9 104/28
R-LTRavg 33/9 34/11 34/10 101/30
R-LTRmax 33/10 35/10 34/10 102/30

QL. Specifically, we define the robustness as the Win/Loss
ratio [36, 13] - the ratio of queries whose performance im-
proves or hurts as compared with the original results from
QL in terms of of ERR-IA.

From results in Table 5, we find that our R-LTR meth-
ods achieve best as compared with all the baseline meth-
ods, with the total Win/Loss ratio around 3.49. Among
the three variants of R-LTR methods, R-LTRmin performs
better than the others, with the Win/Loss ratio as 3.71.

Based on the robustness results, we can see that the per-
formance of our R-LTR approach is more stable than all
the baseline methods. It demonstrates that the overall per-
formance gains of our approach not only come from some
small subset of queries. In other words, the result diversi-
fication for different queries could be well addressed under
our approach.

5.4 Feature Importance Analysis
In this subsection, we analyze the relative importance of

the proposed diversity features. Table 6 shows an ordered
list of diversity features used in our R-LTRmin model accord-
ing to the learned weights (average on three datasets). From
the results, we can see that the subtopic diversity Rij1(topic)
is with the maximal weight, which is in accordance with
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Table 4: Performance comparison of all methods in official TREC diversity measures for WT2011.
Method ERR-IA α-NDCG NRBP

QL 0.3520 0.4531 0.3123
ListMLE 0.4172 (+18.52%) 0.5169 (+14.08%) 0.3887 (+24.46%)
MMRlist 0.4284 (+21.70%) 0.5302 (+17.02%) 0.3913 (+25.30%)
xQuADlist 0.4753 (+35.03%) 0.5645 (+24.59%) 0.4274 (+36.86%)
PM-2list 0.4873 (+38.44%) 0.5786 (+27.70%) 0.4318 (+38.26%)
SVMDIV 0.4898 (+39.15%) 0.5910 (+30.43%) 0.4475 (+43.29%)
R-LTRmin 0.5389 (+53.10%) 0.6297 (+38.98%) 0.4982 (+59.53%)
R-LTRavg 0.5276 (+49.89%) 0.6219 (+37.25%) 0.4724 (+51.26%)
R-LTRmax 0.5285 (+50.14%) 0.6223 (+37.34%) 0.4741 (+51.81%)
TREC-Best 0.4380 0.5220 0.4070
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Figure 2: Performance comparison of all methods in Precision-IA for WT2009, WT2010, WT2011.
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Figure 3: Performance comparison of all methods in Subtopic Recall for WT2009, WT2010, WT2011.

Table 6: Order list of diversity features with corre-
sponding weight value.

feature weight
Rij1(topic) 3.71635
Rij3(title) 1.53026

Rij4(anchor) 1.34293
Rij2(text) 0.98912
Rij5(ODP) 0.52627
Rij6(Link) 0.04683
Rij7(URL) 0.01514

our intuition that diversity mainly lies in the rich semantic
information. Meanwhile, the title and anchor text diver-
sity Rij3(title) and Rij4(anchor) also work well, since these
fields typically provide a precise summary of the content of
the document. Finally, The Link and URL based diversity
Rij6(Link) and Rij7(URL) seem to be the least important
features, which may be due to the sparsity of such types of
features in the data.
As a learning-based method, our model is flexible to in-

corporate different types of features for capturing both the
relevance and diversity. Therefore, it would be interesting

to explore other useful features under our R-LTR framework
to further improve the performance of diverse ranking. We
will investigate this issue in future.

5.5 Running Time Analysis
We further study the efficiency of our approach and the

baseline models. All of the diversity methods associate with
a sequential selection process, which is time-consuming due
to the consideration of the dependency relations of document
pairs. While as discussed before, this type of algorithms all
have time complexity of O(n ∗ K), With a small K, the
prediction time is linear.

All the learning-based methods (i.e. ListMLE, SVMDIV
and R-LTR) need additional offline training time due to the
supervised learning process. We compare the average train-
ing time of different learning-based methods, and the result
is shown as following (unit: hour):

ListMLE (∼ 1.5h) ≺ SVMDIV (∼ 2h) ≺ R-LTR (∼ 3h)

We can observe that our approach takes longer but com-
parable offline training time among different learning-based
methods. Besides, in our experiments, we also found that
the three variants of our R-LTR approach are with nearly
the same training time. We will attempt to optimize our
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code to provide much faster training speed via paralleliza-
tion technique in the following work.

6. CONCLUSIONS
In this paper, we propose to solve the search result diver-

sification problem within a novel R-LTR framework. How-
ever, the specific definitions of ranking function and loss
function are challenging. Motivated by the top-down user
browsing behavior and the ubiquitous greedy approximation
for diverse ranking, we firstly define the ranking function as
the combination of relevance score and diversity score be-
tween the current item and those previously selected. Then
the loss function is defined as the likelihood loss of ground
truth based on Plackett-Luce model, which can naturally
model the sequential generation of a diverse ranking list.
On this basis, we utilize stochastic gradient descent to con-
duct the unconstrained optimization. The prediction of a
diverse ranking list is then provided by iteratively maximiz-
ing the learned ranking function. Finally the experimental
results on public TREC data collections demonstrate the
effectiveness and robustness of our approach.
The proposed R-LTR framework is quite general that can

be used in other applications, such as pseudo relevance feed-
back and topic distillation. Therefore, it would be interest-
ing to apply our R-LTR framework in different applications
in our future work.
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A. Ashkan, S. Büttcher, and I. MacKinnon. Novelty and
diversity in information retrieval evaluation. In Proceedings of
the 31st ACM SIGIR, pages 659–666, 2008.

[12] C. L. Clarke, M. Kolla, and O. Vechtomova. An effectiveness
measure for ambiguous and underspecified queries. In
Proceedings of the 2nd ICTIR, pages 188–199, 2009.

[13] V. Dang and W. B. Croft. Diversity by proportionality: an
election-based approach to search result diversification. In
Proceedings of the 35th ACM SIGIR, pages 65–74, 2012.

[14] S. Gollapudi and A. Sharma. An axiomatic approach for result
diversification. In Proceedings of the 18th WWW, pages
381–390, 2009.

[15] J. He, V. Hollink, and A. de Vries. Combining implicit and
explicit topic representations for result diversification. In
Proceedings of the 35th ACM SIGIR, pages 851–860, 2012.

[16] T. Hofmann. Probabilistic latent semantic indexing. In
Proceedings of the 22nd ACM SIGIR, pages 50–57, 1999.

[17] T.-Y. Liu. Learning to Rank for Information Retrieval.
Springer, 2011.

[18] J. I. Marden. Analyzing and Modeling Rank Data. Chapman
and Hall, 1995.

[19] D. Metzler and W. B. Croft. A markov random field model for
term dependencies. In Proceedings of the 28th ACM SIGIR,
pages 472–479, 2005.

[20] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of
approximations for maximizing submodular set functions–i.
Mathematical Programming, 14(1):265–294, 1978.

[21] T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A benchmark
collection for research on learning to rank for information
retrieval. Inf. Retr., pages 346–374, 2010.

[22] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, and H. Li. Global
ranking using continuous conditional random fields. In
Proceedings of the 22th NIPS, Vancouver, British Columbia,
Canada, December 8-11, 2008, pages 1281–1288, 2008.

[23] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, W.-Y. Xiong, and
H. Li. Learning to rank relational objects and its application to
web search. In Proceedings of the 17th WWW, pages 407–416,
2008.

[24] F. Radlinski and S. Dumais. Improving personalized web search
using result diversification. In Proceedings of the 29th ACM
SIGIR, 2006.

[25] F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse
rankings with multi-armed bandits. In Proceedings of the 25th
ICML, pages 784–791, 2008.

[26] D. Rafiei, K. Bharat, and A. Shukla. Diversifying web search
results. In Proceedings of the 19th WWW, pages 781–790,
2010.

[27] K. Raman, T. Joachims, and P. Shivaswamy. Structured
learning of two-level dynamic rankings. In Proceedings of the
20th ACM CIKM, pages 291–296, 2011.

[28] K. Raman, P. Shivaswamy, and T. Joachims. Online learning to
diversify from implicit feedback. In Proceedings of the 18th
ACM SIGKDD, pages 705–713, 2012.

[29] R. L. Santos, C. Macdonald, and I. Ounis. Exploiting query
reformulations for web search result diversification. In
Proceedings of the 19th WWW, pages 881–890, 2010.

[30] P. Shivaswamy and T. Joachims. Online structured prediction
via coactive learning. In ICML’12, 2012.

[31] A. Slivkins, F. Radlinski, and S. Gollapudi. Learning optimally
diverse rankings over large document collections. In
Proceedings of the 27th ICML, pages 983–990, 2010.

[32] S. Vargas, P. Castells, and D. Vallet. Explicit relevance models
in intent-oriented information retrieval diversification. In
Proceedings of the 35th ACM SIGIR, pages 75–84, 2012.

[33] J. Wang and J. Zhu. Portfolio theory of information retrieval.
In Proceedings of the 32nd ACM SIGIR, pages 115–122, 2009.

[34] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise
approach to learning to rank: theory and algorithm. In
Proceedings of the 25th ICML, pages 1192–1199, 2008.

[35] Y. Yue and C. Guestrin. Linear submodular bandits and their
application to diversified retrieval. In NIPS, pages 2483–2491,
2011.

[36] Y. Yue and T. Joachims. Predicting diverse subsets using
structural svms. In Proceedings of the 25th ICML, pages
1224–1231, 2008.

[37] C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond independent
relevance: methods and evaluation metrics for subtopic
retrieval. In Proc. of the 26th ACM SIGIR, pages 10–17, 2003.

[38] Y. Zhu, Y. Xue, J. Guo, Y. Lan, X. Cheng, and X. Yu.
Exploring and exploiting proximity statistic for information
retrieval model. In Proceedings of the 8th Asia Information
Retrieval Societies Conference, volume 7675 of Lecture Notes
in Computer Science, pages 1–13, 2012.

302


