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ABSTRACT
Web Search has seen two big changes recently: rapid growth in
mobile search traffic, and an increasing trend towards providing
answer-like results for relatively simple information needs (e.g.,
[weather today]). Such results display the answer or relevant infor-
mation on the search page itself without requiring a user to click.
While clicks on organic search results have been used extensively
to infer result relevance and search satisfaction, clicks on answer-
like results are often rare (or meaningless), making it challenging
to evaluate answer quality. Together, these call for better measure-
ment and understanding of search satisfaction on mobile devices.
In this paper, we studied whether tracking the browser viewport
(visible portion of a web page) on mobile phones could enable ac-
curate measurement of user attention at scale, and provide good
measurement of search satisfaction in the absence of clicks. Fo-
cusing on answer-like results in web search, we designed a lab
study to systematically vary answer presence and relevance (to the
user’s information need), obtained satisfaction ratings from users,
and simultaneously recorded eye gaze and viewport data as users
performed search tasks. Using this ground truth, we identified
increased scrolling past answer and increased time below answer
as clear, measurable signals of user dissatisfaction with answers.
While the viewport may contain three to four results at any given
time, we found strong correlations between gaze duration and view-
port duration on a per result basis, and that the average user atten-
tion is focused on the top half of the phone screen, suggesting that
we may be able to scalably and reliably identify which specific re-
sult the user is looking at, from viewport data alone.

Keywords
Search on mobile phone; user attention and satisfaction; viewport
logging.

1. INTRODUCTION
Recent years have witnessed a rapid explosion in the usage of

mobile devices on the web. According to recent surveys, web
browsing on mobile devices increased five fold from 5.2% three
years ago to 25% in April 2014[26]; and a significant amount of
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Figure 1: An example of the search results page showing Knowl-
edge Graph result. The yellow area indicates current position of the
browser’s viewport (visible portion of the page).

search engines’ traffic (about one in every five searches) is gen-
erated by mobile devices[25]. Another recent change in search is
the increasing trend towards providing answer-like results for sim-
ple information needs that are popular on mobile (e.g., [weather
today], [pizza hut hours]). Such results display the answer or rel-
evant information on the search page itself without requiring the
user to click. Instant information is desirable on mobile devices,
but poses a challenge – while clicks on organic search results have
been extensively used to infer result relevance and search satisfac-
tion [5, 6], answer-like results often do not receive clicks, which
makes it difficult to evaluate answer quality and search satisfac-
tion. Together, the rapid growth in mobile traffic and answer-like
results in Search warrants better understanding of user attention and
satisfaction in search on mobile devices.

Search behavior on mobile devices can be different than on desk-
top for several reasons. Unlike traditional desktop computers with
large displays and mouse-keyboard interactions, touch enabled mo-
bile devices have small displays and offer a variety of touch inter-
actions, including touching, swiping and zooming. As a result, user
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experience and search behavior on mobile devices is different – for
example, due to the lack of a physical keyboard, users tend to is-
sue shorter queries than on the desktops [19]. Compared to large
desktop displays (13-30" displays or bigger), the displays on mo-
bile phones are small (4-5" or smaller), and limit the amount of
information that the user can view simultaneously.

We introduce viewport as the portion of the web page that is
visible on the phone screen at a given point in time. Viewport coor-
dinates are recorded in the web page coordinate system, (i.e., upon
scrolling, viewport moves towards the bottom of the web page).
Since the small displays on mobile phones limit the number of vis-
ible search results to 3-4, viewport tracking could be used to better
measure users’ attention on a web page, as was recently recognized
by some researchers [21, 13]. To the best of our knowledge, there
is no quantitative evaluation or validation of viewport data in how
well it can approximate user attention on mobile devices, or be used
to detect search satisfaction. In this paper we test the utility of view-
port signals. To approximate attention from viewport tracking, we
measure the result view time - the duration for which a search result
appeared within the viewport.

In desktop settings, the amount of time user spent gazing (or
hovering with mouse cursor) on a particular result was shown to be
useful for inferring result relevance [24], predicting future clicks
[15], improving ranking, estimating snippet attractiveness[21] and
whole page quality [22]. While cursor hovers do not exist on mo-
bile devices, these findings suggest that measurement of viewing
time of results on mobile could lead to several useful applications
in relevance estimation and whole page optimization.

In this paper we demonstrate how viewport metrics can be used
to measure user attention (eye gaze), and detect search satisfaction.
Specifically, our paper makes the following contributions:

• presents first quantitative eye tracking and viewport tracking
study in search on mobile phones

• identifies increased scrolling past answer, and increased time
below answer as clear, measurable signals of searcher dissat-
isfaction

• demonstrates strong correlations between gaze duration on a
result and its view duration (r=0.7) on a per-result basis (3-4
results could appear simultaneously on the viewport)

• reports that average user attention is focused on the top half
of the phone screen; together with the previous finding, this
suggests that we may reliably identify the specific result seen
by the user from viewport data alone.

We begin by surveying related work in eye tracking for search
on desktops and user behavior for search on mobile devices. We
then describe our experiment and user study, followed by the anal-
ysis of searcher’s attention and satisfaction on mobile phones. We
conclude with a discussion reviewing the findings and limitations
of this study, along with suggestions for future work.

2. RELATED WORK
Eye tracking technology has been extensively used in studies of

web search result examination behavior in desktop settings. Granka
et al. [9] studied how users browse search results and select links.
They showed that users spend most of the time inspecting the first
and the second result before their first click. Based on insights
gained from eye tracking, Joachims et al. [17] compiled the most
common examination strategies and demonstrated their utility in
inferring user-perceived relevance of result ranking. Lorigo et al.

[23] used eye tracking to study gaze trajectories on a search re-
sults page in more detail. They found that only 25% of users ex-
amine search results in the order they are presented by the search
engine. A similar study was conducted by Guan and Cutrell [10],
who showed the effect of target result position on searcher’s exam-
ination behavior.

Apart from organic search results, previous work explored user
attention and search behavior and their relation to ads and rich in-
formational panels in the desktop settings. Buscher et al.[4] inves-
tigated the effect of ad quality on searcher’s receptiveness to the
advertisements. They found that when ad quality varied randomly,
users paid very little attention to the ads. Navalpakkam et al.[24]
conducted a controlled study where they varied the presence and
relevance of a rich informational panel placed to the right of organic
search results. They found that the information panels containing
information relevant to the user’s task attract more attention and
longer mouse cursor hovers. Our work is similar to Navalpakkam
et al. in that we both study user behavior in the presence of informa-
tional panels among the search results (results based on Knowledge
Graph1). However, there are important differences: 1) we study at-
tention and satisfaction on mobile search, while the previous study
was conducted in desktop settings; 2) unlike desktop where the in-
formation panel appears on the right hand side of the page (and
hence may be ignored), on mobile phones, the information panel is
interleaved between organic search results. In addition to informa-
tional panels, we also study Instant Answer results, such as related
to current weather information, price of currency exchange, etc.

User factor and individual differences strongly affect the way
searchers examine the results and interact with the search engine.
Aula et al.[1] reported two types of search result examination pat-
terns – economic and exhaustive. Economic users inspect results
sequentially from the top to bottom and click on the first relevant
link they notice. In contrast, exhaustive searchers thoroughly exam-
ine the search result page and consider every result before deciding
what to click. Dumais et al. [8] extended this work by clustering
users based on their examination behavior of whole search page. In
addition to user examination pattern on organic search results they
considered user attention on advertisements.

Despite the abundance of research about searcher’s attention on
desktops, attention on mobile devices remained relatively unex-
plored. Huang and Diriye [13] discussed the potential utility of
viewport logging on touch-enabled mobile devices. In this pa-
per, we use client based viewport logging (similar to [13]) to track
user interactions on the search result page. Recent study of Guo
et al. [12] investigated the value of user interaction data on mo-
bile phones for predicting search success. Continuing this line of
research Guo et al. [11] demonstrated the utility of tracking touch-
based interactions to improve relevance estimation of destination
web pages (a web page linked by a search result). Among many
user activity metrics, they found the inactivity time on a web page
to be highly correlated with page relevance. While their work fo-
cused on user interactions and behavior on the destination pages,
this paper considers viewport behavior and in addition, eye track-
ing, on the search results page.

Kim et al. [20] investigated result examination strategies on dif-
ferent screen sizes. Similarly to [23] they adopted taxonomy of
three examination strategies: Depth-First, Mixed, Breadth-First.
Surprisingly, they did not find any significant variation in the way
users examine search results on large and small displays. It is worth
noting that they used a simulation of the mobile phone screen, and
it is possible that behavior on simulated phone screens (shown on

1http://www.google.com/insidesearch/features/search/knowledge.html
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a desktop monitor) and an actual mobile device can vary substan-
tially for reasons mentioned in the introduction (e.g., actual phones
can be held in the hand, and allow several touch interactions in-
cluding zooming in and scrolling that simulated phone setting may
not offer). To the best of our knowledge, study of Biedert et al.[2]
remains the only quantitative eye tracking study of reading behav-
ior performed on an actual mobile device. While our study uses
a similar technical setup, we focus on analyzing search behavior
on a mobile phone (search attention and satisfaction). In addition,
we demonstrate the utility of viewport based metrics and their high
correlation with user attention.

3. USER STUDY AND DATA COLLECTION
In order to evaluate our ideas, we designed and conducted a user

study with answer-like search results. We split the user study into
two parts: first, to study how a rich information panel with Knowl-
edge Graph results (KG) affects user search and attention behavior,
and second, to study how Instant Answers (IA) influence search
and attention behavior. Knowledge Graph results are often shown
for queries related to some entity, e.g. famous person, place, etc.
Examples of such queries are [angelina jolie] or [louvre] (shown
in Figure 1). Examples of queries that trigger Instant Answers in-
clude [weather today], [twitter stock price], [define amazing], [gi-
ants schedule]).

Our choice of dividing the study into two parts is motivated
by the fact that KG and IA have quite different user interfaces
which may potentially affect results of the study. Indeed, both re-
sult types (KG and IA) provide users with answer-like information
(i.e., the information is visible on the search page, no need to click
through), but they have different user interfaces. Instant Answer re-
sult type has a diverse UI, sometimes interactive, such as in weather
and “calculator” related queries; sometimes containing charts and
graphs, such as in weather and finance, and sometimes containing
text only, such as in dictionary lookup queries. On the other hand,
KG results have a consistent user interface and appearance – an
image block on top, followed by textual facts, and some links.

Both parts of the study used the following protocol. Participants
were presented with a web page containing a list of 20 search tasks.
Each entry in the list consisted of the task description, followed
by 2 hyperlinks – one pointing to the search results page (with a
predefined query related to the task), and the second pointing to
the post-task questionnaire. Participants were instructed to read
the task description, (attempt to) find the answer to the task, and
complete the post-task questionnaire.

To ensure that the tasks had similar levels of difficulty, two au-
thors of the paper verified that for each task, the corresponding
search results page (SERP) contained the answer in one of the
search result snippets, and the task could be solved by simply in-
specting the results. Thus, the tasks were fairly easy (required less
than a minute) and participants were instructed to spend not more
than three minutes per task. Upon finding the answer, participants
were asked to navigate back to the study home page by using the
“Back” button on the phone, and follow the second hyperlink to
complete the post-task questionnaire. On the post-task question-
naire page, participants were asked to rate their satisfaction with
the search results as a whole (single rating) on a 7 point likert scale
– 1 being completely dissatisfied and 7 being completely satisfied.
Note that the queries were predefined per task, and query reformu-
lation was not allowed.

For the first part of the study, we used a 2 x 2 within subject de-
sign with two factors: Relevance of the Knowledge Graph result to
the user’s information need, and Presence of the Knowledge Graph
result on the search page. Both factors have two levels: Relevance -

Figure 2: Top panel shows Tobii mobile stand including scene cam-
era, the eye tracker and a mobile phone placed at the device holder.
We used this setup to perform eye tracking in our user study. Bot-
tom panel illustrates post-processing step of mapping gaze from
scene camera coordinates to phone screen coordinates.

relevant or irrelevant, Presence - present or absent. Each participant
performed 20 search tasks (5 tasks per condition). The task presen-
tation order was randomized to eliminate any learning or task order
effects. In order to familiarize participants with the mobile device
and the study flow, each participant completed 4 practice tasks prior
to starting the study. After completing 20 tasks in the first study,
participants were given a 5 minute break before proceeding to the
second part of the study, which was similar, except that it focused
on Instant Answer results instead of Knowledge Graph results. In
second the part, IA was always present and we only varied the sin-
gle factor: IA Relevance. This enabled us to double the number of
tasks per condition (from 5 in KG to 10 in IA).

3.1 Participants
We recruited 30 participants with informed consent (12 male and

18 female) aged 18-65, with various occupations and self-reported
mobile search experience. Data from 6 participants was excluded
due to calibration problems with the eye tracker (missing fixations,
poor calibration accuracy). Most of the participants had normal or
corrected vision (e.g. contact lenses) and were able to read from
the mobile phone without wearing glasses.

3.2 Apparatus
We used the Tobii X60 eye tracker to record participant’s eye

gaze movements on the mobile phone. The eye tracker allowed
us to record eye gaze with a frequency of 60 Hz and accuracy of
0.5◦ of visual angle [27]. We used a Nexus 4 mobile phone run-
ning Android operating system as the mobile device. The Chrome
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Query Task Description
KG Relevant KG Not Relevant

university of cambridge What was the enrollment of the University of Cam-
bridge in 2012?

Find the rank of University of Cambridge in aca-
demic rankings.

golden gate bridge What is the length of the Golden Gate Bridge? Find information regarding tolling and transit
through the Golden Gate Bridge.

the avengers movie Who was director of the Avengers movie? Find a link to watch the Avengers movie trailer.
IA Relevant IA Not Relevant

sfo to atl price Find the ticket price of the Delta flight from San
Francisco (SFO) to Atlanta (ATL).

Find a website to compare different prices for flights
from San Francisco (SFO) to Atlanta (ATL).

aapl earnings What is the current stock price of Apple Inc.? Find Apple Inc. earnings in second quarter of 2013.
world cup 2014 When does the FIFA 2014 world cup start? Find a website to buy tickets for the FIFA 2014

world cup.

Table 1: Example task descriptions used in the user study.

browser was used to display the task description page and search
result pages. The phone was attached to Tobii’s mobile stand as
shown in the top panel of Figure 2. As part of the Tobii mobile
stand setup, the scene camera was configured to capture the video
of the mobile device during the study (sample screenshot shown in
bottom panel of Figure 2). The experiment began by calibrating eye
gaze of each participant using a five point calibration (four points
were shown in the corners of the phone screen and one point was
shown in the center). Unfortunately, Tobii X60 does not record eye
gaze in the phone’s coordinate system, which is required for de-
termining the exact result seen by the user, hence gaze data was
processed using the procedure described in Section 3.4.

3.3 Viewport Logging
To record the exact information that was displayed on the phone

screen at any given time, we instrumented custom viewport log-
ging. This allowed us to record the portion of the web page cur-
rently visible on the screen, as well as bounding boxes of all search
results shown on the page. Viewport logging was instrumented with
JavaScript and inserted into every SERP shown to the users. Our
script recorded bounding boxes of the search results, shortly after
the page was rendered in the browser, and logged viewport change
events such as scrolling and zooming. All the viewport events were
buffered and subsequently sent with an HTTP request to a user
study server where they were stored for subsequent analysis. Such
instrumentation allowed us to reconstruct what the user saw on the
screen at any point of time.

3.4 Gaze Data Post-Processing
As mentioned earlier, Tobii X60 captures gaze position in the

scene camera coordinate system instead of the phone coordinate
system2, which poses a challenge as quantitative analysis of atten-
tion on results requires gaze data to be in the phone coordinate
system. To this end, we designed a custom software to annotate
bounding boxes around the phone screen in Tobii’s scene video
of each participant, and to accurately map gaze from the scene to
phone coordinate system. The bottom panel in Figure 2 illustrates
the difference between scene and phone coordinate systems.

To perform the mapping, we chose two vectors along the phone’s
vertical and horizontal axes: vhoriz = v3 − v0 and vvert = v1 −
v0, where vi corresponds to a vertex of the phone screen bounding
box, as shown in Figure 2. The eye gaze position in the phone
coordinate system is given by vphone = (v − v0)A

−1 where A =
[vvert, vhoriz] is the coordinate change matrix. Finally, to get the
2A Tobii technical support specialist confirmed that Tobii x60 can-
not record gaze coordinates in the phone coordinate system.

actual eye gaze coordinates on the phone in pixels one needs to
scale vphone with phone’s screen size (378 x 567 px).

To associate eye gaze data with a particular page view recorded
in the viewport logs, we synchronized the eye tracker’s clock with
the clock used by the viewport logging on the phone. This allowed
us to map each gaze position to the corresponding search result
on the SERP by using the bounding boxes of all results on page
recorded in the viewport logs. The resulting mapping was accurate
enough to distinguish gaze position between two adjacent lines of
text, allowing even more fine grained analysis at sub-result level.

The raw eye gaze data was parsed to obtain a sequence of fixa-
tions (brief pauses in eye position for around 100-500ms) and sac-
cades (sudden jumps in eye position) using standard algorithms [7].
Eye fixations and their duration are thought to represent meaningful
information processing and can approximate attention [7]. Thus,
our subsequent analysis was performed using eye fixations.

4. RESULTS
We begin by analyzing the relationship between user behavior

metrics, derived from gaze, viewport and user actions, and the ex-
perimental conditions of our user study. Then, we present our find-
ings about user attention during search on mobile, including the
effect of result rank position and strong preference for the top half
of the screen. We conclude with presenting correlation analysis of
result viewing time measured with eye tracking and result display
time measured using viewport.

4.1 Effect of Answer Presence on Satisfaction
As search engines strive to provide answer-like results to users to

satisfy their information need instantly (without the need to click),
it becomes challenging to evaluate the effect of disturbing the origi-
nal ranked list (of clickable results) with a novel type of result (that
is often not clickable). In this section, we attempt to quantify how
user behavior and satisfaction are affected by injecting Knowledge
Graph (KG) (described in section 3) to the search results page. We
formulated the following hypothesis:

• H1: on average, users will be more satisfied when KG is
present than when it is absent.

To test this hypothesis, we performed a 2-way repeated mea-
sures ANOVA (within subjects design) and examined the effect of
KG presence on user’s satisfaction ratings. Consistent with H1, the
mean satisfaction ratings increased from 5.28 ± 0.09 when KG is
absent to 5.69±0.09 when KG is present (F(1,23)=13.35,p=0.001),
revealing a significant effect of KG presence on user satisfaction.
This shows that users are more satisfied when the answer-like result
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Metric KG Present KG Absent p-value 3

Relevant Not Relevant Relevant Not Relevant

Gaze

TimeOnKG (s) 0.64 ± 0.20 0.62 ± 0.09 p=0.067
% TimeOnKG 34 ± 5 39 ± 4 p=0.179

TimeBelowKG (s) 1.19 ± 0.32 0.73 ± 0.12 p=0.380
% TimeBelowKG 24 ± 4 28 ± 3 p=0.279

Viewport

TimeOnKG (s) 3.96 ± 0.42 5.38 ± 0.34 p<0.001
% TimeOnKG 25 ± 2 20 ± 1 p=0.029

TimeBelowKG (s) 11.28 ± 2.18 12.83 ± 1.26 p=0.001
% TimeBelowKG 16 ± 2 26 ± 2 p<0.001

Page

NumberOfScrolls 1.77 ± 0.28 3.32 ± 0.25 3.2 ± 0.33 2.52 ± 0.29 p=0.003
TimeOnPage (s) 5.37 ± 0.65 7.98 ± 0.47 9.80 ± 0.85 7.42 ± 0.65 p<0.001
TimeOnTask (s) 48.30 ± 30.06 163.82 ± 33.12 115.89 ± 39.31 64.13 ± 29.81 p<0.001

SatisfactionScore 6.03 ± 0.13 5.39 ± 0.13 5.0 ± 6.15 5.51 ± 0.11 p=0.002

Table 2: Gaze, Viewport and Page metrics summarized for each experiment condition (M ± SE).

(a) (b) (c) (d)

Figure 3: Average values of NumberOfScrolls, TimeOnTask, TimeOnPage and SatisfactionScore for four experimental conditions with error
bars indicating standard errors. Statistical significance of group pairwise comparisons is annotated using the following coding: NS - not
significant, * - p-value<0.05, ** - p-value<0.01, *** - p-value<0.001

is present. As expected, when KG is absent, we did not find any sta-
tistically significant differences in satisfaction between questions
used for KG relevant and KG irrelevant tasks, since they had simi-
lar difficulty levels(F(1,23)=3.578, p=0.07)).

4.2 Effect of Answer Relevance
Prior research in the desktop domain identified the relevance and

position of results as two major factors influencing user behavior in
search. In this section we investigate the effect of answer relevance
on user behavior, and Section 4.3 describes the effect of result po-
sition on the attention distribution on mobile phones. We focus on
KG- and IA- present conditions in order to identify useful behavior
metrics that can signal the relevance of answer-like results. To this
end we formulated four hypotheses:

• H2: when KG is present, users will be more satisfied when
it is relevant than when it is not.

• H3: users will take longer time to complete the task when
KG is irrelevant than when it is relevant.

• H4: users will reject irrelevant KG results sooner, i.e., spend
less time on irrelevant KG results.

• H5: users will scroll down further and spend more time in-
specting results below, when KG is irrelevant.

Table 2 summarizes gaze, viewport and page metrics computed
for the data collected in the KG part of the study. These metrics are
defined below.

Gaze metrics: TimeOnKG and TimeBelowKG report total fixa-
tion time spent (in seconds) viewing Knowledge Graph results;
%TimeOnKG and %TimeBelowKG report corresponding quantities
divided by time spent on all search result elements.
Viewport metrics: TimeOnKG and TimeBelowKG report the total
duration (in seconds) for which the Knowledge Graph result was
inside the user’s viewport (visible to the user); %TimeOnKG and
%TimeBelowKG viewport metrics report the corresponding quanti-
ties divided by the sum of viewport time of all result elements.
Page metrics: NumberOfScrolls reports number of times the user
scrolled down; TimeOnPage reports total time the user spent on
the search result page; TimeOnTask reports the time user spent on
completing the task (task end is determined by submission of the
task satisfaction rating); SatisfactionScore reports the user’s satis-
faction rating regarding search engine’s performance in the task.
For each of the metrics we performed a two-way with-subject de-
sign ANOVA for two factors related to Knowledge Graph result –
KG presence and KG relevance.

We start by analyzing the effect of answer relevance on these
metrics. Since answer relevance makes sense only when KG is
present, we focus on that condition (blue lines in Figures 3a-d).
Consistent with H2, we found that the users are more satisfied when
KG is relevant than irrelevant (6.03 ± 0.13 for relevant vs. 5.39 ±
0.13 for irrelevant, F(1,23)=14.47, p<0.001), suggesting that rele-
vant Knowledge Graph results significantly enhance user satisfac-
tion. Consistent with H3, when KG was relevant, users quickly
found the answer and completed the task faster, while when KG
was irrelevant, they spent more time on the page looking for the an-
swer. Thus, time on task increased significantly from 48.30±30.06
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(a) KG Relevant (b) KG Not Relevant

Figure 4: Attention heatmaps for KG Relevant and KG Not Rele-
vant conditions. This figure shows that on average, across all users
in the study, there is increased gaze activity below KG when it is
irrelevant than relevant.

to 163.33 ± 33.12 seconds (p<0.05), and time on page also in-
creased significantly from 5.37 ± 0.65 to 7.98 ± 0.47 seconds
(p<0.05). Consistent with H5, relevant KG results were associated
with less scrolling down the page (1.77 ± 0.28 vs. 3.32 ± 0.25;
p<0.05). Thus, in all cases we observe positive effect of KG results
on user experience.

As expected and as shown in the red lines in Figures 3a-d, when
KG is absent, there were no statistically significant differences be-
tween the KG relevant and irrelevant conditions.

To aid more in-depth analysis of metrics in our study (2x2 de-
sign), we performed post-hoc tests on pairwise comparisons be-
tween the conditions using a 1-way ANOVA with Bonferroni cor-
rection and annotated corresponding plots of Figure 3 with signif-
icance markers. Comparisons that are significantly different are
denoted by a “*” in Figure 3, and the rest are denoted by “NS” for
not significant.

We focus on Figure 3d here. As seen in Section 4.1 and con-
sistent with H1, users are significantly more satisfied when KG is
present than absent (F(1,23)=13.35, p=0.001). Interestingly, for
KG-irrelevant tasks, KG presence had no effect (F(1,23)=0.349,
p=0.56). This suggests that Knowledge Graph results do not harm
user satisfaction, even when they are not directly answering user’s
information need. We found a significant interaction effect between
KG presence and relevance (F(1,23)=12.41, p=0.001), as seen by
the intersecting lines on Figure 3d. Figures 3a-3c are similar to
Figure 3d, and show the number of scrolls, time on task and time
on page as a function of KG presence and relevance.

Metric IA Relevant IA Not Relevant p-value
Gaze
TimeOnIA (s) 0.55 ± 0.09 0.74 ± 0.11 p=0.812
% TimeOnIA 45 ± 5 38 ± 3 p=0.237
TimeBelowIA (s) 1.21 ± 0.23 1.41 ± 0.17 p=0.298
% TimeBelowIA 55 ± 5 62 ± 3 p=0.343
Viewport
TimeOnIA (s) 1.96 ± 0.24 3.64 ± 0.26 p<0.001
% TimeOnIA 11 ± 1 16 ± 1 p<0.001
TimeBelowIA (s) 11.74 ± 1.59 19.02 ± 1.30 p<0.001
% TimeBelowIA 32 ± 3 56 ± 2 p<0.001
NumberOfScrolls 1.33 ± 0.17 2.96 ± 0.20 p<0.001
NumberOfEvents 6.12 ± 0.39 9.93 ± 0.38 p<0.001
TimeOnPage (s) 3.89 ± 0.43 7.17 ± 0.41 p<0.001
TimeOnTask (s) 90.7 ± 1.65 102.82 ± 1.73 p<0.001
SatisfactionScore 6.25 ± 0.09 5.08 ± 0.11 p<0.001

Table 3: Summary of Gaze, Viewport and Page (M ± SE) for “IA
Relevant” and “IA Not Relevant” experiment conditions. Time re-
lated metrics are measured in seconds.

Unlike H4, we found that users spend more viewport time and
gaze time on KG results when they are irrelevant compared to the
relevant KG results. Viewport time increased from 3.96± 0.42 on
relevant KG results to 5.38±0.34 seconds on irrelevant KG results
(p<0.001); similar increase in % time on KG as reported in Table 2.
The latter fact seems counter-intuitive, as we would expect irrele-
vant answers to get rejected sooner, and relevant answers to receive
more attention. A plausible explanation is: since both relevant and
irrelevant KG results display information on entities related to the
query, users do not know that it is irrelevant to their task until they
have read it fully (e.g., for the task [find watchable cartoons of the
Simpsons], the user would see a KG result on the Simpsons entity,
showing images of the Simspons cartoon and names of characters).
Thus, expecting to find the answer in KG, users may read through
the entire KG result, and upon not finding the answer, they continue
to examine the remaining results below. We suspect for this reason,
irrelevant KG results in our study get more viewport and gaze time.

It is worth noting that increased attention on a result does not
necessarily mean it is more relevant (it may also indicate user diffi-
culty). This ambiguity was also found by Just and Carpenter [18].
We believe a stronger test of relevance is the user’s next action –
did the user scroll past the answer and spend more time examin-
ing results below? If so, it suggests that users were probably not
satisfied with the answer.

Consistent with H5, we found that irrelevant KG results were in-
deed associated with increased scrolling down the page (3.32±0.25
vs. 1.77 ± 0.28; p<0.05) and more time below KG in seconds
(12.83 ± 1.26 vs. 11.28 ± 2.18 seconds, p=0.01) and as a % of
page time (% time below KG for irrelevant KG results is 26±2 vs.
16±2 for relevant KG results, p<0.001). Similar patterns were ob-
served with eye gaze. Figure 4 illustrates this by showing heatmaps
of gaze activity comparing the KG relevant vs. KG irrelevant across
all users in the study. The red hotspots that received high atten-
tion are positioned near the Knowledge Graph results. Note the
increased gaze activity below irrelevant KG results on Figure 4b as
compared to relevant KG results on Figure 4a, suggesting that upon
looking at irrelevant KG results, since users did not find the answer,
they continued to inspect results below KG (unlike in the relevant
condition where upon looking at relevant KG results, users found
the answer and completed the task).
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Table 3 summarizes gaze, viewport and page metrics for the sec-
ond part of the study on Instant Answers (IA), which was designed
with a single factor IA Relevance making data analysis significantly
simpler. Most of the findings we discovered by comparing relevant
vs. irrelevant conditions in the KG part of study apply to IA results
as well. For example, consistent with H2, H3, H5 for KP, when IA
was relevant (vs. not), we found that users were significantly more
satisfied, completed the task sooner (less time on task and page),
scrolled less and spent less time below the answer.

Although gaze metrics lacked statistical significance, likely due
to the large variance in the data, they exhibited similar behavior as
the viewport metrics providing additional evidence for the validity
of viewport data for evaluation answer like results.

Finally, we verify that viewport metrics can be related to searcher’s
satisfaction. We restrict our analysis to the KG Present where
Knowledge Graph results were shown to the user (eliminating Ab-
sent condition where answer like viewport metrics are undefined).
The linear regression analysis reveals statistically significant ef-
fect of gaze metrics on the user satisfaction scores (gaze TimeBe-
lowKG F(2,138) = 7.55, p-value < 0.001 and viewport TimeBe-
lowKG F(2,138) = 42.18, p-value < 0.001). The results are almost
identical for Instant Answer data. This finding allows us to estab-
lish the relationship between viewport metrics and the user satis-
faction with answer-like results.

To summarize, we established that the time spent below an an-
swer result, measured using viewport data, can signal result rele-
vance and user satisfaction with the search. We confirm that amount
of scrolling is negatively correlated with user satisfaction, which is
consistent with previous findings in the desktop and mobile set-
tings. Finally, we found that relevance of Knowledge Graph results
and Instant Answers have similar effect on user behavior, as mea-
sured using gaze and viewport data.

4.3 Effect of Result Position
It is well known in search on desktops that the first result re-

ceives much higher portion of user attention and clickthrough rate
(CTR) than the second result, and in general, attention and CTR
decrease from top to bottom on the SERP. We tested whether a
similar phenomenon exists on mobile phones. We considered data
from the KG absent condition, so that the SERP consists of 10 or-
ganic clickable web results, which is the most commonly studied
scenario prior work on search on desktops. The left panels in figure
5 show viewport time on result in milliseconds (top-left panel) and
in % (bottom-left panel) as a function of result position (x axis).
A 1-way ANOVA shows a main effect of result position or rank
on time on result (F(9, 2660) = 64.57, p<0.001) suggesting that
position bias affects user attention on mobile phones too. While
for most positions the viewport time on result (in ms, %) decreases
with result position, we find a surprising bump at positions 2 and
3 (significantly higher % time on the second result than the first:
t(528)=-2.2, p=0.02; and higher % time on the third result than the
first: t(504)=-3.7, p<0.001). Authors verified that this is not a bug
and is indeed feature of the mobile data. One possible explanation
for the bump at position 2 and 3 is the presence of short scrolls on
mobile phones. Figure 6 illustrates this with an example – unlike
desktop where the page up down keys allow users to move from one
page fold to another non-overlapping page fold, in mobile phones,
users often tend to perform short scrolls that may render the second
or third result visible across more viewports and for longer time
than the first result. It is possible that for navigational tasks where

3For Page measures the p-values are computed using the repeated
measures ANOVA; for Viewport and Gaze measures Wilcoxon
rank sum test is used.

Figure 5: This figure shows how viewport time (left panels) and
gaze time (right panels) vary with result position. Top-left panel
shows viewport time in ms, and the bottom-left panel shows view-
port time as a fraction of time on all results on that page. The right
panels show similar plots for eye gaze.

users mostly click the first result (e.g., twitter), since scrolling is
unlikely, we may observe that viewport time decreases with posi-
tion. This remains to be tested in a future study.

An obvious question is whether the bump at position 2 or 3 is an
artifact of viewport data, or is a real attention phenomenon that oc-
curs with eye gaze too. The right panels in figure 5 show gaze time
on each result in milliseconds (top-right panel) and in % (bottom-
right panel) as a function of result position (x axis). Similar to
viewport, we find a main effect of result position or rank on time
on result (F(9, 1720) = 15.1, p<0.001) and a bump at position 2 (%
time on result is significantly higher for second result than the first:
t(343)=-2.3, p=0.02). We believe this may be a function of scrolling
too – due to the small screen size in phones, the second result may
only be partially visible; in order to bring it fully into view, the user
has to adjust the scroll distance by continuing to look at the second
result until it its bottom portion comes into view.

This finding of non-monotonic attention decay with rank posi-
tion may have implications for results ranking and design of a novel
discount function (as opposed to MAP or NDCG[16]) that better re-
flects user experience in mobile search. We plan to investigate this
question in the future work.

4.4 Attention Distribution on the Screen
Figure 7 shows the attention distribution across all users and con-

ditions in our study. The left panel shows a heatmap of gaze activity
(note that the red hotspots of increased attention are clearly shifted
to the top half of the screen). The right panel shows a distribution
of eye fixations as a function of y position. The median fixated y
position was 224 pixels which is above the screen center (290 pix-
els). Thus, we found that on average, almost 70 % of the users’
attention was focused on the top half of the phone screen, with lit-
tle or no attention paid to the bottom 1/3 portion of the screen (only
14%). This trend was consistent on a per user basis (20/24 users
showed the preference for top half of the screen). We hypothesize
that weighting viewport measurements by this attention distribution
may further improve gaze viewport correlations.

5. GAZE AND VIEWPORT CORRELATION
We have already shown in the previous section that viewport

metrics can signal relevance of answer like results and reflect user’s
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Figure 6: This figure shows that in the presence of short scrolls, the
second/third result may be visible across several viewports and for
longer compared to the first result.

Figure 7: Heatmap of where users spent more time looking on the
phone is shown on the left (hotspots of attention in red, cool spots
indicate lack of attention). Note that the attention distribution ap-
pears shifted to the top half of the phone screen. Distribution of
fixations along the vertical is shown on the right panel.

satisfaction with the search. In this section we investigate whether
viewport data can serve for an additional benefit – tracking user
attention. To this end, we attempt to correlate result viewing time
measured with the eye tracking and viewport data. If a reason-
ably strong correlation between gaze and viewport time exists, it
implies that we can measure user attention at scale from viewport
data alone.

We analyze viewing time on per-result basis. We gather all the
data collected in the user study independent of experimental con-
dition, relevance, result position and result type (traditional web
results vs. answer-like results). We hypothesize that viewport time
alone might provide a poor proxy for the user’s attention, thus, in
order to refine our measurements we account for two factors: result
coverage and exposure defined below. Let v denote the viewport.
We explore different ways of computing viewport time on result as
a combination of the time the result was visible on the viewport (tv)
and two factors: how much of the result area was visible to a user
(result exposure, ev) and how much of the viewport real estate did
the result occupy (viewport coverage, cv). Total viewport time on
result using all factors is computed as

∑n
v=1(tv ∗ cv ∗ ev), where

v can take values from [1, n] (n is the number of viewports).

Figure 8: This figure shows fairly strong gaze viewport correla-
tions. In each panel, the x axis is a gaze measure, and the y axis is
the corresponding viewport measure. Left panels show time mea-
sures in milliseconds, while right panels show time measures as a
% of time on all results on that page.

Table 4 reports the gaze-viewport correlations for combinations
of the above factors. We denote the baseline approach computing
viewport time =

∑n
v=1 tv as C1. We find that the best combina-

tion among C1-C4 is C4 (C2 is close), which is weighted by result
exposure and viewport coverage. The scatter plots in Figure 8 are
generated using C4.

Figure 8 (top-left panel) shows the scatter plot of viewport time
on result vs. gaze time on result, both measured in milliseconds.
Each data point in the scatter plot is a (user, query, condition, result)
tuple. The correlations are reasonably strong (Pearson’s correlation
r=0.57; the blue line shows the metric values obtained by binning
the data into deciles, binned r = 0.77). Figure 8 (top-right panel) is
similar, but shows a scatter plot of percent time on result (time on
result / time on page) as measured by gaze (x axis) and viewport (y
axis). Interestingly, we found higher correlations using % time on
result than absolute time on result in milliseconds (raw correlation:
r = 0.69 vs. 0.57; binned correlation: r = 0.97 vs. 0.77). We
suspect that the normalization (by time on all results on the page)
helps adjust for the pace at which users read the page. For example,
some users may quickly glance and skim through the results, while
others may read carefully. In such cases, the absolute time measure
will vary a lot while the percent time measure may be relatively
stable.

Since 3-4 results may be shown on the viewport simultaneously,
the observed gaze-viewport correlation on a per-result basis (raw
correlation of 0.69, binned correlation in deciles of 0.97) is high
and suggests that we may reliably infer how long a specific result
was seen by the eye, from the viewport data alone.

The middle and bottom panels in Figure 8 are similar to the top
panel, and show gaze viewport correlations for other measures,
such as time spent below KG (mid-left panel) and percent time
spent below KG (i.e., time below KG / time on all results on the
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Formula weight by
coverage

weight by
exposure

time on ele-
ment (ms)

%time on
result

time below
KG (ms)

% time be-
low KG

time below
IA (ms)

% time be-
low IA

C1 no no 0.55 0.6 0.71 0.84 0.58 0.79
C2 yes no 0.57 0.69 0.71 0.86 0.59 0.79
C3 no yes 0.53 0.63 0.56 0.82 0.57 0.79
C4 yes yes 0.57 0.69 0.71 0.86 0.59 0.81

Table 4: Correlations between gaze and viewport times with viewport time computed in one of four possible ways.

page, mid-right panel) measured using gaze (x axis) and viewport
(y axis). Here too, we find strong gaze viewport correlations, and
again, the % time measures show higher correlations than time in
millisecond measures (time below KG: r = 0.71, %time below KG:
r = 0.86). The bottom panel in Figure 8 shows correlations for time
below IA (r = 0.59) and % time below IA (r = 0.81). In all three
figures, we find that the percent time measures, that are normalized
by time on page, show higher gaze-viewport correlations than time
in millisecond measures, for reasons discussed earlier.

6. DISCUSSION
To our knowledge, this is the first quantitative mobile eye track-

ing study in search. As more traffic goes mobile, there is a need to
better understand user attention and satisfaction on mobile devices.
Prior work has focused on search behavior in desktops. These stud-
ies report a Golden Triangle [23], where searcher attention is fo-
cused near the top-left of the page and decreases as we go down or
to the right on the SERP. It is not clear whether attention behavior
on desktop will generalize to mobile phones, as they differ from
desktops in several ways – small real estate, variety of touch inter-
actions (touch, scroll, swipe, zoom) and tendency to perform short
queries. In this study, we found that indeed, user attention behavior
on mobile phones is very different from that on desktops.

First, unlike desktop where engagement (both clicks and atten-
tion) has been widely reported to decrease from top to bottom po-
sitions [9, 10], on mobile phones, we found surprisingly, that the
second result gets more viewport and gaze time than the first. The
most likely explanation for this is short scrolls. Unlike desktop
where searchers can use the page up/down keys on the keyboard to
move from one page fold to the next (no overlap between the results
in different page folds), on mobile phones, users tend to perform
short and continuous scrolls that render the second and third results
visible across more viewports and hence longer than the first. Fig-
ure 6 illustrates this with an example. This bias towards the second
position occurs in eye gaze too. We think this is because the second
result is often partially hidden, and to bring it fully into view, the
user has to carefully scroll (to avoid scrolling too much or too little)
by continuously looking at the result until it is fully visible, leading
to longer gaze time on the second result than the first.

It is possible that in the absence of scrolling, viewport and gaze
time on results (in mobile phones) may decrease with position, sim-
ilar to desktop. For example, navigational tasks ("BBC") where
the user often clicks the first result, may not require scrolling, and
may show higher viewport time on the first than second result. In
our study, however, all tasks were non-navigational, and often in-
volved scrolling. An intriguing question that immediately follows
is, whether there is a more appropriate evaluation metric or rank po-
sition discount that better reflects user experience on mobile phones
than current evaluation metrics, such as mean average precision or
discounted cumulative gain.

The second finding which is different on mobile phones than
desktop is that, unlike the Golden Triangle in desktop, where at-
tention is focused on the top-left and decreases towards the bottom

and right of the search result page, in our study on mobile phones,
we found that on average, user attention is focused on the center
and top half of the screen. This, together with the already strong
gaze viewport correlations (r=0.7 for %time on a page element as
shown in Fig 8) suggests that by using the appropriate weighting
functions on viewport data, we may identify which result the user
is looking at, with high confidence. In other words, this offers an
opportunity, for the first time, to scalably and reliably measure user
attention on mobile phones. Another possible direction for improv-
ing accuracy of user attention measurements is to follow the work
Huang et al. [14] and Navalpakkam et al. [24] that advocate to
directly predict user attention on the screen from user interactions.
While the absence of cursor movements in mobile phones makes
attention prediction more difficult, we hypothesize that features of
smaller screen size and the time user spends in the viewport with-
out scrolling can be used to improve the accuracy of the “vanilla”
approach that uses viewport time information only.

In addition to understanding searcher attention on mobile phones,
we examined search satisfaction and its effect on viewport data.
We systematically varied task-relevance (whether the KG/IA con-
tained the answer to the user’s task), and found that users reported
less satisfied when the KG/IA was task-irrelevant than when it was
relevant. We also identified viewport metrics that signal user dis-
satisfaction with answers – increased scrolling down the SERP and
increased % time below the answer. We found that when the KG/IA
is task-irrelevant, users read through it (expecting to find the an-
swer) and upon not finding the answer, they continued to examine
results below, leading to increased scrolling down the page, and
increased time below KG/IA (in milliseconds, and as a % of page
time). These results suggest that we may auto-detect answer satis-
faction at scale by using viewport signals.

6.1 Limitations and Future Work
We acknowledge several limitations of this study. First, we fo-

cused on tasks with information seeking search intent and have not
explored navigational search intent [3]. In our data we observed
2.51 viewport scrolls performed on average. We expect the amount
scrolling activity to be smaller for navigational searches, as often
the first result is the destination site (e.g. queries like “BBC” or
"Twitter"). In the absence of scrolling, we may find that attention
strictly decreases with result position (unlike the bump at position
2 observed in this study).

Second, in this study, we fixed the mobile phone’s position by
mounting it to the eye tracker’s stand. In real life, user’s atten-
tion on the phone can vary depending on whether s/he is moving
or not; whether the user is right handed or left handed or, perhaps
interacting with the phone with both hands. Other factors such as
demographics can also influence user behavior. For example, de-
pending on the user’s language s/he may read information on the
phone from left to right or vice-versa. Age and experience with
touch interfaces is widely recognized throughout research commu-
nity as an important factor in touch interactions, thus can affect user
attention/search behavior.
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Third, examination habits on the mobile device may vary across
users, as noted by [2]. While Figure 7 already shows a clear pattern
- most users prefer focusing on the top half of the phone screen,
it is possible that a few users may prefer the center or bottom of
the screen. In our future work we plan to address this limitation
by exploring the possibility of adaptively weighting user attention
based on current user actions, e.g. direction of page examination
(upward or downward).

Despite these limitations, our study offers the hope of accurately
measuring user eye-fixated result at scale on mobile phones. Future
work will consider tablets (this study focused on mobile phones)
and other devices, satisfaction with clickable results (including ads),
and explore diverse user settings such as users who are moving or
multi-tasking.

7. CONCLUSION
We demonstrated, for the first time, that by tracking the browser

viewport (visible portion of the page), one can develop viewport
metrics that are strongly correlated with user attention (eye gaze)
and search satisfaction on mobile phones. Focusing on answer-like
results, in a controlled lab study, we found that increased scrolling
past answer and increased time below answer can signal user dis-
satisfaction with answer results. We demonstrated strong gaze-
viewport correlations on a per-result basis, and found that attention
(on average) is focused on the top half of the phone, suggesting that
we may infer the amount of attention received by a specific result
(of 3-4 results shown in the viewport) scalably and reliably using
viewport data alone. Potential applications of this work include
better estimation of result relevance and satisfaction in search, and
could benefit other areas including advertising, web page design
and optimization, and measuring engagement in social networking
sites.
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