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ABSTRACT 
Search engines are continuously looking into methods to allevi­
ate users' effort in finding desired informalion. For this, nIl major 
search engines employ query suggestions methods to facilitate ef­
fective query formulation and reformulation. Providing high qual­
ity query suggestions is a critical task for search engines and so 
far most research efforts have focused on tapping various informa­
tion available in search query logs to identify potential suggestions. 
By relying on this single source of information, suggestion provid­
ing systems often restrict themselves to only previously observed 
query sessions. Therefore, a critical challenge faced by query sug­
gestions provision mechanism is that of coverage, i.e., the number 
of uniquc queries for which users arc providcd with suggestions, 
while keeping the suggestion quality high. To address this problem, 
we propose a novel way of generating suggestions for user search 
queries by moving beyond the dependency on search query logs 
and providing synthetic suggestions for web search queries. The 
key challenges in providing synthetic suggestions include identi­
fying important concepts in a query nnd systematically exploring 
related concepts while ensuring that the resulting suggestions are 
relevant to the user query and of high utility. We present an end­
to-end system to generate synthetic suggestions that builds upon 
novel query-level operations and combines information available 
from various textual sources. We evaluate our suggestion system 
over a large-scale real-world dataset of query logs and show that 
our methods increase the coverage of query-suggestion pairs by up 
to 39% without compromising suggestion quality or utility. 

Categories and Subject Descriptors 
H.3.3 lInforrnation Search and RetrievalJ: Query formu­
lation 

General Terms 
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1. INTRODUCTION 
Search engines provide a variety of tools to assist users ill better 

formulating their infonnation needs. Examples include, sugges­
tions for query completion. spell corrections and query reformu­
lation. Among these, post-s'uomd q-uer:1J 'f'ejm'lnulai'ion sugges­
tions. typically found in the left-column of n search engine's re­
sults page, focus on providing follow-up queries related to a user's 
original query. These suggestions can be categorized as: (l) spe­
cializations that expand the original query by adding terms, (2) 
ge.n,e.ralizat'ions that drop terms from the original query, ;:md (3) 
lo.t(;T(J.ls that suggest alternatives related to the original query and 
do not lexically overlap with the original query (e.g., suggesting 
'myspace' to 'facebook'). 

Generating query suggestions has been the focus of several past 
research efforts [8, 13, 25, 29, 35[ (see Section 7). Virtually all 
query suggestion techniques strictly depend on search query logs to 
discover query suggestions with sufficient statistics. Particularly, to 
mille lateral suggestions, the primary source of infonnation is past 
useT sessions, i.e., sequence of queries issued by a single user 
within a specific time window r41. Unfortunately, relying on query 
session logs can reslrict the coverage of queries for which post­
submit suggestions are available: It is well known that the query 
dislribulions in web search are heavy tailed. To be more precise, in 
the query logs of a major search engine, we found thnt about 30% 
of unique queries thal are observed in a given month are queries 
that were not seen within the past year before that month. User ses­
sion logs are even further infrequent: in our experiments, we mined 
user session logs to derive lateral suggestions and over a random 
sample observed that 26.6% of unique queries have more than 5 
suggestions, and 7.4% have between 1 and 4 suggestions, and the 
biggest portion is the queries with no suggestions that constitute 
66% of the unique query traffic' 

In this paper, we look into bllildinq 8ynthctic qncTy Tcfo,mu­
lation suqqc8/ion8, i.e" suggestions that are not solely based on 
past user sessions. Our work is motivated by the following obser­
vation. Consider a simple query such as 'superellts ne\v jersey' for 
whieh no suggeslions were provided by all major search engines. 
By appropriately tokenizing and relaxing tIns quelY, \l,'e may ascer­
tain that 'supercuts' can be substituted by 'great clips' or 'fantastic 
sams' or 'cost cutters: Further, by appending the context 'new jer­
sey' from the original query, we C"ill generate query suggestions 
such as 'great clips new jersey' or 'fantastic sams new jersey.' In 
line with this example, we are adding a forth category of sugges­
tions which can be regarded as p(ut'ially lateral, where we break 
the query into segments and make a lateral move of the parts. such 
as suggesting 'buca di beppo nutrition information' for 'macaroni 
grill nutrition information', or 'tampa bay fisheries' for 'tampa bay 
agriculture.' 
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The above example underscores severdl interesting ehi.lIlenges 
(hat need [0 he addressed. Fin;l, genemting flOst-suhmi( query sug­
gcstions diffcrs from the f<lsk of query rewriting 13. 9, 16,22, 26, 
33, 341 which has mostly focused on rewriting queries 10 improve 
scarch rcsul lS. Gcncrating quc-ry suggcstions diffc-rs from qucry re­
writing in (hal we are now also interested in refonnulmions that 
are scmantically related but not idcntical to the original qucry. For 
instance, for the user query 'tampa bay fisheries' we may provide 
' tampa bay agriculture ' as an interesting (lateral ) query suggestion; 
however, lhis reformulmion would not be considered for tlle lask of 
improv ing search results since the latter query brings about differ­
ent search results. Second, candidates [or applying lfansfonmnions 
need to be systematically identified. For instance, given the query 
'supercuts new jersey' not all terms (e.g., 'new') can be substituted 
by related terms. Third , exploring synthetic queries can lead to 
suggestions that are not 'well-formed' or suggestions that are not 
semanti<.:alJ y re lated to the user query. For instance, for the query 
'tampa hay fishe.ries' we may genemte 'tampa tribune fisheri es ' af­
rer identify ing ' ramp" bilY' and ' tampa lribune' as rehlted concepts. 
The resulling suggestion is however garbled and should be pruned. 
Finally, most qucry re-writing tcchniques consider query refonnll­
Imion on u single query basis and do nO( account for the lttilit.v 
of the suggestion set as a wholc. For instance, Ihe query ' hawaii 
sunset picmIes ' could be refonnubted as 'hawaii sunsel phO(os' or 
' hawaii sunset images'; while these- suggestions are well-fo rmed 
and relevant to the Original query. they are less likely lO differ in 
their result sets and thus in tum yield a low utility suggestion set. 
Note tllal Ihis is not an issue when rewriting queries Lo improve 
search result s. 

To address these challenges, we develop an end-to-end system 
(see Figure I) for synthesizing query suggestions. Our approach 
relies on a vari ety of query transformations over the original query 
in order to systematica lly explore candidates for query suggestions. 
As a key contrihution, these generation methods do not solely rely 
on past user s~ssion s but instead using query logs as a guide con­
siders in conce·lt several sources such <1... .. individm.ll queries (i.e .. 
queries not restricted hy a session) in query logs, semantic infonna­
(ion from web p<lg~. and search resulls page. Given a set of c;.mdi­
date suggestions, wc propose a holistic ranking mechanism which 
mkes into account sugge-stion's (a) wcll-/ormcdncss, (b) relevance 
to the original query, and (c) ulili ly to the user given O(her sugges­
Lions. In summary, our main contributions are as follows: 

• A general framework for syni!tesizinn suggestions for query 
reformulations that goes beyond query session logs. 

• A variety of query transformations to systematicall y generate 
suggestion candidates (Sections 2 and 3). 

• A holi stic suggestion ranking technique that focuses on sug­
gestion quality and utility (Section 4). 

• An ex tc.nsivc experimental evaluation that includes user s(ud­
ies and real-world datasets (Section 5 and 6). 

2. RELAXING USER QUERIES 
Query suggestions is an <Jssistance technique provided hy search 

e-ngines where given;] user query q the search engine returns an 
ordered set S of suggestions for follow-up queries. For ,I large 
fraetioll of queries (e.g .. _ tail querics), providing query suggesrions 
is challenging si nce lIscr session Jogs may not con tain suffic ient 
information. Our goal is to build for such queries all ordered set 
of S of useful suggc.stions for follow-up queries that are rclevant to 
the user's original mission. 

Input query 

Suggestion set 

m:::::. .:.1nqapore 

! 
~h.-; t.V'In.-;: t. o;:n'J" porf> 
f11c .cal L'::'- ::'-Of:<:L':':::>n Lhcr-"f"Y 

sbs bJS gt:ide 

Sb,9 tran ,9:t ,~: ngapore 

m:::~ mi!.p 
I> b.~ b .. 1> 9 c . .i.,k 

Figure 1 : Stages of synthesiz ing quc l'y s uggcst ions. 

Given a query q. we begin by relax ing q to query q' by identi­
fying and eliminating phmscs in q (hat arc not deemcd important 
to the original information sought by the user. The intuition for 
this step is that rare queries oflen conwin exlraneous terms thal are 
not critical to the underlying user intent. Such long queries thus 
suITer [rom Ihe problem of insufficienl query log infonnation [22], 
and by eliminating unimportant terms we can deri ve the root query 
for which we may have richer infonnaLion in the query logs or web 
pages. For example, the term "store" in the query "big lots furniture 
store" does not bring any significant information, hence we could 
relax this query to "big lots furniture" and further to "big lots." 

We formulate the prohlem of identi fyi ng non-critical terms in a 
user query as a sequence labeling problem. More specifically, a 
llser query q is treated as a sequence of tokens x = 1I. 1V.2 ··· 1I.n. 

which needs to he as,-; igned a sequence of lahels y = YiY'J. .. ' 1Jn 
such that Yi E {C : D~. A label of C indicates a cri tical term 
whcreas a label of f) indiea(cs a (crm that can be droppcd from 
the origilli.ll qucry. A promising "ppro<'lch for solving scquence la­
beling problems is Conditional Random Fields (CRFs) f23 l­

Training data: A prac tical challcnge hcrc is gene-rating anno­
hued data consisting of queries whcre each term in the que-ry is 
labeled as C or D. Building large-scale annotated data that com­
prehensively covers a wide classes of queries is ch;1Uenging and 
further such data is not readily available, To address this, we pro­
pose a method to automatically construct annolated data based on 
information available in search quely logs. Our method is based 
on the observation that users often reformulate their queries when 
their original query did not lead to any interesting search results and 
furthermore, these reformulations conta in important information 
regarding which terms may be replaced (i.e .. dropped terms) and 
which terms may not be replaced (i.e. , criti cal terms). Specifically, 
st.arting with user search queries: we .split them into search sessions 
hy considering all queries that occurred with in a time fmme of 15 
minutes. Within a query sess ion, we look at suhsequent queries 
such that (.1) the queri es differ by one term. (b) the fi rst query did 
not lead to clicks on any of the resul ts. indicating an unsuccessful 
query or uninteresting se,lrch results page, (c) the second query led 
to at least one cl ick on the resul ts, indicating a potentially inler­
esting scarch rcsult.;; page. GivclI a query pair /11: Q2. we- label aJJ 
lenns that are common to both queries as C and (he terms that were 
removed [rom </1 \ .... hen generating (/2 as D. 

Features: We uscd a combinati on of featu res inCluding lcxical-, 
query-logs-frequency-, and dictiomuy-based features derived from 
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description 

frequency of t; 
st.andalone frequency of ti 
pain-visc nnlLual informalion for (t.; , t.' _ l ) 

is fir st n,une 
is la::;t narue 
is locution 
is !'>top wor d 
is wikipcdia cnll'.,\, 

has digit 
has punctuations 
posit.ion in query 
length 

source 

query Jog:-; 
qucry log!'> 
qucry logs 

dictionary 
dictionary 
dictionary 
dictionary 
wikipcdia 

lexical 
lcxicfil 
lcxicfil 
lexicfil 

Table 1: CRF features for each term ti in a query 
q=t1 ,t2,' ,tn' 

various sources such as three months of query logs of a commercial 
search engine, Wikitxdia, etc. Table 1 describes our feature set 
along with the sources used to derive them. In particular, given a 
query q = h, t2 . ... In along with labels I I : b ... In for each term, 
respectively, we compute the listed feature for each term k Of the 
features shov-/ll in Table 1, the query-logs-based features, namely, 
standalone frequency and pairwise mutual information need further 
discussion. 

The standalonf i:iCOTf:'; tries to caplure whelher a given term is 
an entity or a real-world concept or not: intuitively, a concept (e.g .. 
california, ipod. madonna) should often occur in a standalone form 
among the search query logs. Therefore, among the query logs we 
must find queries of the form q == t i, capturing the fact that users 
are looking to learn more about the given concept. More formally, 
we compute the query-log-based standalone score as: 

*,) = IQ == ti l 
. I queries tha.t conta.in ti I 

(1) 

The pa'irwisfm'lltual inJornwtion (pmi) score is computed for 
a pair of consecutive terms occurring in the query: intuitively, this 
score measures the "cohesiveness" of pairs of tenns (e.g., 'san ti'an­
cisco' would have a high pmi score compared to 'drinking water'). 
More fonnally, we compute the pmi score for a pair (ti. tH I) as: 

(2) 

A simple approach to identify candidates would be to provide 
queries \l/ith high reformulation probability p(qnlqc) as sugges­
tions. This can simply Ix measured over the frequency counts in 
the session logs: 

(3) 

where },(qn, q,,) is the frequency that these two queries arc issued 
by the smne user within a short time frmne (will be refened as 
co-occurrencc hereafter). The problem with using reformulation 
probability as the merit for suggestion candidate generation is that 
a query that is not dependent on qc might have a high reformulation 
probability just because of its high marginal probability. To account 
for this. one can lise pointwise mutual information (PMI) instead, 

'( ) I (!('In,'lc)) 
prn·" (j11, qc =.og !(qc)!((Jn) (4) 

where f(qn) and f(qc) are individual marginal counts. The dif­
ference is that PMI normalizes the reformulation probability by a 
factor of f(qn): hence. it measures the dependency of these t\VO 
queries. One weakness of PMl is that it might become very unsta­
ble for pairs of rare queries. As f(q,J and f(qn) get low. even a 
single coincidental co-occurrence might lead to a high PMI value. 
To account for this, one can use reformulation log-likelihood ratio 
(LLR) instead 1201, 

LLR(qn, qc) = p(qn, qc) prni(qn, qc) + p((jn, 7L) p'm:i(qn, 71J 
+p(71" , q,J pTni(7jn' q,-,) + p(7j" , 7jJ prni(7j" ~ 7jJ 

where 71nex t denotes the set of all queries except qn and similarly 
for q". LLR fixes the stability problem by taking the size of the all 
session data into account. and when the marginal query frequen­
cies f (q,,) and f (q,,) get lower, other terms will start to dominate. 
We generate suggestion candidates using query reformulations with 
T J ,R above a certain threshold optimized empirically. (We \vill pro­
vide details about the session data later in Section 5). Additionally, 
we also apply various 1illers to guard against robots and spam de­
tails of which me out of scope of this paper. 

As an example of applying this co-occurrence-based operator, 
for the query 'acoustic guitar strings', we oblain 'classical guitar' 
as a suggestion candidate after eliminating the term 'strings' from 
the original query. Or for 'cheap vegas hotels resorts', it gives 'las 
vegas specials' after dropping the term 'cheap'. 

3.2 Semantic relations from web corpus where C(:r) is the number of queries that contain term:r and C(:L Y) 
is the number of queries that contain ordered pair Cr, V). 

Upon eliminating terms that are labelled as non-critical, we use Our next method, explores candidates by replacing query terms 
the resulting relaxed queries to generate candidates for query sug- ~y tenns that me distributionalLy similar (~.e., synonym~, sib-
gestions for the original query. Note that the set of relaxed queries hngs, h~~rnyms, etc.) to them. We apply thIS transf~rmatton to 
themselves serves as suggestion candidates. botl~ enUe?1 as w~ll ?s t~e dro~p~d ~uery terms. ThIS transfor-

matIon relIes on distrIbutIonal SImIlzU"lty methods r241 that model 
3. GENERATING SUGGESTION CANDIDATESlhe Distribui'iuua[ IIypothesis [14]: the distributional hypothesis 

We now discuss a suite of algorithms to generate candidates for links the meaning of words to their co-occurrences in text and states 
query suggestions for a query. Our algorithms e:rtend information thal 'wmds that OCC'll',. 'in s'inlilar conte:rts te'nd to havf:'; i:i'imilar 
available in session logs utilizing information from query logs and 'rnuJ.lI,'/,T/,gs. 

web pages to simulate user sessions and derive suggestions. In practice, distributional similarity methods that capture this hy-

3.1 Co-occurreuce in query sessions 
While searching for information, users usually issue related queries 

within a given session [4]. Sometimes they add or drop a term to 
their queries, or sometimes make a lateral move such <1.<'; issuing 
"'nikon d40" and "canon SOd". One rich source for generating sug­
gestion candidates for a given query is to fetch the past session logs, 
and find queries that it is being manually formulated into [20, 29[. 
Tn practice, this rich reformulation data is typically available only 
for frequent queries and thus, we work with the root query obtained 
after query relaxation. 

pothesis are built by recording the surrounding contexts for each 
term in a large corpus and storing them in a tenn-conte:rt ma.­
t'ri:r l24J. Term-context matrix consist of weights for contexts with 
terms as rows and context as columns. and each cell :rij is assigned 
a score to reflect the co-occurrence strength between the term i 
and context j. Methods differ in their definition of a context (e.g., 
text window or syntactic relations), or in thcir means to weigh con­
texts (e.g., frequency, tf-idf, pointwise mutual information), or ul­
timately in measuring the similarity bet\veen two context vectors 
(e.g., using Euclidean distance, Cosine, Dice). We build a term­
context matrix as follows: we process a large corpus of text (e.g., 
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web pages in our case) using a text chunker [241. Terms are all noun 
phrase chunks with some modifiers removed; their contexts are de­
fined as their rightmost and leftmost stemmed chunks. We weigh 
each context f using pointwise mutual information 171. Specifi­
cally, we constmct a pointwise mutual infonnation vector PAIT(w) 
for each term was: PMl(w) = (pmi'Wl ,prniw 2,'" ,pntiwm ), 

where pm-iwj is the pointwise mutual information between tcrmw 

and feature f and i.S deriVed(S: ..... . 

pmiwf = tog En '.·wi;;m .. ) (5) 
i_I c r f' j_l c WJ 

where cwf is the frequency of feature J occurring for term 'W , n 
is the number of unique terms, In is the number of contexts. and 
J.'V is the total number of features for all terms. Finally, similarity 
scores between two terms are computed by computing a cosine sim­
ilarity between their pmi context vectors r311. As an exmnple of 
applying the distributional similarity-based operator, for the query 
'football hall of fmne 2010 inductees ' we generate 'football hall of 
fame 2010 award winners' since 'inductees' and 'award \vinners' 
are distributionally similar phrases. 

3.3 Substitutions from co-clicked URL queries 
Aside from co-occurrences, another dimensionality in the ses­

sion logs that can bring additional valuable information is to con­
sider the queries that lead to clicks to common URLs as in l29J. 
Query pairs with co-clicked URLs can be used to build a 8ub8titu­
tiO'TI,s dictionary. This dictionary can be used to provide alterna­
tives for the root query as well as for providing substitutions for the 
dropped terms in no rnnte.rt-o.wo:rc mo:nner, such that the term 
"turkey" can be substituted \vith "thanksgiving" in the context of 
"recipes" and \l,'ith "turkish" in the context of "embassy" but not 
the opposites. 

To build a substitutions dictionary, we build a query-URL bi­
partite graph with queries and urIs as nodes and an edge q -----> n 
between a query node q and an url node 'U if a user clicked on url 'U 

after issuing query q. To eliminate outliers or noisy data, we only 
retain edges with clickthrough rate (i.e., clicks vs. views) above 
0.01. Using this graph, we identify all pairs of queries that are con­
nected to at least 2 and at most 10 common URLsl. There are two 
things that we have considered while constructing the query URL 
bipattite graph: 

• We removed URLs that are connected to more than 200 queries 
(most of which tum out to be very popular destination pages 
like youtube. com, amazon, com etc.). This prevents us from 
connecting vaguely related queries and bringing in irrelevant 
substitutables. 

• For the URLs from tail domains, we used the domain-level 
information instead of the particular URL. If for a given do­
main, wc have less than 30 unique queries leading to a cliek 
to a URL in that particular domain, we consider this a as a tail 
domain, and define the co-clicks over the domain, instead of 
the particular URLs. We found that this helps for cnriching 
the suggestion sets for tail intents \vithout losing the context. 

When generating suggestion candidates, we simply look into the 
substitution dictionary for all possible substitutions. For cxam­
pie, for the query 'turkey recipes', if the relaxed query is 'turkey', 
\ve look at the substitutables of the dropped term 'recipes' to find 
'roasting times ' , 'stuffing recipe' , 'how to roast' and many others, 

I\Ve decided to use >In llpper boun d h ere >IS welL beca,llse with too 
Tllany common URLs, the query pa.irs a.re start ing to become syn­
onynlOUS ·with <\hnost identical r esult sets, ·which provides <\lmost n o 
utility to the users. This will be detailed ill Section L~L 

and generate the candidates 'turkey roasting times', 'turkey stuffing 
recipe' and 'how to roast turkey'2. 

3.4 Context from original query 
After exploring suggestion candidates of the relaxed query. in 

many cascs it is helpful to push thc dropped tcrm back into the 
query to generate a partially Lateml move. Naturally, this con­
text is only pushed to suggestions without the dropped terms or 
their substitutions. As an exmnple, for the query 'acoustic guitar 
strings ' , we generated' classical guitar' using the co-occurrence­
based operator (Section 3.1) to which we push the term ' strings' 
to generate the suggestion 'classical guitar strings.' This operator 
re-inserts the original query context into the suggestions. 

To summarize, we consider an expanded set of suggestions de­
rived by relaxing the original query as well as using different com­
binations of operators discussed above. 

4. RANKING SUGGESTIONS 
While combining various information sources and text-based op­

erations discussed in the previous section allow us to systematically 
construct c;:mdidates for query suggestions, they may also lead to 
erroneous query suggestions. Specifically, we may have at hand 
suggestions that are garbled; for example, in our experiments, for 
the query 'tampa bay fisheries' one of the suggestions generated 
using co-occurrence data and pushing the dropped term from the 
query was 'tampa tribune fisheries' (the original query was relaxed 
to generate 'tampa bay' for which session co-occurrence data pro­
duces 'tampa tribunc' as a suggestion). Similarly. thc candidate 
suggestions by applying variolls operators may not be relevant to 
thc original query. To addrcss these issues, we build a supcrviscd 
ranking model to decide which candidate suggestions are valid. 

The desiderata for ranking candidate suggestion for a given query 
include: (a)weLl-forrnedne8s of the suggestion (Section 4.1), (b) 
Td evance to the query (Section 4.2, and (c) utility to users (Sec­
tion 4.4). Additionally, we use a variety of lexical and syntactical 
features and train a gradient boosted decision tree (GBDT) [12] 
over this feature space for ranking candidate suggestions. 

4.1 Well-formedness of a suggestion 
In this step, our goal is to demote suggestions that are garbled, 

i.e., that do not conform to a real-world concept or language formu­
lation. For instance, the suggestion 'tampa tribune fisheries' is not a 
a real-world concept and similarly 'marilyn monroe compendium' 
is a garbled suggestion. This is a critical in our setting since the 
suggestions arc 'user-facing': in contrast traditional qucry rcwriting 
methods send rewritten queries to the search engine (i.e., backend) 
whcre thc cngine simply rcturns few or no results in case of poorly 
formed queries. To capture the well-formedness of a suggestion, 
we use statistical la.nquo.qe models \vhich is a probability distri­
bution P( s) over a sequencew1 ,ti') , ... 10m of words expressed 
as:P(tV1, 102,' .. tern) = n;-=-l P( Wi 1101,102, ... ,'1.I"i-1). We use 
an n-gram model which computes the above probability based on 
"memory" of past (n-I) words given as: 

m 

peU'I, tV2," .wm ) ~ II P(lvi lu'i_(n_l) . ,'wi-d 
i=l 

In our experiments, we use a tri;.¥ram model where 

P(w"",wm ) "" II P(WdW i_2),Wi ,) 

' =1 

which is estimated using a nw:rimum likelihood e8tima.tor as: 

2,Vhile gener ating the candidat es we keep the strnctur e of the co­
clicked URI. queries a.nd do not put t he placed t erm into the position 
of the dropped term ( <\~ it would end up w ith lllMly ~arbled sU l-\ges­
tion~ like ' t urkey how to ron.st· 
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((i) 

where C( 10; '2 'Wi lWi) is the relative frequency of observing the 
word 'Wi given that it is preceeded by the sequencc 'U)i_21O'_-I. 

A common problem in building language models is that of word 
sequences that do not occur in the training set used to compute 
quantities in the above equation. In such cases, C(1L'i_2'iUi_1'Wi) 

and therefore J--'(wilwi_2,lL'i_1) equals O. To address this prob­
lem, several smoothing techniques have been proposed that appro­
priately discount the MLE estimates in (6) and use the left-over 
probability mass for sequences not observed in the training dnta. 
Several smoothing techniques have been proposed in the past and 
we use a commonly used method, namely, Kneser-Ney smooth­
ing l2lj. Kneser-Ney smoothing interpolates higher-order models 
with lower-order models based on the number of distinct cm-,.ter:ts 

in which a term occurs instead of number of occurrences of a word. 
Formally. 

\vhere D is a discount factor [21] nnd N(x) is the number of unique 
contexts following tenn x. 

An important observation in our setting is that \ve are dealing 
with potentially valid suggestions that may not occur in the query 
logs. Specifically, since our suggestions are synthetically derived 
we want to incorporate sources other than query logs. With this in 
mind, we build and combine language models from query logs as 
well as web pages. We combine these models as: 

Pe(w3Iw" Hi') = ), , Po (""lw" w,) + (1 - ),)Pw(w3Iw" "',) 

where)" is the interpolation weight optimized on a heldout training 
set. In the ranking step, we use Pc, Po and Vw as features that 
capture well-formedness of a candidate. 

4.2 Relevance to original query 
To assess the relevance of each suggestion candidate to the origi­

nal query, we designed three types of features for each pair of query 
and its suggestion candidate. In this section, we discuss how we de­
rive these features using query logs as well as search results. 

4,2, I Click-vector similarity 
An obvious relevance feature along the lines with the co-clicked 

URL candidate generation method is to look at the overlap between 
the clicked URI,s for each query pair. For a given query, consider 
the following document click-vector over the set of all documents 
cl(q) = [el, (q), el,(q)" .. , t,{g(q)[, where }{ is the number of 
clicked documents. We calculate the cosine similarity between the 
overlapping URLs in the click-vectors of each query and suggestion 
c;mdidate pair as our Iirst relevance feature, 

. cl(q,) . cl(q,) 
5'111",,,, = IIcl(qdllllcl(q,)11 (8) 

This feature by definition is non-zero for the candidates that are 
coming from the co-clicked URL candidate generation method. On 
the other hand, the coverage over other candidate generation meth­
ods is quite low since we are working with synthetic suggestions 
not observed in the past. Note that although this feature relies on 
query logs, it does not require the query and suggestion to occur in 
the same session; later in this section, we derive features that are 
not derived from query logs. 

4.2.2 Context-vector similarity 
A relevance feature along the lines with the distributional hy­

pothesis is to look at the similarity of the distribution of other terms 

R.equire: Conccpt dictional"}T D, CJucry q 
1: Ret.rieve :'let. R of top-k result:'l for q 
2: T = Terms from D contained in R 
:1: Eliminat.e from T t.erms in q 
4: for t.erm tED do 
5: d(t) = number of HoSUltS that t appears 
6: ret) = total rank t.hat. t appears 
7: U(t) = 1("'+1) d(t)1-r(t) 

rI(t) Ie 

8: Set) = d(t) kRlt ) 

9: end for 
10: Get the 20 terms \vith highest score Set) 

Algorithm 1: Algorithm to compuLe the abouLness vector. 

that each query is searched along with. For example, consider two 
queries (ll and (j2, and assume that in the session logs, the most 
frequent queries that include these two queries include "(Ql) down­
load". "(q'l,) download", "install (ql)" and "install (Q2)". From the 
context with which the query is searched together with. it is clear 
that both queries arc software related. 

For a given query, consider the context vector as the frequencies 
of the terms that it is searched along with co( q) = [11, h· ... , ILl, 
where L is the number of co-queried terms in the session logs. Sim­
ilar to above, we evaluate the cosine similarity for a pair of eontext­
vectors of the overlapping context tenns of each query - suggestion 
candidate pair as: 

• CO(ql) . co(q,) 
Sm),,"n',"" = Ilco(qL) 1IIIco(q,) II (9) 

Although this is a useful feature for frequent queries. over a uni­
formly sampled query set the context-vector similarity has a very 
low coverage. In our experiments, many queries in our data set are 
rare (and long) queries that have a very low probability of being 
searched within other queries, and do not have a context vector. 
Furthermore, the suggestion candidates that arc coming from sub­
stitutions from web corpus are not even guaranteed to be observed 
in the query logs, hence context is not defined. 

4.2.3 Web-based aboutness similarity 
So far, we discussed two features based on user query logs (i.e., 

observed data); however, of course, these features are sparse and 
will fail to assess the relevance of rare queries or queries that are 
not observed in the past. In the absence of session logs, one can 
usc the search engine itself and look at the results to determine how 
related two queries are. Specifically, an earlier work by Raghavan 
and Sever r281 compares the ordered result sets reUlrned for each 
query to measure query similarily. Their method requires ranking 
of all documents and 0(1\''2) complexity, where N the number of 
documents. which is intractable for the web search scenario. 

A subsequent approach is given by Fitzpatrick nnd Dent where 
they use the set overlap of the top k documenls [10]. This is a 
tractable solution, however the result set overlap is only good at 
finding almost synonymous queries, and the overlnp drops sharply 
when the queries are related but not (almost) identical. In the 
context of query suggestions, we are not interested in identifying 
nearly identical queries; instead, we need to assign reliable rele­
vance scores to related query pairs as well. For example. although 
they are related and would make useful suggestions for each other, 
'python' and 'ruby' have zero results in common in top 50. Thus, 
a mea<;ure simply based on the search results is insufficient and our 
next feature is captures what the results are about. 

To assess a suggestion's relevance to the query, \ve build an 
abonl.ness vector r61 of the query and the suggestion and com­
pute the similarity between these vectors. An aboutness vector suc-
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cinctly describes a document and is represented as a set of salient 
cnnrr:pts in the document along with their scores. Methods to build 
aboutness vectors differ in their definition of concepts (e.g., terms, 
named-entities, unigrams). In this work, we rely on a pre-built con­
cept dictionary built using the method proposed in r21. Our dictio­
nary consist of 27 million phrasal concepts and nmned-entities ob­
tained from a large web crawl as wel1 as well as query logs and is 
intended to cover most "interesting" phrases on the web. (For steps 
to build the concept dictionary please refer to r21-) 

Algorithm 1 describes our algorithm to compute the aboutness 
vector for a given a query (j using the concept dictionary D. The 
Hnal score S(t) is a function of d(t), the number of documents 
that the term t appears and, R(t) the rank score. R(t) gives higher 
weights to the terms that are contained in higher ranked documents: 
since documents that are ranked higher are more important than 
ones that rank lower, terms that are contained in higher ranked doc­
uments are more important. Given the aboutness vectors of the 
query (jl and the suggestion candidate (j2, we calculate the cosine 
similarity between these two vectors to find the web-based about­
ness similarity 

. ab(q,) . ab('1') 
Slm"b"," ~ Ilab(q,)llllab(Q2)11 (10) 

We found that Sima/lout is quite useful since it can assign reli­
able relevance scores to related queries. For example, for the above 
example, 'python' and 'ruby' have a Simabout score of 0.29, with 
the aboutness terms 'download' 'programming language' and 'im­
plementation' in common. ll1is first may sound lower than ex­
pecled, but note that this is a quite diHicull comparison due to other 
meanings of the queries (snake and gemstone) that occupy some 
portion of the aboutness vector. Hence, 'python' vs 'boa snake' or 
'ruby' vs 'saphire' also have non-zero /hrn'about as well. 

Another good thing about Sinl'uiJol<f is that it has full coverage. 
It can be computed as long as the query returns some results. Al­
though it cannot be computed for zero-result queries, we still con­
sider it as full coverage, since query suggestions with zero results 
cannot be relevant to the user by definition. 

4.3 Suggestions ranker 
In addition to the above, \ve also employ features that capture 

the lexical characteristics of a suggestion such as binary features 
\vhich include, whether the suggestion contains a digit, punctua­
tion, alphanumeric characters, as well as the length of the sugges­
tion. Other family of features include the source that generated the 
suggestion. For instance, the feature SRC. CD is set to I when a 
suggestion is generated using the co-occurrence statistics. Finally, 
we also employ dictionary-based features that check if query terms 
that were dropped, insetted, or left intact belonged to any specific 
category. In pmticular, we use dictionaries to determine if these 
terms arc locations (e.g., city, state, or country), wikipedia entities 
(e.g .. surgery. alzheimer), or stop words (e.g., the. of, an). 

We use Gradient Roosting Decision Tree (GRDT) as the learner 
[12], and pose the problem as a classification of good and bad 
queries. In tlns classification setting, for each test smnple GBDT 
outputs the probability of good. We prune the test samples with 
probability of good less than p(good) < 0.5 and rank the remain­
ing by this probability. 

4.4 Suggestion utility 
The final step is to filter out the low utility suggestions. Of all 

the pieces in the pipeline. there is nothing that ensures that util­
ity of the suggestions, and thus the system may generate irrelevant 
suggestions. e.g., suggestions with no search results. Also, in all 
likelihood, the system can generate query suggestions that are syn-

onymous to the original query, with an almost identical result set. 
We assert that a query suggestion should be presented only if it 
leads to a sufficiently different result set as compared to those ofthe 
original query and other presented suggestions. For this purpose, 
we define a measure of utility of the suggestion q.~ conditioned on 
qp, a query that is already presented to the user, U (qslqp). 

Given q~ and qp, let unr.,~ = [u,~l, .... 'U.~ .. \"l and unr.I' = 

[Upl , .... up.''' 1 be the result sets of these two queries. For the top 
10 URLs in the result page of q.~, we define the examination prob­
ability of the URLs using the rank discounts in the commonly used 
DCG formula [18]. 

1 
p(e(n,,) ~ 11'1.,) ~ d(n'i' q.,) ~ ]og,(ri + 1) (11) 

where T is the rank of the URL and r is a binary random variable 
that shows whether the URL is examined or not. Again for each 
lhi E U RL 8 , we also define the examination probability that the 
user will examine the URI, in the result page of %, as follows. 

p(c(1J~;) = llqp) = 

U.si E fJRL[l' (12) 
b'{d(qr" u",n 2: b'{d(q", H. in 

C URL p . 

< E{d((b H"dJ 
In words, 
• o..,i cannot be observed via qI" if it is not in the result set of 

ql" hence the examination probability is zero. 

• If fJp returns 1I..~i at least as high as q~ does, the examination 
probability is 1 

• If (jp returnsll's1 lower than (js does, the examination proba­
bility of this URL is the ratio of the rank discounts of the two 
corresponding ranks. 

We define the pairwise conditional utility []( (js I (jp) by combining 
(II) and (12) as 

U(q,l"p) ~ 1- L p(c(u) ~ 11",) p(t(u) ~ II"p) (J:J) 
a E UHL~ 

Intuitively, the Iirstterm in the summation gives how important 
this particular URL is for the query (j8' and the second term gives 
hO\v likely it is that the same user \.vould examine this URL in qp, 
with the a.,>sumption that the user would go as deep into the result 
set in qp. Hence, U(qslqp) is, by deIinition is 0 if the results of 
the two queries are exactly the same or (js has zero results. Also, 
U (q~ l(jp) would be close to 0 for queries that share many URLs and 
rank them similarly. After defining U((jslqp), we use the follow­
ing greedy approach to ensure that all suggestions are sufficiently 
different from the original query i1,-" well as each other. 

• Get the ranked suggestion list \vith decreasing scores. 

• For the lirst one in the ranked suggestion list. and put it into 
the final suggestion set if it satisfies U (qslqp) ~ "( where qp 
is the original query. 

• For all remaining queries, get the one with the highest score 
and put it into the final suggestion set if it satisfies U (q~ Iql') ~ 
"( for the original query and al1 queries in the final set. 

User study to select the optimal I value for the utility model is 
presented in Section 6.5. 

Putting it all together, our end-to-end framework systematically 
explores candidate for query suggestions while allmving sugges­
tions that mayor may not lexically overlap with the original query. 
To this end, we proposed a supervised ranking algorithm to elimi­
nate inelevant or low utility suggestions. It is noteworthy that our 
pipeline is amenable to be incorporated in a web search engine 
since it can be run in an offline manner to generate a dictionary 
of queries and their suggestions. 
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5. EXPERIMENTAL SETUP 
Query Set: We collected a random sample of 10{),000 flilly 
anonymized queries sent to Yahoo! search engine in the month 
of August, 2010 along with their frequency. Of these, we identified 
those for which the search engine does not present any suggestion 
and drew a random sample of 10,000 queries biased by their fre­
quency (sec Introduction for query suggestion distribution.) Our 
goal was to capture queries from different quantilcs of this distri­
bution. Note that by nature the queries that the search engine can­
Ilot provide any suggestions aTC vcry likely to be tail queries of 
the overall query distribution. We perfonn lO-fold cross-validation 
over this datasel. 

Distributional similarity filters: For this, we use a collec­
tion of 500 million web pages crawled by a commercial search en­
gine crawL We construct our dislributional similarity database by 
adopting the methodology proposed in r271. We POS-tagged our 
\veb corpus using Brill's tagger [5] and chunked it using a variant 
of the Abney chunker II J. We built a distributional database from 
this chunked corpus using the method outlined in Section 3.2. 

Clickthl'ough data: To generate the co-click graph and com­
pute the co-occurrence log-likelihood ratio, \ve used 6 month of 
anonymized query ciickthrough logs of Yahoo! search engine. The 
co-click graph consists of 2.7M unique queries and 55.6M unique 
URL" in total, withl67.3M edges in between them. The co-occurrence 
data has 4.3M unique (Cle, (]n) pairs for 913K unique (le. 

Compared methods: We are unaware of any existing sys­
tem for synthetically generating suggestions from several candidate 
generation methods and blends them. However, several methods 
for generating suggestions have been proposed, which we use as 
sourccs for candidatc suggcstion gcneration r20, 291. Thercforc, 
we build baseline techniques for comparison using each candidate 
gcncration source: 

• CO+PS:eo-occurrence with pushing the dropped tenus 

• CO :co-occurrenee 

• DS :distributional similaIity of the dropped tenn 

• Q+CK :coclicks of the original query 

• R+CK :coclicks of the relaxed query 

• DS+CK:cociicks of DS 

• CO+CK:cociicks of co-occurrence of relaxed query 

• HYB :hybrid method that combines all 
Note that we allow all the above methods to share the same query 
relaxation techniques and the ranking model. 

User studies: All user studies and manual annotation tasks de­
scribed were performed by a group of eight professional search en­
gine quality evaluators experienced with assessing the quality of 
query suggestions and search results. 

Evaluation method: Professional annotators provided binary 
judgments for the IO/)(X) queries we sampled, good, for the rel­
cvant and useful suggcstions, and bad for thc irrclevant, garbled, 
zero-result. or synonymous (hence useless) suggestions. Annota­
tors werc askcd to input their judgments after looking at thc results 
page and comparing those for the query and suggestion; this is im­
portant to capture the utility of a suggestion. 

Evaluation metrics: We cvaluatc thc pcrformancc of cach sys­
tem using infonnation retrieval measures. namely, precision and 
recall defined as: 

• Precision: Given a list L of suggestions for a query, we 
compute precision as ,·\"wnou' of c(Jn.ttl:(Uqqf s ti (Jn~ in L. We study 

the precision values at varying ranks avcragcd over qucries 
with at least one suggestion. 

~ ~ t-----__ ,-----------------------~ 
.~ 40 t-.r---Ie-----------------------~ 
• 
~w t-.---Ie-----------------------~ 

.~ 20 +-. ---11------------------------1 
~ w t-.---Ie-----------------------~ 

• • • 
Number of suggestions 

Figure 2: Distribution of number of suggestion can­
didates per query. 
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Figure 3: Distribution of number of suggestions for 
each candidate generation source. 

• Recall: Given a list L of suggestions for a query, we com-

pute rccall as 1~~~/t~~~l~~~t~:;~~~:;i~~:~e_~~il:>r~:,:;-ly~,1 whcrc all 
correct suggestions for query is the union of the correct sug­
gestions across all methods. 

6. EXPERIMENTAL RESULTS 
6.1 Coverage of extended suggestion pool 

Our main goal is to increase the coverage of the queries for which 
useful suggestions can be provided to the users. Thus. our first 
experimcnt studies the incrcasc in this coveragc along various di­
rections. Note that our experiments consisted only of queries for 
which a commercial scarch cngine docs not providc aniJ suggcs­
tions and therefore results reported in this section naturally trans­
late to an increase in lhe coverage of queries with suggestions. (Im­
plementation details of this suggestion service are proprietary and 
OLlt of scope of this paper.) Figure 2 shows the distribution of the 
total number of suggestion candidates explored by our candidate 
generation methods per query. As we can see, our proposed query 
suggestion generation methods provide a large set of candidates. 
We further break down the suggestions by the source in Figure 3, 
and see that all methods have some substantial contributions. and 
some of them like CO, CO+CK, CO+PS and DS are contributing 
mueh more than the others. 

To investigate the quality of the suggestion candidate pool, we 
look at the number of good suggestions per query in Figure 4. Be­
fore thc pmning and ranking stagc, 24% ofthc qucrics have at least 
one good suggestion candidate. This is encouraging since the query 
set ,vas sampled from thosc with no suggestions, which constitutes 
66% of the unique query traffic. We again break down the good 
suggestion distribution into individual sources. Among the most 
contributing sources there is the co method, investigated earlier 
by Jones et al. [20], and three other candidate sources that we pro­
posed in this paper provide good suggestions almost as much as that 
one. Also. all of the sources have some substantial contribution. 

6.2 Quality of extended suggestions 
Wc nO\v evaluate thc quality of the ranked lists for cach source. 

Each list is run through the well-fonnedness, relevance, and utility 
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query suggestions 
fr ee auLo jxnls manua 
ruinneapolie; days inn 
mllscu ar sysLcm (" lag;null 

auLa )O( y parLs, (" iscollnl allLo pans, aula parL SLores 
lninlle<lp~lic; COlnfor t inn, lninn eapolic; motel 0, minneapolis e;Up er b, lninneapolic; bee;t we;;tern 
111n1an I" 'C cla sysLcm (" iag;nllll, circlI aLar,), s,ysLem iagr aln , Hllnan muscu ar s,vsLell1, I" ·c cla anaLollly 

puppy training 101 
csi crinlC scene invesliKalion casl 
honda. insight review 

do,\!; trainin,'2; bac;ice;, puppy houe;ct-raining, dog whic;pcrcr, puppy training t ipc; 
csi -mimlli C~SL, COli new yoI' c cal'll, csi episo e gllk e, C )1" csi Iniami 

o )sessive conlpn sive ( isor er symptoms 
ford hmion review, 2()"IQ toyota prim;, toyota prim; r eview, honda civic hy brid 
oc test, ocr symptoms, causes of oC(, oc treatment, s;v-mptoms of oc 

Table 2: Examples for query suggestion pairs 
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Figure 4: Number of good suggestions per query. 
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Figure 5: Distribution of good suggestions for each 
candidate generation source. 

filters and for fairness, all sources share the same CRF relaxation, 
relevance thresholds. 

Table 2 lists a few sample suggestions generated for our test 
queries. Figures 6 and 7 shmv the average precision and recall, 
rcspcctively, of thc ranked list produccd by the GBOT modcl Wc 
see that some of the sources like Q+CK are quite precise, but their 
rccall as wcll as thc dcpth of thc rankcd list is very low. co and 
CO+CK are the ones with the highest recall . also they can provide 
up to 8-10 suggestions per qucry. 

It is noteworthy that the precision for HYB is computed over more 
samples than those for the baseline since HYB produces the longest 
list of suggestions (see Figure 7). This. in tum, results in less vari­
ance of the precision values as compared to the baselines. In Figure 
7. we observe that the recall for HYB is additive over the baselines, 
i.e., individual sources. The overlap between the suggestion can­
didates generated by ench source is low with each source bringing 
in different and valuable candidates. Figure 8 gives the average f­
measure over the suggestions set at each rank for all sources. As 
expected, HYB outperforms all individual sources including the 
earlier methods co l20J and Q+CK, R+CK l29j. 

HYB in Figure 8 generates a relatively long list with 10 or more 
suggestions; in practice typically k = G). If the desired size k is 
known a priori. one can tune the ranking stage to optimize for the 
precision and recall up to that k value. For example, if a deep list is 
not nccded, the aim might be to display 0. single sU.Il.qeslion per 
qu.ery. and increase the qu.a.lity as much as possible. This is 
perfectly rea<;onable. The exact number of suggestions to be dis­
playcd is a dcsign choicc: depcnding on whcre on thc pagc thcy 
will be displayed, too many suggestions might distract the user. 

.~~~~~~--------, 

-iii- co+ps ....... DS+CK 
_ DS ....... CO+CK 

-+- Q+CK ..... HYB 

o"L -:----;-----:------o~~~, 
Rank 

Figure 6: Mean precision at varying ranks . 

Rank 

Figure 7: Average recall at varying ranks. 

For this scenario, to optimize the f-measure at the top position, one 
can tune the GBDT confidence threshold, and compromise for the 
precision and recall at the lower ranks to improve the precision and 
rccall at rank 1. Scc Figurc 9 for a comparison of thc f-mcasurc for 
top 5 ranks for varying relevance confidence threshold levels. For 
example with thc thrcshold 0.8, onc can incrcasc thc f-measurc at 
rank 1 vcry significantly to 0.82, by compromising thc dcpth ofthc 
list; hence, the recall (and therefore the f-measure) decays much 
more sharply [or increasing ranks as compared to the values with 
the threshold 0.5 -the black curve in Figure 8. 

In summary. if a deep list is not needed, \vith a more strict rele­
vance confidence threshold HYB can provide a ranking with 0.83 
recall at rank 1. 0.56 recall at rank 2. 0.83 precision at rnnk 1. 0.85 
precision at rank 2 and an average list length of 1.4. Precision value 
at rank two is 0.85. which is at the same level of quality of the sug­
gestions that the search engine can provide for frequent queries via 
~xisting techniques -some of which we use as sources. Recall the 
distribution over the suggestion coverage provided in the Introduc­
tion section; 26.6% of unique queries have more than 5 sugges­
tions, and 7.4% have between I and 4 suggestions, and 66% of the 
unique query distribution has no suggestions. It is remarkable that 
BYB with rclevancc thrcshold Ievcl 0.8 can incrcasc the covcrage 
of qucrics with at least onc good suggcstion from 34% to 47.2% of 
the unique query distribution , hence brings a coverage increa<;e of 
39% without compromising precision. 
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Figure 8: Average f-rncasurc at varying ranks 

6.3 Query relaxation performance 
After comparing each source, we now evaluate individual com­

ponents in the pipeline slarting with the CRF model [rom Section 2. 
Our evaluation of ti1e proposed CRF model is two-fold. For our 
first evaluation, we ran lO-fold cross-validation and compared our 
model against a baseline method that eliminates the last term in 
the query. Table 6.3 compares these methods and shmvs that us­
ing a CRt' model substantially improves the precision (15% gain) 
\vith a small amount of drop in recall (2(/0). Our second evaluation 

method precision recall 

CIlt' 0.82 0.87 
l3aseline 0.71 O.S9 

Table 3: PCl'forrnancc of query relaxation method. 

involved a user study where annotators were provided the queries 
for which the CRF had droppcd atleast onc term. Annotators werc 
asked to label (a) whether a query contained a non-critical term, 
(b) whether the CRF selected the correct term to drop. Of these 
queries 709(, of queries did have a non-critical term, and for these 
queries CRF selects the correct term 81 % of the time. Finally, a 
feature analysis of the model showed that the stand-alone ratio is 
consistently the most important feature in all 10 runs. 

6.4 Feature analysis of suggestion ranker 
To better understand the importance of various features used in 

our ranking model (Section 4.3), we examined for each feature the 
coverage as well as the importance ranking noted by the GBDT 
model. An encouraging result is that the GBDT feature importance 
ranking was consistent and thus stable across individual runs in our 
I O-fold cross-validation. Specifically, in all 10 runs S'im'(J/)(mt is the 
most important fcaturc. Also. wcb and combincd language model 
scores P w and Pc , and Simdick are consistently among the top 
five most important features. Not surprisingly, the most important 
features are the ones \l,'ith higher coverage, Simaoout with full cov­
erage, combined (71o/c}) and web (66.900 language model scores. 
The one with the smallest coverage mnong the most important fea­
tures is 8imd ick with 17.5%. Also. lexical features seem more 
important than the source features overalL 

6.5 Utility model performance 
Finally, \ve discuss the performance of our utility model (Sec­

tion 4.4). To select an optimal ~l value. the threshold by which we 
decide to remove the query suggestion from the set due to redun­
dancy, we camed out a user study where annotators were given 500 
randomly selected pairs of queries and their suggestions. Annota­
tors were asked ifthc suggcstion is uscful or redundant for thc given 
query. Figure 10 shows U(q~lq]J) value versus the editor grade 
(a noise jitter is added into the editor grade for a better visualiza­
tion), along with the precision-recall curve of U (q8Iqp) for varying 

; , 
Rank 

....... 0.2 
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-+- 0.6 
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Figure 9: Average f-measure for varying relevance 
confidence threshold, 

~l values. For this model, we decided to use "i = 0.70. which corre­
sponds to 0.94 precision and 0.67 recall on this dataset, as marked 
in Figure 10. In our experiments, the utility model removes low 
utility suggestions such as "cooking channel tv" -----> ;;eooking chan­
nel television", "tmnpa bay fisheries" -----> ;'tmnpa bay fishery". 

Figure 10: Utility estimate U(qslqp) versus the editor 
judgment (left), and precision recall curve of U(qs Iqp) 
with the operating point at '"";/ = 0.70 and the precision 
recall curve of the baseline (majority) classifier, 

7. RELATED WORK 
Providing query suggestions: Research on query sugges­

tion methods have largely relied on observed queries and developed 
similarity measures based on these observations. In III J associa­
tion rules are used to mine query recommendations from queries in 
individual uscrs' scarch sessions which are defined as fixed length 
periods of interaction. In contrast [36[ builds a graph representa­
tion of the of the sequential search queries and combines it with a 
content based similarity method to account for the sparsity of the 
query logs. These methods simply mine query reformulations from 
observed queries. Other methods leverage the click infonnation, 
as well. Tn r291 , a query similarity measure is developed based on 
term-weight vector space representations of the queries and clicked 
URLs. QuelY tenn and click pattern overlap is used in r351 to de­
velop query similarity measures in order to cluster user queries. 
Random walks on query-click graph is used by [8]. Slightly dif­
ferently, Markov R;mdom Field models nre used over the query­
click graph to generate bid terms in [13]. In [25], query-click graph 
based random walk techniques are fUl1her refined by considering 
the time to first visit to a query node. Main shortcoming of the 
query recommendation methods listed above is the limitation of 
suggestions to observed queries. This works fine for the frequent 
queries but not so well for the rare queries in the tail. 

Earlier methods of generating alternative queries also included 
query expansion by pseudo-relevance fe·edback where additional 
query terms arc obtained from the documents retrieved by the orig­
inal query. Thcsc tcrms are used to expand the original qucry to 
retrieve more specific documents. Limitations of this method such 
as query drift arc well documented [301. Query term deletion has 
been tried in [191 but it leads to loss of specificity. In r321, query 
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term substitution is considered using the retrieved documents, and 
in l2J user input is sought for selecting appropriate related terms, 
but these methods add an additional step to query reformulation. 
Automatic term substitution using query logs is considered in [201, 
however a non-contextual query segmentation is used leading to 
many marginally useful refonnulation candidates. Their filtering 
method also lacks a language model, so it docs not have the right 
infonnation to separate well-fonned queries ii'om illegible ones. 
This is probably acceptable for bid term generation for ad match­
ing but not so for query suggestions to be offered to a search user. 

Earlier work has explored comparing information from query 
logs and other textual sources [15, 9]. Closest to our \vork is Lhe 
method in [9] which examines anchor text in web pages solely 
for the ta,<.;k of query suggestions. Interestingly, Dang and Croft 
show that suggestions generated using anchor text are comparable 
to those generated using query logs. This work builds an alter­
native to query logs using web pages whereas our work uses web 
and additional textual information to crtr:nd query session logs, es­
pecially for rare queries. Further, our proposed method explicitly 
handle the case of lateral query reformulations. Recently, Szpektor 
et al' r171 shmved how templates can be used to provide sugges­
tions for rare queries: our work considers the generic problem of 
providing suggestions for aniJ rare query. 

Re-writing long queries To improve the perfonnance of 
search engines on long queries (or tail queries), several prior re­
search efforts have looked into query re-writing via term substitu­
tion or tenn reduction r3, 9, 16, 22, 26, 33, 341. \¥bile these prob­
lems are well-studied and have shown signiIieant improvements in 
performance on TREC data, their utility on web environment is not 
\vellunderstood. Long query re-writing is conceptually related to 
our candidate generation step; however, a critical difference is that 
\ve focus on generating query reformulations to be offered a8 an 

ordered 8et to the user instead of improving search results. In our 
setting, we need to consider non-lexically overlapping yet seman­
tically related query reformulations as well as consider the quality 
and utility of a 'user-facing' suggestion set as a whole. 

Identifying key concepts in queries: Finally, identi­
fying key concepts in the context of search queries has also been 
extensively smdied over TREC data and over search engine logs 
to some extent [3 [. Conceptually, this is related to our query re­
laxation step, hO\vever our end-to-end approach considers the web 
search setting and uses complements such methods with algorithms 
to generate and rank candidate suggestions. 

8. CONCLUSIONS 
Tn this paper, we presented a supervised learning-based end-to­

end framework to synthesize query suggestions offered to semch 
engine users as follow-up queries. Our technique uses query logs 
as a guide to capture user search and intent behavior and lever­
ages information available in web pages, search results, as well as 
click logs to derive suggestions, We systematically decompose a 
query and apply varioLis transformations to automatically generate 
suggestion candidates and propose a ranking method that incorpo­
rates language models and other useful features to select high qual­
ity suggestions. We show that our system increases the coverage 
of unique queries with at least one good suggestion from 34% to 
47.2%, leading to a 39°fc, increase by high quality suggestions. 
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