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The ad hoc retrieval task is to find documents in a corpus that are relevant to a query. Inspired by
the PageRank and HITS (hubs and authorities) algorithms for Web search, we propose a structural
reranking approach to ad-hoc retrieval that applies to settings with no hyperlink information. We
reorder the documents in an initially retrieved set by exploiting implicit asymmetric relationships
among them. We consider generation links, which indicate that the language model induced from
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merits of our language-model-based method for inducing interdocument links by comparing it to
previously suggested notions of interdocument similarities (e.g., cosines within the vector-space
model). We also show that our methods for inducing centrality are substantially more effective than
approaches based on document-specific characteristics, several of which are novel to this study.
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1. INTRODUCTION

One of the most basic tasks in the field of text-based information retrieval (IR) is
ad-hoc retrieval: given a query, automatically find the most relevant documents
in a specified corpus. Information retrieval systems capable of achieving high
precision at the top ranks of the returned results would be of obvious benefit
to human users. Furthermore, for automated systems that are based on ad-hoc
retrieval as an intermediate step (e.g., question-answering systems [Voorhees
2002]), high precision at top ranks is also very important.

Crafting retrieval systems capable of obtaining high precision at top ranks
remains a key research challenge, but utilizing extra nontextual information
can help. Here, we consider links between documents, since they convey po-
tentially useful information about corpus structure (e.g., hyperlink structure
in Web settings helps to determine which Web pages are authoritative [Brin
and Page 1998; Kleinberg 1999]), and can help us to develop a corpus-based
retrieval method that does not depend on external sources (e.g., semantic net-
works [Voorhees 1993; Shah and Croft 2004]) or user feedback [Ruthven and
Lalmas 2003].

As just mentioned, in the Web setting, the PageRank algorithm [Brin and
Page 1998] uses explicitly-indicated interdocument relationships to compute
which documents are the most central. Here, we consider adapting this idea to
corpora in which such explicit links among documents do not exist.

How should we form links in a nonhypertext setting? While previous work
in text summarization [Erkan and Radev 2004] and document reranking
[Daniłowicz and Baliński 2000; Diaz 2005] utilized cosine-based links induced
for pairs of textual items, we draw on research demonstrating the success of us-
ing statistical language models (described more fully in Section 3.4) to improve
IR performance in general [Ponte and Croft 1998; Croft and Lafferty 2003] and
to model interdocument relationships in particular [Kurland and Lee 2004;
Liu and Croft 2004; Kurland et al. 2005]. We employ generation links, which
are based on the probability assigned by the language model induced from
one document to the term sequence comprising another.1 We thus combine the
strengths of two approaches; one is based on language models used both to
model textual information within documents and to inferring links between
them, and the other induces centrality based on the inferred links.

We note that the analogy between hyperlinks and generation links is not
perfect. In particular, one can attribute much of the success of link-based
Web-search algorithms to the fact that hyperlinks are often human-provided

1While the term, generate, is convenient, we do not think of a generator document or language
model as literally creating others. That is, we do not assume an underlying generative model,
in contrast to Lavrenko and Croft [2003] and Lavrenko [2004], inter alia. Other work further
discusses this issue and proposes alternate terminology (e.g., render) [Kurland et al. 2005].
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certifications that two pages are truly related [Kleinberg 1999]. In contrast,
automatically-induced generation links are surely a noisier source of informa-
tion. To compensate, we advocate an approach (used elsewhere as well [Willett
1985; Hearst and Pedersen 1996; Kleinberg 1999; Leuski 2001; Daniłowicz
and Baliński 2000; Tombros et al. 2002; Liu and Croft 2004; Baliński and
Daniłowicz 2005; Diaz 2005]) that we term structural reranking: we use
interdocument relationships to compute an ordering not of the entire corpus,
but of a possibly unranked set of documents produced by an initial retrieval
method. This set should provide a reasonable ratio of relevant to nonrelevant
documents, and thus form a good foundation for our algorithms. Note that
our approach differs in spirit from pseudo-feedback-based methods [Buckley
et al. 1994; Ruthven and Lalmas 2003], which define a model based on the
initially retrieved documents expressly in order to rerank the entire corpus.
Indeed, since the quality of the initially retrieved results plays a major role in
determining the effectiveness of pseudo-feedback-based algorithms [Tao and
Zhai 2006], our methods can potentially serve to greatly enhance the input to
them.

To compute centrality values for a given generation graph, we propose a num-
ber of methods, including variants of PageRank [Brin and Page 1998]. Through
an array of experiments, conducted on various TREC datasets [Voorhees and
Harman 2005], we show that centrality, as induced by graph-based methods
over our generation graphs, and relevance, are connected. In addition, com-
parisons against numerous baselines show that language-model-based rerank-
ing using centrality as a form of document prior is indeed successful at mov-
ing relevant documents in the initial retrieval results higher up in the list;
the resultant (precision at top ranks) performance is comparable, and often
superior, to that of a state-of-the-art pseudo-feedback-based query-expansion
method.

Using an additional array of experiments, we study the effect on performance
of different properties of the initial list upon which reranking is performed.
We then explore an alternative framework for graph formation that is based
on a vector-space representation and corresponding similarity measures. In
addition, we show that our centrality measures are superior to measures based
on document-specific characteristics, several of which are novel to this study.

2. PRELIMINARY DISCUSSION

We start by informally introducing two important notions, document central-
ity and language models, that will be used throughout Section 3 wherein we
present our graph-based methods more formally.

2.1 Document Centrality

In Web retrieval, to determine whether a Web page is a good candidate for
answering the information need underlying a user’s request, two types of mea-
sures (among others) are often used. The first is textual relevance—the extent
to which a document’s content seems to pertain to the user’s request. The sec-
ond is the centrality of the document (a.k.a. authoritativeness), which is usually
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estimated using the graph structure of the Web as determined by the hyperlink
structure.

Here, we pursue the task of reranking an initial list of documents that was
retrieved in response to a query utilizing only the documents’ content (and some
vocabulary statistics), that is, we assume no hyperlink structure. Our goal is
to investigate whether some notion of centrality of documents with respect to
the initial list could help in identifying relevant documents.

While on the Web centrality induction is often guided by a hyper-link-induced
graph structure (e.g. Brin and Page [1998] and Kleinberg [1999]), and so is the
state of affairs in bibliometrics [Garfield 1972; Pinski and Narin 1976], where
citations serve as the basis for edges in the citation-graph, it might not be clear
at first glance what it means for a document to be central with respect to some
document list where no apparent graph structure exists.

We propose to adopt Web-based approaches for centrality induction using a
graph defined from the initial document list. We determine links by the textual
similarity between documents. Given the constructed graph, centrality defi-
nitions such as: “a document is central to the extent that it gets support for
centrality from other textually similar central documents” are relatively easy
to quantify using graph-based methods. We discuss this centrality definition
and others in depth in Section 3. But, while the constructed graph provides con-
venient technical grounds for inducing centrality in graph terms, an important
question is the connection between centrality induced from interdocument-
similarity information and relevance.

To address this question we first note that the notion of centrality in an
initially retrieved list has already been considered in the past, although it was
not usually termed as such, nor were documents the items for which central-
ity was induced. In pseudo-feedback-based query expansion methods [Buckley
et al. 1994], for example, the initially retrieved list is used for deriving a query
model with which a reranking of the entire corpus is performed. Some of these
methods, such as Rocchio’s method [Rocchio 1971] and the relevance model
approach [Lavrenko and Croft 2001] use the center of the document list (given
some representation and similarity metric) to define a new query model; such
a center does not have to be a document in the list, and usually it is indeed
not. Other query expansion methods, (e.g., Xu and Croft [1996], Lafferty and
Zhai [2001], and Zhai and Lafferty [2001a]), seek central terms in documents
in the list, that is, terms that appear in many documents with relatively high
weight according to some representation. The common line of reasoning among
all these methods is that some notion of centrality with respect to the initial list
can help to devise a better representation of the information-need underlying
the original query, as the documents in the list were retrieved in response to
the query.

Along these lines we hypothesize that central documents that are similar to
many other central documents in the list can be considered as good representa-
tives of the query. Thus, identification of such documents can lead to the design
of effective reranking approaches of the list, as we will show in this article.

To better understand how centrality might be connected with relevance, we
first point out that central documents contain terms from many other central
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documents in the list and therefore might comprise a good representation of the
underlying information need, by virtue of the way the initial list was created.
Still, it could be the case that a rather general document that uses many terms
that appear in many other documents, is not relevant to the query; we address
this issue in Section 3 by considering the query-similarity of a document on top
of its centrality status.

Another insight about the connection between centrality and relevance in
the initial list can be drawn from the cluster hypothesis [van Rijsbergen 1979].
Indeed, the premise that relevant documents in the list tend to be more similar
to each other than to nonrelevant documents, and that they are more similar
to each other than nonrelevant documents are to each other, was validated
in several studies (e.g. Leuski and Allan [1998]).2 Thus, we hypothesize that
relevant documents will tend to provide centrality support to each other, while
nonrelevant documents will spread this support between relevant and nonrel-
evant documents. Consequently, if there are a reasonable number of relevant
documents in the initial list, they will potentially draw the most centrality-
support. We present experimental results that support this hypothesis to some
degree in Section 5.2.

2.2 Language Models

Statistical language models play an important role in our graph-construction
methods. To briefly review the core underlying principle of language-model es-
timation, consider the following example. (We present in depth our language-
model induction techniques in Section 3.4.) Suppose we are given a toy doc-
ument “hello world hello world morning,” and a span of text “hello world.”
If we assume term-independence (a.k.a. a bag-of-terms representation), then
we could say, under some assumptions and conditions, that the probability as-
signed to the text span by a language model induced from the document is 2

5 × 2
5 ,

as the relative frequency of the terms “hello” and “world” in the document is 2
5 .

Often, we will use language-model jargon and say that the probability that the
text span was generated from a language model induced from the document is
2
5 × 2

5 .
Naturally, if the text span contains a term not appearing in the document

from which a language model is induced, the resultant assigned probability
will be zero. To address this issue, language models are smoothed using general
corpus term-statistics. Furthermore, we can see that long spans of texts will be
assigned, in general, smaller probabilities than shorter text spans. We address
these issues in Section 3.4.

3. STRUCTURAL RERANKING

Throughout this section, we assume that the following have been fixed: the
corpus C (in which each document has been assigned a unique alphanumeric
ID); the query q (composed of a list of terms); the set Dinit ⊆ C of top documents

2The cluster hypothesis [van Rijsbergen 1979] was originally formulated for the entire corpus,
rather than for an initially retrieved list.
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Fig. 1. Intuition behind using language models to induce link information. Assuming unsmoothed
unigram language models, pd1 (d2) = pd1 (“Salvador”)3 = (1/3)3, which is larger than pd2 (d1) = 0
(due to “Sheffield” and “Toronto” not appearing in d2). Therefore, the support for centrality being
transferred from d2 to d1 given that d2 is relevant (thick arrow) is much stronger than the support
transferred from d1 to d2 (thin arrow) given that d1 is relevant. This conforms to the intuition that
knowing that d2 is important (central or relevant) would provide strong evidence that d1 is at least
somewhat important, because d2’s importance must stem from the term “Salvador,” which also
appears in d1. However, knowing that d1 is very important does not allow us to conclude that d2 is,
since the importance of d1 might stem from its first two terms.

returned by some initial retrieval algorithm in response to q (this is the set
upon which reranking is performed); and the value of an ancestry parameter,
α, that pertains to our graph-construction process.

For each document, d ∈ C, pd(·) denotes the smoothed unigram language
model induced from d (estimation details appear in Section 3.4). We use g and
o to distinguish between a document treated as a generator and a document
treated as offspring, that is, something that is generated (details follow).

We use the notation (V,w t) for weighted directed graphs. V is the set of
vertices; and w t : V × V → {y ∈ � : y ≥ 0} is the edge-weight function. Thus,
there is a directed edge between every ordered pair of vertices, but w t may
assign zero weight to some edges. We write w t(v1 → v2) to denote the value of
w t on edge (v1, v2).

3.1 Generation Graphs

Our use of language models to form links can be motivated by considering the
following two documents:

d1: Toronto Sheffield Salvador
d2: Salvador Salvador Salvador.

Knowing that d2 is important (central or relevant) would provide strong
evidence that d1 is at least somewhat important, because d2’s importance must
stem from the term Salvador, which also appears in d1. However, knowing that
d1 is very important does not allow us to conclude that d2 is, since the importance
of d1 might stem from its first two terms. Using language models induced
from documents enables us to capture this asymmetry in how centrality is
propagated. We allow a document d to receive support for centrality status
from a document o only to the extent that pd(o) is relatively large. If o is not
in fact important, the support it provides may not be significant. Indeed, as
shown in Figure 1, if for simplicity’s sake we induce two unsmoothed unigram
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language models, pd1 (·) and pd2 (·), from d1 and d2 respectively, we get that
pd1 (d2) = pd1 (“Salvador”)3 = (1/3)3 is larger than pd2 (d1) = 0 (due to “Sheffield”
and “Toronto” not appearing in d2). Therefore, the link induced between d2

and d1 should have higher weight than the opposite link, indicating that d2

transfers more centrality status to d1 than the other way around.3 Note that
ranking documents by pd(q), as first proposed by Ponte and Croft [1998], can be
considered a variation of our proposed principle: given that a query is central
(relevant), rank documents by the support for centrality status that they receive
from the query, as captured by pd (q).

We are thus led to the following definitions.

Definition 1. The top α generators of a document d ∈ Dinit, denoted
TopGen(d), is the set of α documents g ∈ Dinit − {d} that yield the highest
pg(d), where ties are broken by document ID. (We suppress α in our notation
for clarity.)

Definition 2. The offspring of a document d ∈ Dinit are those documents for
which d is a top generator, that is, the set {o ∈ Dinit : d ∈ TopGen(o)}.

Note that multiple documents can share offspring, and that it is possible for a
document to have no offspring.

We can encode top-generation relationships using either of two generation
graphs, GU = (Dinit,w tU) and GW = (Dinit,w tW), where for o, g ∈ Dinit,

w tU(o → g) =
{

1 if g ∈ TopGen(o),
0 otherwise;

w tW(o → g) =
{

pg(o) if g ∈ TopGen(o),
0 otherwise.

Thus, in both graphs, positive-weight edges lead only from offspring to their
respective top α generators; but GU treats edges to the top generators of o
uniformly, whereas GW differentially weights them by the probability their
induced language models assign to o.

Several of our algorithms (namely, the direct variants of PageRank) rely
on the assumption that the graph satisfies certain connectivity properties
with respect to those edges with non-zero weight and that for each o ∈ Dinit,∑

g∈Dinit
w t(o → g) = 1, holds. Since GU and GW do not satisfy these assump-

tions, we define smoothed versions of them in which all edges, including self-
loops have non-zero weight. To be specific, we employ PageRank’s [Brin and
Page 1998] smoothing technique.

Definition 3. Given an edge-weighted directed graph G = (Dinit,w t) and
smoothing parameter λ ∈ [0, 1), the smoothed graph G[λ] = (Dinit,w t[λ]) has

3The inequality pd1 (d2) > pd2 (d1) also holds if smoothed language models are utilized. As noted,
our actual method for language-model induction does involve smoothing (details in Section 3.4).
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edge weights defined as follows: for every o, g ∈ Dinit,

w t[λ](o → g) = λ · 1
|Dinit| + (1 − λ) · w t(o → g)∑

g′∈Dinit
w t(o → g′)

.

Note that the definition is valid (
∑

g′∈Dinit
w t(o → g′) 	= 0), since each docu-

ment is assigned non-zero generation probability by all documents in Dinit as
a result of applying smoothed language models (details in Section 3.4). Fur-
thermore, it is easy to see that

∑
g′∈Dinit

w t[λ](o → g′) = 1, and thus the weights
of all edges leading out of any given node in G[λ] may be treated as transition
probabilities.

With these concepts in hand, we can now phrase our centrality-
determination task as follows: given a generation graph, compute for each
node (document) how much centrality is transferred to it from other nodes.
By our edge-weight definitions, centrality therefore corresponds to the degree
to which a document is responsible for “generating” (perhaps indirectly) the
other documents in the initially retrieved set. We now consider different ways
to formalize this notion of transferrence of centrality.4

3.2 Computing Graph Centrality

A straightforward way to define the centrality of a document d with respect to
a given graph G = (Dinit,w t) is to set it to d’s weighted in-degree, which we call
its influx:

C enI(d; G)
def=

∑
o∈Dinit

w t(o → d). (1)

The Uniform Influx algorithm sets G = GU, so that the only thing that matters
is how many offspring d has; it is thus reminiscent of the journal impact factor
function from bibliometrics [Garfield 1972], which computes normalized counts
of explicit citation links. The Weighted Influx algorithm sets G = GW, so that
the generation probabilities that d assigns to its offspring are factored in as
well.

As previously noted by Pinski and Narin [1976] in their work on influence
weights, one intuition not accounted for by weighted in-degree methods is that
a document with even a great many offspring should not be considered central
(or relevant) if those offspring are themselves very non-central. We can easily
modify Equation (1) to model this intuition; we simply scale the evidence from
a particular offspring document by that offspring’s centrality, thus arriving at
the following recursive equation.

CenRI(d; G)
def=

∑
o∈Dinit

w t(o → d) · CenRI(o; G), (2)

where we also require that
∑

d∈Dinit
CenRI(d; G) = 1. Unfortunately, for arbitrary

GU and GW, Equation 2 may not have a unique solution or even any solution at

4We present the merits of this framework with respect to an alternative in which one seeks docu-
ments that are central offspring generated either directly or indirectly by many other documents
in Dinit, in Section 5.2.2.4.
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all under the normalization constraint just given; however, a unique solution
is guaranteed to exist for their PageRank-smoothed versions, since in such
graphs, the edge weights correspond to the transition probabilities for a Markov
chain that is aperiodic and irreducible, and hence has a unique stationary
distribution [Grimmett and Stirzaker 2001] that can be computed by a variety
of means [Grassmann et al. 1985; Stewart 1994; Golub and Van Loan 1996]. In
our experiments, power iteration converged very quickly.

By analogy with these two influx algorithms then, we have the Recursive
Uniform Influx algorithm, which sets G = G[λ]

U and is a direct analog of Page-
Rank [Brin and Page 1998], and the Recursive Weighted Influx algorithm, which
sets G = G[λ]

W .

3.3 Incorporating Initial Scores

The centrality scores we presented can be used in isolation as criteria by which
to rank the documents in Dinit. However, if available, it might be useful to
incorporate more information from the initial retrieval engine to help handle
cases where centrality and relevance are not strongly correlated. (Recall that
the initial retrieval engine participates in any case by specifying the set Dinit.)
In our experiments, we explore one concrete instantiation of this approach:
we apply language-model-based retrieval [Ponte and Croft 1998; Croft and
Lafferty 2003] to determine Dinit, and consider the following family of reranking
criteria:

C en(d; G) · pd(q), (3)

where d ∈ Dinit, C en is one of the centrality functions defined in the previous
section, and pd(q) is the score that the initial retrieval engine assigns to d.
This gives rise to the algorithms Uniform Influx + LM, Weighted Influx + LM,
Recursive Uniform Influx + LM, and Recursive Weighted Influx + LM.

Incidentally, our choosing pd(q) as the initial score function has the interest-
ing consequence that it suggests interpreting C en(d; G) as a document prior—in
fact, Lafferty and Zhai [2001] write, “with hypertext, [a document prior] might
be the distribution calculated using the ‘PageRank’ scheme.” We will return to
this idea later.

3.4 Estimating Generation Probabilities: Length and Entropy Effects

Generation probabilities form the basis for the graphs on which our algo-
rithms are defined. This section describes our method for estimating these
probabilities.

Let tf(w ∈ x) denote the term frequency, or number of times the term w occurs
in the text or text collection, x. What is often called the maximum-likelihood
estimate (MLE) of w with respect to x is defined as:

p̃ MLE
x (w)

def= tf (w ∈ x)∑
w′ tf(w′ ∈ x)

.
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Some prior work in language-model-based retrieval [Zhai and Lafferty 2001b]
employs a Dirichlet-smoothed version:

p̃ [μ]
x (w)

def= tf (w ∈ x) + μ · p̃ MLE
C (w)∑

w′ tf(w′ ∈ x) + μ
;

the smoothing parameter μ controls the degree of reliance on relative frequen-
cies in the corpus rather than on the counts in x. Note that smoothing helps to
avoid the zero probability problem, namely, the assignment of zero probability
to unseen terms (see Zhai and Lafferty [2001b] and Zhai and Lafferty [2002]
for more details on smoothing language models for information retrieval). Both
estimates just described are typically extended to distributions over term se-
quences by assuming that terms are independent: for an n-term text sequence
w1w2 · · · wn,

pMLE
x (w1w2 · · ·wn)

def=
n∏

j=1

p̃ MLE
x (w j);

p[μ]
x (w1w2 · · ·wn)

def=
n∏

j=1

p̃ [μ]
x (w j).

While in previous work on language models for information retrieval, this
Dirichlet-smoothed estimate has been used to assign generation probability
to a single query [Croft and Lafferty 2003], using it to estimate generation
probabilities when constructing our graphs will have two detrimental effects.
First, documents are generally substantially longer than queries, and long
term sequences are assigned very low probabilities by bag-of-words models
(models assuming term-independence), which leads to numerical (underflow)
problems [Lavrenko et al. 2002]. A related issue is that a length bias occurs:
longer documents will have lower weights on their outgoing edges than shorter
documents.

We adopt another estimation approach, which incorporates the Kullback-
Leibler (KL) divergence D between document language models [Kurland and
Lee 2004; Kurland et al. 2005]. The KL divergence has previously been used in
a number of ways to score documents with respect to a query, for example, Ng
[2000] and Lafferty and Zhai [2001]. Unless otherwise specified, for document
d and word sequence s = w1, . . . , wn (in our setting, either a document or the
query), we set pd(s) to

pKL,μ

d (s)
def= exp(−D

(
p̃ MLE

s (·)
∣∣∣∣∣∣ p̃ [μ]

d (·)
)
), (4)

which is equivalent (using some algebraic manipulation) to

pKL,μ

d (s) = (p[μ]
d (s))

1
|s|︸ ︷︷ ︸

term A

· exp(H( p̃ MLE
s (·)))︸ ︷︷ ︸

term B

,

where H is the entropy function: H( p̃ MLE
s (·)) def= −∑

w p̃ MLE
s (w) log p̃ MLE

s (w).
Now, observe that term A length-normalizes p[μ]

d (s) via the geometric mean,
and therefore helps ameliorate the previously mentioned problems (length bias
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and underflow). Additionally, term B raises the generation probability for texts
with high-entropy MLE term distributions. High entropy may be correlated
with a larger number of unique terms, for example, we get an entropy of 0
for the document “Salvador Salvador Salvador” but log 3 for “Toronto Sheffield
Salvador,” which in turn, has previously been suggested as a cue for rele-
vance [Singhal et al. 1996; Hiemstra and Kraaij 1999]. Hence, generators of
documents inducing high-entropy language models may be good candidates
for centrality status. (We hasten to point out, though, that for the algorithms
based on smoothed graphs (Definition 3), the entropy term cancels out due to
our normalization of edge weights.)

4. RELATED WORK

Work on structural reranking in traditional ad-hoc information retrieval has
mainly focused on query-specific clustering, wherein one seeks to compute and
exploit a clustering of the initial retrieval results [Preece 1973; Willett 1985;
Hearst and Pedersen 1996; Leuski 2001; Tombros et al. 2002; Liu and Croft
2004; Kurland 2006; Kurland and Lee 2006; Liu and Croft 2006b, 2006a]. Clus-
ters represent structure within a document set, but do not directly induce an
obvious single criterion or principle by which to rank documents; for instance,
they have been used to improve rankings indirectly by serving as smoothing
mechanisms [Liu and Croft 2004; Kurland 2006], and in interactive retrieval
settings [Hearst and Pedersen 1996; Leuski 2001] they were utilized for effec-
tive visualization of the initial retrieved list.5 Recently, Kurland and Lee [2006]
used our graph-formation principles for creating bipartite graphs wherein doc-
uments from the intial list are on one side and query-specific clusters are on
the other side. They showed that if centrality is induced over such graphs using
the HITS (hubs and authorities) algorithm [Kleinberg 1997], then authorita-
tive documents tend to be relevant and authoritative clusters tend to contain
a high percentage of relevant documents.

In a related vein, Baliński and Daniłowicz [2005] and Diaz [2005] apply
score regularization to ensure that similar documents within an initial re-
trieved list receive similar scores. In contrast to our framework, centrality is
not introduced as an explicit notion and therefore cannot be explored in its own
right.

There has been increasing use of techniques based on graphs induced by im-
plicit relationships between documents or other linguistic items, for example,
Salton and Buckley [1988], Hatzivassiloglou and McKeown [1997], Daniłowicz
and Baliński [2000], Dhillon [2001], Lafferty and Zhai [2001], Joachims [2003],
Erkan and Radev [2004], Mihalcea and Tarau [2004], Pang and Lee [2004],
Toutanova et al. [2004], Barzilay and Lapata [2005], Collins-Thompson and
Callan [2005], Otterbacher et al. [2005], Zhang et al. [2005], Zhu [2005], Erkan
[2006a], and Erkan [2006b]. The work in the domain of text summarization
[Erkan and Radev 2004; Mihalcea and Tarau 2004; Erkan 2006b] resembles

5Interestingly, some centrality measures have been previously employed to produce clusterings; in
Tishby and Slonim [2000], the stochastic-process interpretation of our Equation 2 was utilized to
detect structures in the underlying graph, thereby inducing a clustering.
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ours, in that it also computes centrality on graphs, although the nodes corre-
spond to sentences or terms rather than documents. Erkan and Radev [2004],
Mihalcea and Tarau [2004] and Erkan [2006b] present methods similar to our
Recursive Weighted Influx algorithm; the Uniform Influx algorithm is also used
in Erkan and Radev [2004] for selecting central sentences. The main contrast
between the work of Erkan and Radev [2004] and Mihalcea and Tarau [2004]
and ours is that links were not induced by generation probabilities, but by
symmetric vector-space similarity measures (Section 5.2.2.3 presents the re-
sults of experiments studying the relative merits of our particular choice of link
definition). Erkan [2006b], on the other hand, adopted our generation graphs
for the task of focused summarization. Our generation graphs have also been
used in Erkan [2006a] for creating enhanced document representations for the
purposes of summarization. It is also important to note that in Erkan and
Radev [2004] and Mihalcea and Tarau [2004], summarization does not depend
on a specific user’s request and therefore centrality serves as the sole crite-
rion for selecting sentences, while in the ad hoc retrieval setting, one has to
handle cases in which relevance and centrality are not strongly correlated. One
method for doing so is the technique represented by Equation (3). Alternatively,
similarity to a representation of the information need can be used to smooth
edge weights [Erkan 2006b].

Otterbacher et al. [2005] and Daniłowicz and Baliński [2000] use interitem
similarities to define transition probabilities of a Markov chain for sentence
retrieval and document reranking respectively. While the Markov chain ap-
proach is similar to our Recursive Weighted Influx method, the transition
probabilities are based on symmetric interitem similarity functions, in con-
trast to our link induction method. Furthermore, these probabilities also in-
corporate information about similarity to the information need at hand, as in
Erkan [2006b], and thus centrality cannot be explored in isolation, as in our
algorithms.

Recent work on Web retrieval [Zhang et al. 2005] utilizes asymmetric simi-
larity relationships in the vector space model for link induction. Centrality is
induced using the PageRank algorithm, similarly to our Recursive Weighted In-
flux algorithm. However, since the task at hand is to rank all documents in the
corpus (rather than rerank an initially retrieved list), centrality is integrated
with similarity to the query to define a relevance scoring function and is not
explored in isolation. In Section 5.2.2.3 we evaluate one alternative for utiliz-
ing an asymmetric similarity measure within the vector space model, studying
its effectiveness both as an isolated ranking criterion and in combination with
similarity to the query, following Equation (3).

Our centrality scores constitute a relationship-based reranking criterion
that can serve as a bias affecting the initial retrieval engine’s scores, as in
Equation (3). Alternative biases that are based on individual documents alone
have also been investigated. Functions incorporating document or average word
length [Hiemstra and Kraaij 1999; Kraaij and Westerveld 2001; Miller et al.
1999] are applicable in our setting; we report on experiments with variants of
document length in Section 5.2.2.5. Other previously suggested biases that may
be somewhat less appropriate for general domains include document source
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[Miller et al. 1999] and creation time [Li and Croft 2003], as well as Web page
hyperlink in-degree and URL form [Kraaij et al. 2002].

5. EVALUATION

In what follows, we describe an array of experiments for evaluating the ef-
fectiveness of our algorithms in reranking an initial retrieved list to improve
precision at top ranks. As part of this array, we compare the performance of our
methods with that of a state-of-the-art pseudo-feedback-based query expan-
sion method, namely, the relevance model [Lavrenko and Croft 2001]. We then
study the ability to learn the values of the free parameters that our methods
incorporate.

In further explorations, we perform a controlled study of the connection
between centrality and relevance. As part of this study, we analyze the way
relevant and nonrelevant documents are situated within our graphs. We then
study the the effect of the initial list size on the performance of our algo-
rithms. In addition, we study the importance of basing our graph formation
on a language-modeling framework and generation probabilities by explor-
ing an analogous framework using a vector-space representation and corre-
sponding similarity measures. Furthermore, we demonstrate the importance
of the directionality of our induced interdocument links. We also compare our
algorithms with previously proposed measures for inducing centrality that
are based on document-specific properties, and in doing so explore some new
alternatives.

5.1 Experimental Setting

The objective of structural reranking is to (re-)order an initially-retrieved doc-
ument set, Dinit, so as to improve precision at the very top ranks of the final
results. Therefore, we employed the following three evaluation metrics: the pre-
cision of the top 5 documents (prec@5), the precision of the top 10 documents
(prec@10), and the mean reciprocal rank of the first relevant document (MRR)
[Shah and Croft 2004].

We are interested in the general validity of the various structural rerank-
ing methods we have proposed. We believe that a good way to emphasize the
effectiveness (or lack thereof) of the underlying principles is to downplay the
role of parameter tuning. Therefore, we made the following design decisions,
with the effect that the performance numbers we report are purposely not
necessarily the best achievable by exhaustive parameter search.

—The initial ranking that created the set Dinit was built according to the
function pKL,μ

d (q), where the value of μ was chosen to optimize the mean
noninterpolated average precision (MAP) of the top 1000 retrieved docu-
ments. This is not one of our evaluation metrics, but is a reasonable general-
purpose optimization criterion. In fact, results with this initial ranking
turned out to be statistically indistinguishable from the results obtained by
optimizing with respect to the actual evaluation metrics, although of course
they were lower in absolute terms.
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—We only optimized settings for α (the ancestry parameter controlling the
number of top generators considered for each document) and λ (the edge-
weight smoothing factor) with respect to the average precision among the
top 5 documents6 (prec@5) over the given set of queries; not with respect to
all three evaluation metrics employed.7

The search ranges for the latter two parameters were:

α: 2, 4, 9, 19, . . . , |Dinit| − 1
λ: 0.05, 0.1, 0.2, . . . , 0.9, 0.95.

As it turned out, for many instances the optimal value of α with respect to
precision at 5 was either 4 or 9, suggesting that a relatively small number of
generators per document should be considered when constructing the graph.
In contrast, λ exhibited substantial variance in optimal value for precision
at 5 in some of our datasets. We set |Dinit|, the number of initially-retrieved
documents, to 50 in all the results reported in the following unless stated oth-
erwise; we study the effect of varying |Dinit| on our algorithms’ performance in
Section 5.2.2.2.

It is important to point out that our approach of finding optimal free-
parameter values with respect to the entire set of tested queries is intended
for exploring the potential of the methods we present and the different factors
that affect their performance, that is, the potential effectiveness of different
ways of utilizing interdocument-similarities for reranking. We believe that
such a study should be performed independently from the analysis of whether
optimal parameter values generalize from one query to another. As we show
in 5.2.1.2, wherein we present performance results for our methods and their
reference comparisons with parameter values learned using cross-validation,
this interquery parameter-values generalization (or lack thereof) can depend,
for example, on the train/test split regime for the set of queries. This holds
not only for our methods, but also for the reference comparisons we consider.
These findings support previous reports about variability among queries,
and consequently, the issues with inferring parameter values, and even
appropriate retrieval methods from one query to another. (See Section 5.2.1.2
for elaborated discussion.)

The remaining details of the experimental setting are as follows. We con-
ducted our experiments on the following three TREC corpora,8 which are

6If two parameter settings yield the same prec@5 performance, we choose the one minimizing
prec@10 so as to provide a conservative estimate of expected performance. Similarly, if we have
ties for both prec@5 and prec@10, we choose the setting minimizing MRR.
7The document language model smoothing parameter, μ, was set to 2000 in all our methods and
reference comparisons, except for estimating pd(q), wherein we used the value of μ that was used
to create the initial ranking, so as to maintain consistency.
8We do not use the AP89 corpus, which was used in the conference version of this article [Kurland
and Lee 2005], because for many of the corresponding queries there are no relevant documents
in the initial list to be reranked, and, hence, the (average-)performance numbers are dominated
by a small number of queries. In addition, some of the performance numbers (for the other three
corpora) in this article are different than those in the conference version [Kurland and Lee 2005],
as the latter accidentally reflect experiments utilizing a suboptimal choice of Dinit.
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standard benchmarks in IR research [Voorhees and Harman 2005].

corpus # of docs queries disk(s)
AP 242,918 51-64, 66-150 1-3
TREC8 528,155 401-450 4-5
WSJ 173,252 151-200 1-2

Query 65 was omitted from AP because it had no relevant documents (as
judged by TREC’s human annotators). All documents and queries (in our case,
TREC-topic titles) were stemmed using the Porter [1980] stemmer and tok-
enized, but no other preprocessing steps were applied. We used the Lemur
toolkit9 for language-model estimation. Statistically significant differences in
performance were determined using the two-sided Wilcoxon test at a confidence
level of 95%.10

Efficiency considerations. It is important to note that the computational
overhead incurred by our reranking methods on top of the initial search is not
significant. Since the initial list to be reranked consists of a few dozen doc-
uments (we demonstrate in Section 5.2.2.2 that reranking is mostly effective
with relatively short lists, which is in accordance with other models for rerank-
ing [Diaz 2005]), then computing interdocument similarities within the list
requires relatively little computational effort. Similar efficiency considerations
were taken in work on using clusters of similar documents from the initially
retrieved list so as to rerank it (e.g., Willett [1985], Liu and Croft [2004], and
Kurland and Lee [2006]), and in other work on graph-based reranking [Baliński
and Daniłowicz 2005; Diaz 2005]. Moreover, similarities between snippets (e.g.,
query-dependent summaries) of documents can potentially serve as proxies for
similarities between the full content of documents. Indeed, such an approach
was taken in work on clustering the results of Web search engines [Zamir
and Etzioni 1998]. Furthermore, computing centrality over graphs with a few
dozens nodes using the recursive centrality definitions, which are computa-
tionally somewhat more demanding than the nonrecursive definitions, takes
only a few iterations of the power method [Golub and Van Loan 1996]. It is
also important to note that the size of the corpus (number of documents) has
no practical effect on the efficiency of reranking since our methods only rerank
the most highly ranked documents from an initial search.

5.2 Results

In the tables that follow, we use the following abbreviations for algorithm
names.

9www.lemurproject.org.
10In what follows, we use alpha-numeric symbols as either superscripts or subscripts so as to
denote statistically-significant differences between the performance (per evaluation metric) of two
methods; e.g., 0.135M2 or 0.135M2 represents an average performance of 0.135 that is statistically-
significantly different from that of method M2 for the same evaluation metric.
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U-In Uniform Influx
W-In Weighted Influx
R-U-In Recursive Uniform Influx
R-W-In Recursive Weighted Influx

U-In + LM Uniform Influx + LM
W-In + LM Weighted Influx + LM
R-U-In + LM Recursive Uniform Influx + LM
R-W-In + LM Recursive Weighted Influx + LM

Table I.
Primary experimental results, showing algorithm performance with respect to our 9 evaluation
settings (3 performance metrics × 3 corpora). For each evaluation setting, improvements over
the optimized baselines are given in italics; statistically significant differences between our
structural reranking algorithms and the initial ranking and optimized baselines are indicated
by i and o respectively; bold highlights the best results over all ten algorithms. Notice that even
though the structural reranking algorithms were optimized for prec@5 only (and produce the
best results for this metric), they still perform well with respect to the other two metrics.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

upper bound .876 .788 .930 .944 .850 .980 .896 .800 1.000
init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748
opt. baselines .465 .437 .635 .512 .464 .696 .560 .494 .772

U-In .513 .492 i
o .640 .500 .442 .622 .512 .472 .673

W-In .515 .487 i .643 .488 .432 .637 .520 .470 .644 o
U-In + LM .509 .494i

o .631 .528 .518i
o .665 .544 .490 .724

W-In + LM .511 i .486 i
o .630 .516 .464 .703 .560 .500 .787

R-U-In .513 .477 .625 .520 .446 .665 .536 .478 .707
R-W-In .519 .480 .632 .524 .446 .666 .536 .486 .699
R-U-In + LM .519 i

o .491 i
o .652 .556 .460 .684 .576i .496 .757

R-W-In + LM .531i
o .492 i

o .630 .560 .460 .676 .572 i .496 .747

5.2.1 Primary Evaluations. Our main experimental results are presented
in Table I. The first three rows specify reference-comparison data. The ini-
tial ranking was, as just described, produced using pKL,μ

d (q), with μ chosen
to optimize for noninterpolated precision at 1000. The empirical upper bound
on reranking, which applies to any algorithm that reranks Dinit, indicates the
performance that would be achieved if all the relevant documents within the
initial fifty were placed at the top of the retrieval list. We also computed an
optimized baseline for each metric mand test corpus C; this consists of ranking
all the documents (not just those in Dinit) by pKL,μ

d (q), with μ chosen to yield the
best m-results on C. As a sanity check, we observe that the performance of the
initial retrieval method is always below that of the corresponding optimized
baseline (though not statistically distinguishable from it).

The first question we are interested in is the performance of our structural
reranking algorithms taken as a whole. As shown in Table I, our methods
improve upon the initial ranking in many cases, specifically, roughly 2/3 of
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the 72 relevant comparisons (8 centrality-based algorithms × 3 corpora × 3
evaluation metrics). An even more gratifying observation is that Table I shows
(via italics and boldface) that in many cases, our algorithms, even though
optimized for precision at 5, can outperform a language model optimized for a
different (albeit related) metric, m, even when performance is measured with
respect to m; see, for example, the results for precision at 10 on the AP corpus.

Closer examination of the results in Table I reveals that while our algorithms
are effective when applied both to the graph GW and to GU, the former is in
most cases a better choice when considering prec@5—the metric for which
performance was optimized. These results imply that it is in general better
to explicitly incorporate generation probabilities into the edge weights of our
generation graphs than to treat all the top generators of a document equally.

Another observation we can draw from Table I is that incorporating query-
generation probabilities as weights on the centrality scores (see Equation (3))
tends to enhance performance. This can be seen by comparing rows labeled
with some algorithm abbreviation “X” against the corresponding rows labeled
“X + LM”. About 84% of the 36 relevant comparisons exhibit this improvement.
Most of the counterexamples occur in settings involving precision at 10 and
MRR, for which we did not optimize our algorithms.

Similarly, by comparing “Y”-labeled rows with “R-Y”-labeled ones, we see
that in about 70% of the 36 relevant comparisons, it is better to use the recursive
formulation of Equation (2), where the centrality of a document is affected by
the centrality of its offspring, than to ignore offspring centrality as is done by
Equation (1).

Perhaps not surprisingly, then, the Recursive Uniform Influx + LM and Re-
cursive Weighted Influx + LM algorithms, which combine the two preferred
features just described (recursive centrality computation and use of the initial
search engine’s score function) appear to be our best performing algorithms.
Working from a starting point below the optimized baselines, they improve
the initial retrieval set to yield results that, even at their worst, are not only
better than the initial ranking for precision at 5 and 10, but are also nearly
statistically indistinguishable from the optimized baselines. Moreover, in one
setting (AP, precision at 10) they actually produce statistically significant im-
provements over the optimized baseline even though they were not optimized
for that evaluation metric.11

5.2.1.1 Comparison to Pseudo-Feedback-Based Retrieval. Our structural
reranking methods utilize interdocument relationships in the list, Dinit, to find
relevant documents that it contains. Pseudo-feedback-based query-expansion
methods [Buckley et al. 1994], on the other hand, exploit information from Dinit

to define a query model to be used for reranking the entire corpus. To compare
the two approaches with respect to their ability to attain high precision at top

11We note that Recursive Weighted Influx + LM also outperforms the initial ranking in terms
of MAP(@50)—although not optimized for this evaluation metric—over AP and WSJ, while the
reverse holds for TREC8. The MAP of the initial ranking is .093, 0.175, and 0.225 for AP, TREC8,
and WSJ, respectively. The MAP of Recursive Weighted Influx + LM for the three corpora is .098,
.171, and .226, respectively.
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Table II.
Performance comparison of our recursive weighted Influx + LM Algorithm with a relevance model
that is either used to rank all documents in the corpus (Rel Model) or used to only rerank the
documents in the initial list Dinit (Rel Model(Rerank)). The best result in a column is boldfaced
and statistically significant differences with the initial ranking are marked with i.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

Rel Model .503i .486i .585 .544 .494 .671 .584i .510 .759
Rel Model(Rerank) .511i .482i .598 .544 .486 .679 .588i .520 .748

R-W-In + LM .531i .492i .630 .560 .460 .676 .572i .496 .747

ranks of the retrieved lists, we compare the performance of one of our best
performing models, Recursive Weighted Influx + LM, to that of a state-of-the-
art pseudo-feedback-based (query expansion) approach—the relevance model
[Lavrenko and Croft 2001].

For comparison with Recursive Weighted Influx + LM, we use both the stan-
dard relevance model (Rel Model), which is constructed from Dinit and is used to
re-rank the entire corpus; and, an implementation denoted Rel Model(Rerank),
wherein the relevance model is used to rerank only Dinit. Lemur’s implementa-
tion of relevance models was used; see Appendix A for details.

We select the values of the three free parameters on which Rel Model and
Rel Model(Rerank) depend (see Appendix A for details) so as to optimize pre-
cision at the top 5 documents; recall that our Recursive Weighted Influx + LM
algorithm’s free parameters—the graph out-degree α and the edge-weight
smoothing factor, λ—were also selected so as to optimize precision at 5. The per-
formance results of the relevance models and Recursive Weighted Influx + LM
algorithm are presented in Table II.

We can see in Table II that while the performance of Recursive Weighted
Influx + LM and that of the relevance models is in general comparable, Recur-
sive Weighted Influx + LM posts better prec@5—the metric for which perfor-
mance was optimized—for two out of the three corpora. (It is interesting to
note that using the relevance model for reranking only the initial list is more
effective than using it for ranking all documents in the corpus—as is stan-
dard practice—in most relevant comparisons.) We hasten to point out, how-
ever, that none of the performance differences between Recursive Weighted
Influx + LM and the relevance model implementations is statistically signifi-
cant, and that all three methods (Recursive Weighted Influx + LM, Rel Model,
and Rel Model(Rerank)) post statistically significant performance improve-
ments over the initial ranking for the same reference comparisons.

Performance robustness. Pseudo-feedback-based query expansion approa-
ches are known to post, on average, retrieval performance that is supe-
rior to that of using the original query for ranking. Indeed, the results in
Table II attest to the effectiveness of pseudo-feedback-based relevance models.
However, there are queries for which the performance of using an expanded
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Table III. Performance Robustness
The percentage of queries for which the prec@5 of a method is
inferior to that of the initial ranking. Best result in a column
(i.e., lowest number) is boldfaced.

AP TREC8 WSJ
Rel Model 19.2% 16.0% 8.0%
Rel Model(Rerank) 19.2% 16.0% 14.0%
R-W-In + LM 19.2% 20.0% 2.0%

query is inferior to that of using the original query without expansion. This
problem is often referred to as the robustness problem of pseudo-feedback-
based retrieval [Amati et al. 2004; Cronen-Townsend et al. 2004; Collins-
Thompson and Callan 2007; Lee et al. 2008]. The performance results in
Table II for the relevance models over TREC8 can potentially attest to such
a robustness issue, as none of them are statistically significant better than
those of the initial ranking, although they are better on average.

To study the performance robustness of our Recursive Weighted Influx + LM
reranking algorithm with respect to that of the relevance models, we report in
Table III the percentage of queries for which a method posts prec@5 perfor-
mance that is inferior to that of the initial ranking. As we can see, the perfor-
mance of Recursive Weighted Influx + LM is as robust as that of the relevance
models in most cases.

All in all, perhaps the most important conclusion that we can draw from the
comparison to relevance models is that our graph-based reranking paradigm
is a highly effective approach for obtaining high precision at top ranks of the
retrieved list. In fact, our algorithms can potentially help to improve the per-
formance of pseudo-feedback-based approaches, if they are used to select the
documents considered as (pseudo-)relevant; for example, instead of construct-
ing a relevance model from the top-k initially ranked documents, one can con-
struct the model from the top-k documents in the (re-)ranking produced by our
methods.

5.2.1.2 Learning Parameter Values. Heretofore our evaluation focused on
the potential effectiveness of utilizing interdocument-similarities for reranking
using graph-based approaches. To study the performance characteristics of the
different methods, we have neutralized issues rising from the values of the free
parameters that the methods incorporate by examining the optimal attainable
performance over the entire set of queries with respect to these parameters’
values. Now, we turn to examine the application of our methods where free
parameters of an algorithm are set for a specific query to values determined
optimal for other queries, that is, we learn parameter values.

Learning parameter values for a retrieval algorithm per query is inherently
a very difficult challenge as each query potentially poses a new task. A case
in point: ambiguous queries might call for a different analysis than nonam-
biguous queries. Furthermore, a retrieval method that is very effective for
one query might post quite poor performance for others. For example, Jelinek-
Mercer smoothing of document language models is more effective than Dirichlet
smoothing for long queries, while the reverse holds for short queries [Zhai and
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Lafferty 2001b]. Another example is the difference between content-based and
named-page-finding queries in Web retrieval [Zhou and Croft 2007].

Another prominent well-known example of the difficulty in learning param-
eter values is query expansion. As noted, there are many queries for which the
performance of query expansion is inferior to that of using no query expan-
sion. However, automatically determining whether to perform expansion for a
given query is a highly difficult and open research problem [Amati et al. 2004;
Cronen-Townsend et al. 2004]. Note that this question in the relevance-model
case amounts to the choice of the value of the free interpolation parameter, η, in
Equation (7) (Appendix A); if η = 0 then no expansion is performed, while η > 0
results in utilizing expansion terms. Indeed, there has been quite a lot of work
on tackling the sensitivity of expansion methods with respect to free parameter
values (e.g., Tao and Zhai [2006] and Winaver et al. [2007]). More generally,
there is growing research attention in the information retrieval community
to issues that stem from query-variability; for example, refer to the TREC’s
Robust track [Voorhees 2005], and to work on predicting query difficulty (e.g.,
Cronen-Townsend et al. [2002] and Yom-Tov et al. [2005]).

Thus, the decision of which queries are to be used as the basis for determining
parameter values, that is, the training set, and which queries should serve as
the test set, becomes a crucial issue. Another important issue that we have
to consider is metric divergence [Azzopardi et al. 2003; Morgan et al. 2004;
Metzler and Croft 2005], that is, if learning is based on a specific evaluation
metric, then the performance over the test set with respect to other evaluation
metrics might be far from optimal.

Having these issues in mind, we have taken the following experimental-
design decisions. We have restricted the learning/testing to be performed to
using queries for the same corpus. That is, the train-set of queries is for
the same corpus as that from which the test-set of queries is chosen. This
is highly important so as to avoid intercorpora issues.12 In addition, instead
of learning parameter values with respect to each evaluation measure sepa-
rately, which is a nonrealistic scenario, we have used prec@5, our main evalu-
ation metric, as the criterion for optimizing performance over the train set.13

Since each of the three tested collections has a relatively small number of
queries, we have taken a cross-validation approach to learning/testing. Fur-
thermore, to study the potential impact of query-variability, we present per-
formance results for three regimes of train/test split of the queries used in
a cross-validation manner: leave-one-out (loo), 10-fold, and 2-fold (split). All
train/test splits are based on random selection of queries.14 The performance
numbers of our methods, where parameter values are learned, are presented

12A good example for an intercorpora issue is passage-based document retrieval. While utilizing
passage information is known to be highly effective for corpora containing topically-heterogeneous
documents [Callan 1994; Liu and Croft 2002; Bendersky and Kurland 2008], this is not the case
for corpora containing homogeneous documents.
13In the learning process, if two parameter settings yield the same prec@5, we use prec@10, as the
optimization criterion; similarly, if we have ties for both prec@5 and prec@10, we use MRR as the
optimization criterion.
14The folds in the 10-fold regime were selected to be subsets of those in the 2-fold (split) regime.
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Table IV.
Performance of main algorithms wherein the values of the free parameters of all methods (except
for those of the initial ranking and optimized baselines) are learned using cross-validation. (Recall
that the performance numbers in Table I are obtained by maximizing performance over the entire
set of queries.) Learning is performed with one of three regimes for splitting the query-set into
learn/test sets: Leave-One-Out (loo), 10-Fold, and 2-Fold (Split). The best result in a column is
boldfaced; i and o mark statistically significant differences with the initial ranking and optimized
baselines, respectively.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

upper bound .876 .788 .930 .944 .850 .980 .896 .800 1.000
init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748
opt. baselines .465 .437 .635 .512 .464 .696 .560 .494 .772

loo U-In .513 .492i
o .640 .500 .442 .622 .512 .472 .673

10fold U-In .513 .492i
o .640 .468 .440 .622 .512 .472 .673

split U-In .513 .492i
o .640 .500 .442 .622 .512 .472 .673

loo W-In .515 .487i .643 .488 .432 .637 .520 .470 .644o
10fold W-In .515 .487i .643 .488 .432 .637 .504 .462 .641o
split W-In .489 .475 .600 .448 .426 .568 .520 .470 .644o

loo U-In + LM .509 .494i
o .631 .528 .518i

o .665 .480i
o .454i

o .655i
o

10fold U-In + LM .509 .494i
o .631 .496 .480 .666 .504o .486 .652i

o
split U-In + LM .491 .484i

o .633 .516 .504i .686 .504o .474 .706

loo W-In + LM .467 .483o .620 .456 .470 .668 .560 .500 .787
10fold W-In + LM .497 .491o .637 .460 .458 .636 .536 .492 .756
split W-In + LM .493 .488o .645 .516 .496i .645 .532 .490 .745

loo R-U-In .469 .479 .642 .488 .438 .652 .504 .476 .686
10fold R-U-In .489 .481 .621 .484 .438 .627 .512 .472 .698
split R-U-In .462 .445 .609 .508 .430 .663 .508 .490 .661

loo R-W-In .485 .478 .630 .424o .398i
o .561 .492 .478 .663

10fold R-W-In .493 .482 .632 .464 .426 .592 .488 .474 .648o
split R-W-In .499 .482i .626 .492 .470 .632 .504 .500 .664

loo R-U-In + LM .483 .463 .640 .464 .438 .635 .576i .496 .757
10fold R-U-In + LM .505 .486i

o .639 .496 .454 .658 .548 .486 .731
split R-U-In + LM .481 .472i .625 .516 .486 .680 .532 .500 .719

loo R-W-In + LM .529i
o .492i

o .630 .560 .460 .676 .484i
o .472 .665i

o
10fold R-W-In + LM .515i

o .488i
o .633 .528 .454 .662 .492i

o .492 .694
split R-W-In + LM .509 .483i .628 .512 .462i .663 .516 .484 .747

in Table IV. (Recall that in Table I the performance numbers correspond to the
best prec@5 performance with respect to the entire set of queries.) In Table
V we present a comparison of our Recursive Weighted Influx + LM algorithm
with the relevance models when the free parameter values of all algorithms are
learned.

We can see in Table IV that, as expected, the performance numbers when
learning parameter values are lower than those in Table I, which reports the
best performance with respect to all queries. However, in many cases, the per-
formance of our methods is still better than that of the initial ranking (and that
of the optimized baselines), especially for the AP corpus; furthermore, many
improvements over the initial ranking for AP are also statistically significant.
For TREC8 there are fewer improvements over the initial ranking, although
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Table V.
Comparison with relevance models wherein the values of the free parameters of all methods (except
for those of the initial ranking) are learned using cross-validation. (Recall that the performance
numbers in Table II are obtained by maximizing performance over the entire set of queries.)
Learning is performed with one of three regimes for splitting the query-set into learn/test sets:
Leave-One-Out (loo), 10-Fold, and 2-Fold (Split). The best result in a column is boldfaced and
statistically significant differences with the initial ranking are marked with i; r and e mark
statistically significant performance differences of an algorithm under a certain train/test regime
with Rel Model and Rel Model(Rerank), respectively, implemented with the same regime; l and f
mark statistically significant performance differences of an algorithm and a train/set regime with
its implementation with the loo and 10-Fold Regimes, respectively.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

loo Rel Model .499 .485i .582 .508 .494 .662 .548 .510 .756
10fold Rel Model .477l .471 .584 .516 .506 .673 .536 .498 .766
split Rel Model .479 .458l .617l f .516 .494 .660 .548 .518 f .780

loo Rel Model(Rerank) .511i .482i .598r .504 .476 .650 .520r .506 .721
10fold Rel Model(Rerank) .511ir .482i .598r .504 .492 .663 .548l .512 .741
split Rel Model(Rerank) .485l f .481i .607 .520 .494 .667r .548 .520 .764l

loo R-W-In + LM .529i .492i .630 .560re .460 .676 .484ir .472r .665i

10fold R-W-In + LM .515i .488i .633 .528 .454r .662 .492ire .492l .694
split R-W-In + LM .509 .483i .628 .512 .462i .663 .516 .484re .747l

the performance of Recursive Weighted Influx + LM is in most cases as good as
that of the optimized baselines for prec@5 and prec@10, and better than that
of the initial ranking.

For the WSJ corpus, learning parameter values yields in many cases per-
formance inferior to that of the initial ranking—even significantly so in some
cases for the Recursive Weighted Influx + LM algorithm. These differences of
performance patterns over different corpora can potentially be attributed to
the fact that while for AP there are 99 queries, for TREC8 and WSJ there are
50 queries. Hence, learning for AP is based on many more queries than learn-
ing for TREC8 and WSJ. Furthermore, perhaps the most important conclusion
that we can draw from Table IV is that query-variability potentially plays a
crucial role, as the performance numbers for different train/test split regimes
can vary substantially. More specifically, no regime consistently dominates the
other. A case in point: for AP and TREC8 the Recursive Weighted Influx + LM
algorithm performs best with the leave-one-out (loo) regime, while for WSJ the
2-fold (split) regime yields the best performance. In fact, for AP loo results in
statistically significant performance improvements over the initial ranking and
optimized baselines for prec@5 and prec@10, while split does not; yet, for WSJ
split yields performance that is statistically indistiguishable from that of the
initial ranking, while loo yields performance that is statistically significantly
worse than that of the initial ranking.

We can further observe the impact of the train/test split regime on retrieval
performance in Table V, wherein we compare Recursive Weighted Influx + LM
with the relevance models. For example, we observe that the split regime can
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have a significant impact on the performance of the relevance model; for ex-
ample, for the AP corpus when using the relevance model to rank the entire
corpus the 10-fold regime yields p@5 performance that is statistically signifi-
cantly worse than that of the loo regime, while for TREC8 the 10-fold regime
yields p@5 that is better than that of the loo regime. Another observation that
we make based on Table V is that Recursive Weighted Influx + LM posts su-
perior performance to that of the relevance models in most cases for all three
split regimes over AP, and in many cases for the loo and 10-fold regimes over
TREC8 (with the reverse holding for the split regime). On the other hand, the
relevance models post better performance over WSJ.

All in all, we conclude that while learning free parameter values in our
algorithms can yield very good performance (as is the case for AP), it is still
a very challenging task (as the low performance numbers for WSJ attest).
We have argued and shown that this challenge characterizes not only our
algorithms, but other algorithms as well (specifically, the relevance model).
Hence, we intend to further study the issue of effectively setting free-parameter
values in our algorithms in future work.

5.2.2 Further Explorations. We now turn to further study the characteris-
tics of our reranking methods, and factors that can impact their performance.
To neutralize free-parameter value effects in the analysis to follow, we fix the
free parameters of the methods to values that optimize prec@5 performance
over the entire set of queries, as was the case for Tables I and II.

5.2.2.1 Centrality and Relevance. As stated in Section 1, one of the ad-
vantages in taking a reranking approach to the retrieval problem is that the
ratio of relevant to nonrelevant documents in the initial list, Dinit, is in general
much higher than that in the entire corpus. However, the percentage of rele-
vant documents in Dinit varies across different queries. Therefore, we now turn
to analyze the effect of this percentage on the performance of our centrality-
based algorithms. Specifically, we study the connection between centrality in
Dinit and relevance, by exploring the performance of the Weighted Influx and
Recursive Weighted Influx algorithms—both of which rank documents only
by their induced centrality values—when factoring out the differences in the
percentage of relevant documents in Dinit (across queries) using the following
experimental setting.

For each query, we scan the original ranked list of documents from which
Dinit was created from the highest-ranked document to the document at rank
1000, and collect n relevant documents. Queries with fewer than n rele-
vant documents among the top-1000 are discarded; we experimented with
n = 5, 10, 20, 30, and 40. Then, we perform another pass over the ranked list
(top to bottom) and accumulate 50 − n nonrelevant documents. Dinit is then the
set of 50 collected documents, n of which are relevant. Thus, our list construc-
tion is guided by the initial ranking and we can follow our general approach of
reranking an initial list of documents that was retrieved in response to a query.

Figure 2 presents the prec@5 performance of our Weighted Influx and Recur-
sive Weighted Influx algorithms when the percentage of relevant documents in
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Fig. 2. The effect of the percentage of relevant documents in the initial list, Dinit, on the prec@5
performance of the Weighted Influx and Recursive Weighted Influx algorithms; the prec@5 perfor-
mance of random selection of documents is presented for reference.

Dinit is fixed as described. (We present only the prec@5—the metric for which
performance was optimized—numbers to avoid cluttering the figures; prec@10
performance results exhibit the same patterns as those for prec@5.)

Our first observation with respect to Figure 2 is that for all three corpora,
centrality as induced by either of the two algorithms is connected with rele-
vance. The performance curves of both algorithms are above the diagonal line,
which represents random ordering of documents in Dinit. We also note that for
both algorithms, the performance is monotonically increasing with respect to
the percentage of relevant documents over all tested corpora—a property ex-
pected from any reranking algorithm. However, our algorithms’ performance
on TREC8 is somewhat closer to that of random choice than on WSJ and AP.
We attribute this finding to the fact that TREC8 is a much more heterogeneous
corpus than the other two, and that the corresponding queries are considered
challenging [Hu et al. 2003; Voorhees 2005].

In comparing the performance of the Weighted Influx and Recursive
Weighted Influx algorithms in Figure 2 we clearly see that the latter is at
least as effective as the former for all tested values of relevant-document
percentage and over all three corpora. This finding gives further support to
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the hypothesis that for determining the centrality of a document, the cen-
trality of its offspring documents should be considered, as was also shown in
Section 5.2.1.

The Structure ofDinit. An interesting question with respect to the graphs we
construct is how relevant and nonrelevant documents are situated within them.
More specifically, we would like to know whether the top generators of relevant
documents tend to themselves be relevant, and whether the top generators of
nonrelevant documents tend to also be nonrelevant. Such an analysis is closely
related to van Rijsbergen’s cluster hypothesis: “Closely associated documents
tend to be relevant to the same requests” [van Rijsbergen 1979, chapter 3].
This hypothesis has motivated many cluster-based retrieval approaches (e.g.,
Jardine and van Rijsbergen [1971] and Croft [1980]) and has also been explored
in the reranking setting [Leuski and Allan 1998; Hearst and Pedersen 1996;
Tombros 2002].

To perform this analysis, we measure the relative weights on edges from
a (non-)relevant document to its top generators that are also (non-)relevant
with respect to the total sum of weights on the document’s outgoing edges. In-
deed, this measure, when applied to the uniform-edge-weight graph, GU, is ex-
actly Voorhees’ [1985] cluster-hypothesis test applied to the reranking setting.
Figure 3 presents the values of this estimate when applied to the GW graph
(wherein edge weights represent generation probabilities) constructed with
α = 5 (we consider for each document its 5 top generators).15 We present the
resultant numbers as a function of the percentage of relevant documents in
Dinit. We control this percentage as previously described.

Perhaps the most important conclusion based on Figure 3 can be drawn
by observing the generation-weight spread when 50% of the documents in
Dinit are relevant. In these cases, at least 75% of the generation weight that
a relevant document spreads to its top-generators is transferred to relevant
documents, while more than 45% of the generation weight that a nonrelevant
document spreads is transferred to relevant documents. Therefore, while the
set of relevant documents in Dinit keeps centrality-support within the set, the
set of nonrelevant documents leaks such support to relevant documents. This
observation sheds some light on the connection between centrality (as induced
by our methods) and relevance, which was demonstrated by our findings.

5.2.2.2 The Effect of the Size of Dinit. We posed our centrality-computation
techniques as methods for improving the results returned by an initial re-
trieval engine, and showed that they are successful at accomplishing this
goal when the set of top retrieved documents (Dinit) is relatively small. (Re-
call that |Dinit| = 50.) We now study the effect of including more documents
from the initial ranking in Dinit on the performance of our algorithms. Fig-
ure 4 presents the performance results of the Weighted Influx, Recursive
Weighted Influx, Weighted Influx + LM and Recursive Weighted Influx + LM
algorithms when the number of documents in Dinit is varied. We set |Dinit|
to values in {50, 100, 500, 1000}.
15Results for GU exhibit the same exact patterns as those for GW and are therefore omitted.
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Fig. 3. The average relative spread of generation weight from a relevant document to other
relevant documents (denoted “wR2R”) and from a nonrelevant document to other nonrelevant
documents (denoted “wN2N”) as a function of the percentage of relevant documents in Dinit; the
graph out-degree, α, is fixed at 5.

The first observation that can be made from Figure 4 is that the performance
of the Weighted Influx and Recursive Weighted Influx algorithms, which use
centrality values as the sole criteria for ranking, quickly degrades with increas-
ing numbers of documents inDinit. We do not see this finding as surprising, since
such an increase necessarily results in a severe decrease in the ratio between
the number of relevant documents to nonrelevant documents in Dinit. As hy-
pothesized in Section 3 and as was shown in Section 5.2.2.1, this ratio can have
a major effect on the correlation between centrality and relevance.

We also observe in Figure 4 that the performance decrease of the Weighted
Influx + LM and Recursive Weighted Influx + LM algorithms in light of an in-
crease of the size of Dinit is much more gradual than that observed for the
respective Weighted Influx and Recursive Weighted Influx algorithms. Fur-
thermore, the Recursive Weighted Influx + LM algorithm posts performance
that is better than that of the initial ranking for all tested values of |Dinit| on
all three corpora. These performance patterns can be attributed to the initial
ranking score embedded in the scoring functions of the Weighted Influx + LM
and Recursive Weighted Influx + LM algorithms (see Equation (3) in Section
3.3), which actually plays a dual role when increasing the size of Dinit: it lowers
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Fig. 4. The effects of varying the size of the initial list Dinit on prec@5 performance.

the final score of documents initially ranked low in the list, which therefore
are less likely to be relevant, and helps to handle cases in which centrality and
relevance are not strongly correlated (as explained in Section 3.3).

Another point that is evident in Figure 4 is that the recursive algorithms
post better performance than that of their nonrecursive analogs for almost all
values of |Dinit|. This gives further support to the observation that in computing
the centrality of a document, the centrality of its offspring documents should
be considered as well.

5.2.2.3 Information Representation and Similarity Measures. We have ad-
vocated the use of generation relationships to define centrality, where these
asymmetric relationships are based on language-model probabilities. To com-
pare our choice with previously proposed notions of interdocument relation-
ships, we first distinguish between two aspects. The first is information rep-
resentation; in our framework, documents are represented via their induced
unigram language models. Another well-known alternative is the vector-space
representation [Salton et al. 1975]. Similarity measure is the second aspect we
have to consider. Models based on a vector-space representation often use the
cosine as a symmetric similarity measure. Indeed, as we mentioned, previous
work in summarization [Erkan and Radev 2004] used the cosine to determine
centrality in ways very similar to the ones we have considered.
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Fig. 5. Comparison of different methods for defining generation graphs.

Figure 5 presents a comparison of the different methods we experimented
with to define generation graphs. We focus on unigram language models and
tf.idf vectors for document representation, as they represent two approaches
that have formed the basis for numerous approaches in information retrieval.
While there are a huge number of similarity measures one can think of, we focus
on a few simple but representative choices, rather than attempt to exhaustively
search the enormous space of possible models of similarity.

Table (a) of Figure 5 provides the specification of the methods we compare,
focusing on differences in choice of representation and similarity measure. The
first two methods are based on a smoothed unigram language-model represen-
tation. The L method is the one we advocated throughout this article, language
models with generation probabilities (details in Section 3.4). Method S utilizes
the J divergence [Jeffreys 1946], resulting in a symmetric variant of the gen-
eration probabilities in L; for two probability distributions p and q over terms,
J (p || q) = D (p || q) + D (q || p).

The next three methods utilize the vector-space representation based on tf.idf
weights. In C, the cosine of the angle between the vector representations of d1

and d2 determines similarity, whereas in method T we use the inner product
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between the respective vectors. Method A presents an asymmetric variant of
the previous two measures (recall that cos(d1, d2) = d1·d2

||d1||2·||d2||2 ). It is interesting
to note that this measure incorporates length normalization of d2, which is
similar in spirit to the normalization embedded in our estimates of language-
model generation probabilities (refer back to Section 3.4 for details). To run
the evaluation for methods S, C, T, and A we simply modify Definition (1) to
use the corresponding similarity measure as the basis for determining the edge
weights of our graphs.

Note that the fact that a measure is symmetric does not imply that edges
(v1, v2) and (v2, v1) get the same weight even in our nonsmoothed graphs—
document d1 being a top generator of d2 with respect to the measure does
not imply the reverse. It should also be observed that the language-model
weights on centrality scores (the pd(q) term in Equation (3), on which the
+ LM algorithms are based) were not replaced with the similarity measure
values, which makes sense since we want our comparison to focus on the effect
of different means of computing graph-based centrality.

Tables (b) and (c) in Figure 5 depict the relative performance of the different
methods. In Table (b), for each choice of algorithm, evaluation measure, and
dataset, we present the methods in nonascending order of performance (ordered
left to right); a method is presented only if it posts a 5% relative improvement
or more over the initial ranking with respect to the specific evaluation metric.
In addition, Table (c) provides a summary of the relative performance of the
different methods. For each method, we present as a percentage (out of the 72
relevant comparisons—8 centrality-based algorithms × 3 corpora × 3 evalua-
tion metrics) the relative number of times it, (1) performs the best, (2) posts
improvement over the initial ranking, and (3) significantly improves over the
initial ranking.

As can be seen in Table (c), the L method (language-model generation prob-
abilities) is the best performing method in a majority of the relevant compar-
isons. Indeed, in Table (b) we see that on AP and TREC8, L dominates the other
methods. Additional pairwise comparisons between the different methods at-
test to the superiority of L.

Table (c) (Figure 5) also shows that both the C (cosine) and A (its asymmet-
ric variant) methods are very effective, as can be seen by the percentage of
times they significantly improve on the initial ranking. Pairwise comparisons
between the two showed that neither substantially outperforms the other.

In comparing symmetric with asymmetric measures, we first see in Tables
(b) and (c) that our original proposal of asymmetric generation probabilities
(L) is much more effective than its symmetric version (S). When comparing the
inner product (T) with its asymmetric variant (A), we see that the latter is more
effective with respect to improvements over the initial ranking (and their sig-
nificance). Furthermore, pairwise comparisons of the two methods give further
support to the superiority of the asymmetric variant (A). However, when com-
paring C and A (which is C’s asymmetric variant) via a pairwise comparison,
neither of the two methods is superior to the other. (Although according to the
best-performing criterion one might suggest that C is superior.) It is important
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to point out, however, that our methods S and A are not necessarily the most
effective ones for (a-)symmetrizing other measures.

Overall, while language-model generation probabilities indeed seem to be
an attractive choice compared to other interdocument relationships consid-
ered in past literature, we believe that the important message emerging from
our findings is that the overall reranking approach is a flexible and effective
paradigm that can incorporate different types of interdocument relationships
when appropriate.

5.2.2.4 Central Generators vs. Central Offspring. So far, our use of
language-model generation probabilities for graph formation was based on the
idea of searching for central generators in the initial list, Dinit, that is, seek-
ing documents with language models that assign high probability to terms in
many other central documents. (Refer back to the discussion in Section 3.1 and
to the example in Figure 1.) To validate the importance (or lack thereof) of this
approach of utilizing generation probabilities, we study an alternative graph
formation method that is based on searching for central offspring documents—
documents with term sequences that are assigned high probability by many
documents either directly or indirectly.

To explore a central-offspring search approach, we first flip the directionality
of the similarity estimate that we have used; for documents d1, d2 ∈ Dinit we
define the offspring-directed similarity:

pof f
d1

(d2)
def= pd2 (d1). (5)

We then use this estimate in Definition (1) (Section 3) to construct graphs that
describe centrality-status propagation from documents to their top offspring.
Note that the resulting graphs do not necessarily reflect an edge inversion of
the original graphs, since the fact that g is a top generator of o does not imply
that o is a top offspring of g. (Recall our discussion in Section 3 with regard
to the asymmetry embedded in our link induction method.) Also, we note that
both types of graphs have an α out-degree parameter.

Thus, the Uniform Influx, Weighted Influx, Recursive Uniform Influx and
Recursive Weighted Influx algorithms implemented over the new graphs rank
documents in Dinit by their induced offspring-centrality. However, for the +LM
algorithms (see Equation (3) in Section 3.3) we still use pd(q) as bias on the
centrality value, as we are only interested in testing the effectiveness of the
offspring-search approach.

In Table VI we compare the performance numbers of our reranking algo-
rithms when implemented either on the original graphs that describe flow
from offspring to generators—the performance numbers are those that were
presented in Table I—with the performance numbers of their implementation
on the new graphs that describe flow from generators to offspring. (The latter
results are denoted with an [off] prefix.)

The message arising from Table VI is clear: it is much better to use our
original proposal of searching for central generators than to use the search-
ing for central offspring approach; for all algorithms, it is almost always the
case that the implementation over the original graphs results in substantially
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Table VI.
Reranking documents by their centrality as generators versus their centrality as offspring (denoted
with the [off] prefix). Italics mark the best performance in a block (algorithm × corpus × evalu-
ation metric) and boldface highlights the best performance in a column. Statistically significant
differences with the initial ranking are marked with i.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. rank .457 .432 .596 .500 .456 .691 .536 .484 .748

U-In .513 .492 i .640 .500 .442 .622 .512 .472 .673

[off]U-In .384i .385i .496i .348i .322i .543i .400i .382i .504i

W-In .515 .487 i .643 .488 .432 .637 .520 .470 .644

[off]W-In .388i .372i .519i .340i .334i .537i .400i .392i .492i

U-In + LM .509 .494i .631 .528 .518i .665 .544 .490 .724
[off]U-In + LM .457 .432 .596 .508 .458 .710 .544 .468 .756

W-In + LM .511 i .486 i .630 .516 .464 .703 .560 .500 .787
[off]W-In + LM .436 .428 .555 .504 .444 .685 .536 .460 .691

R-U-In .513 .477 .625 .520 .446 .665 .536 .478 .707

[off]R-U-In .408 .405 .513 .352i .322i .539i .412i .396i .524i

R-W-In .519 .480 .632 .524 .446 .666 .536 .486 .699

[off]R-W-In .410 .403 .530 .344i .334i .527i .404i .386i .506i

R-U-In + LM .519 i .491 i .652 .556 .460 .684 .576i .496 .757

[off]R-U-In + LM .461 .431 .610i .520 .458 .711 .556 .482 .726

R-W-In + LM .531i .492 i .630 .560 .460 .676 .572 i .496 .747

[off]R-W-In + LM .463 .442 .595 .504 .462 .693 .560 .480 .683

better performance than that obtained using the implementation over graphs
constructed with the estimate from Equation (5). (That is, italics markups that
indicate which of the two graph-formation approaches is more effective almost
always appear in rows corresponding to the original implementation of our
algorithms.)

5.2.2.5 Nonstructural Reranking. So far, we have discussed the use of
graph-based centrality as a reranking criterion, the idea being that relation-
ships between documents can serve as an additional source of information. Our
best empirical results seem to be produced by using the weighted formulation
given in Equation (3) from Section 3.3:

C en(d; G) · pd(q).

Since in this equation C en(d; G) can be regarded as a “prior” on documents, it
is natural to ask whether other previously-proposed biases on generation prob-
abilities might prove similarly useful. The comparison is especially interesting
because these biases have tended to be isolated-document heuristics; we thus
refer to their use as a replacement for C en(d; G) as nonstructural reranking.

Document length has been employed several times in the past to model
the intuition that longer texts contain more information [Hiemstra and Kraaij
1999; Kraaij and Westerveld 2001; Miller et al. 1999]. We refine this hypoth-
esis to disentangle several distinct notions of information: the number of to-
kens in a document, the distribution of these tokens, and the number of types
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Table VII.
Comparison between our use of language-model-based structural-centrality scores in Equation (3)
vs. nonstructural reranking heuristics. For each evaluation setting, italics mark improvements
over the default baseline of uniform centrality scores, stars (*) indicate statistically significant dif-
ferences with this default baseline, and Bold highlights the best results over all eight algorithms.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

uniform (= init) .457 .432 .596 .500 .456 .691 .536 .484 .748

W-In .511∗ .486∗ .630 .516 .464 .703 .560 .500 .787
R-W-In .531∗ .492∗ .630 .560 .460 .676 .572∗ .496 .747

length .416 .414 .551 .472 .414 .642 .480 .446 .694
log(length) .453 .432 .606 .496 .468 .692 .552 .484 .717
entropy .461 .425 .608 .496 .468 .717∗ .544 .486 .722
uniqTerms .420 .413 .560 .492 .442 .712 .508 .456 .698
log(uniqTerms) .459 .423 .608 .496 .472 .700 .544 .490 .723

(“Salvador Salvador Salvador” contains three tokens but only one type). Thus,
as substitutions for centrality in this expression, we consider not only docu-
ment length, but also the entropy of the term distribution and the number of
unique terms, the latter statistic having served as the basis for pivoted unique
normalization in Singhal et al. [1996]. As baseline, we took the initial retrieval
results; note that doing so corresponds to using a uniform bias, or equivalently,
using no bias at all.

As can be seen in Table VII, taking the log of token or type count is an
improvement over using the raw frequencies, often yielding above-baseline
performance. The entropy is more effective than raw frequency of either tokens
or types, and in one case leads to the best performance overall. However, in the
majority of settings, structural reranking gives the highest accuracies.

6. CONCLUSION

For search engines, obtaining high precision at the top ranks of a retrieved list
of documents is of utmost importance. In this article, we have adapted ideas
from Web retrieval to settings with no hyperlink information to improve this
precision. We have proposed and evaluated a number of methods for struc-
tural reranking (reranking an initially retrieved list based on interdocument
similarities) using inter-document generation relationships based on language
models. Our experimental results demonstrate the effectiveness of our methods
in improving performance over that of the initial ranking upon which reranking
is performed; moreover, one of our most effective methods posts performance
that favorably compares with that of a state-of-the-art pseudo-feedback-based
query expansion approach. Further analysis revealed that generation rela-
tionships seem more effective within our centrality-computation framework
than relationships based on vector-space proximity, and that using interdoc-
ument relationships seems to be a promising alternative to employing the
isolated-document heuristics we implemented (several of which were novel to
this study).
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APPENDIX

A. RELEVANCE MODEL

The relevance model approach [Lavrenko and Croft 2001] is based on the as-
sumption that there is an underlying relevance language model R that gener-
ates the the terms both in the query and in the relevant documents. We follow
Lavrenko and Croft [2003] and estimate R from documents in Dinit using the
Independent Identically Distributed approach; the resultant relevance model
is known as RM1.

Specifically, we use Jelinek-Mercer smoothing to estimate the probability
assigned by a language model induced from document d ∈ Dinit to term w:

p̃ JM[β]
d (w)

def= β p̃ MLE
d (w) + (1 − β) p̃ MLE

C (w).

(β is a free parameter; refer back to Section 3.4 for details about the MLE
estimate.)

We can then define the relevance language model R as:

p̃R(w; β)
def=

∑
di∈Dinit

p̃ JM[β]
di

(w) · p(di|q), (6)

where for document d ∈ Dinit we write (assuming q = q1, . . . , ql, where l is the
query length):

p(d|q) = p(d)
∏

j p̃ JM[β]
d (qj)∑

di∈Dinit
p(di)

∏
j p̃ JM[β]

di
(qj)

,

and set p(di) to a constant, thereby assuming a uniform distribution over doc-
uments.

While p̃R(·; β) is a probability distribution defined over the entire vocabulary,
it is a common practice to clip it by using only the γ terms to which the highest
probability is assigned so as to result in improved performance [Connell et al.
2004; Cronen-Townsend et al. 2004; Metzler et al. 2005; Diaz and Metzler
2006]. We denote the resultant clipped model—obtained after normalization is
performed to yield a valid probability distribution16—as p̈R(·; β, γ ).

An additional step that has recently been suggested [Abdul-Jaleel et al.
2004; Diaz and Metzler 2006] for preventing query drift [Mitra et al. 1998] is to
anchor the relevance model to the original query by interpolation; the resultant
interpolated relevance model (RM3) is defined as:

p̈IR(w; β, γ, η)
def= (1 − η) p̃ MLE

q (w) + η p̈R(w; β, γ ), (7)

where η is a free interpolation parameter. We can then rank all the docu-
ments in the corpus by their KL divergence from the interpolated relevance
model D( p̈IR(·; β, γ, η) || p̃ [μ]

d (·)) [Lavrenko and Croft 2003]; we refer to this
implementation as Rel Model. (μ is set to 2000 as in all our algorithms.)

16We used Lemur’s implementation of the relevance model. As the implementation does not perform
normalization of term probabilities after clipping, we introduced such normalization. We note that
both approaches of normalizing and not-normalizing have merits.
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Since our structural reranking algorithms rerank only the initial list, Dinit,
we also examine the performance of using the interpolated relevance model
for reranking only documents in Dinit and refer to this implementation as
Rel Model(Rerank).

We select the values of the free parameters on which Rel Model
and Rel Model(Rerank) are dependent, namely β, γ , and η from
{0.1, 0.3, 0.5, 0.7, 0.9, 1}, {25, 50, 75, 100, 500, 1000, 5000, ALL} (“ALL” refers to
all terms in the vocabulary, that is, no term clipping is performed) and
{0.1, . . . , 1} respectively.
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