Synthesizing High Utility Suggestions
for Rare Web Search Queries

Alpa Jain
Yahoo! Labs
alpa@yahoc-inc.com

ABSTRACT

Search engines are continuously looking into methods to allevi-
ale users’ ellort in linding desired information. For this, all major
search engines employ query suggestions methods to facilitate ef-
fective query formulation and reformulation. Providing high qual-
ity query suggestions is a critical task for search engines and so
far most research efforts have focused on tapping various informa-
tion available in search query logs to identify potential suggestions.
By relying on this single source of information, suggestion provid-
ing systems often restrict themselves to only previously observed
query sessions. Therefore, a critical challenge faced by query sug-
gestions provision mechanism is that of coverage, i.e.. the number
of unique queries for which users arc provided with suggestions,
while keeping the suggestion quality high. To address this problem,
wc proposc a novel way of generating suggestions for user scarch
queries by moving beyond the dependency on search query logs
and providing synthetic suggestions for web scarch querics. The
key challenges in providing synthetic suggestions include identi-
[ying important concepts in a query and syslemaltically exploring
related conceptls while ensuring that the resulling suggestions are
relevant to the user query and of high utility. We present an end-
to-end system to generate synthetic suggestions that builds upon
novel query-level operations and combines information available
from various textual sources. We evaluate our suggestion system
over a larze-scale real-world dataset of query logs and show that
our methods increase the coverage of query-suggestion pairs by up
to 39% without compromising suggestion quality or utility.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Query formu-
lation

General Terms

Algorithms, Design, Experimentation, Measurement

Keywords

Query recommendations, search query logs, rare queries

Permission te make digital or hard copics of all or part of this work for
persenal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commereial advantage and that copics
bear this notice and the (ull citation on the licst page. Te copy otherwise, Lo
republish, Lo post on servers or W redistribule o lists, requires prior specilic
permissicn and/or a lee.

SIGIR’11, July 24-28, 2011, Beijing, China.

Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...510.00.

Umut Ozertem
Yahoo! Labs
umut@yahoo-inc.com

805

Emre Velipasaoglu

Yahoo! Labs
emrev@yahoo-inc.com

1. INTRODUCTION

Secarch cngincs provide a varicty of tools to assist users in better
formulating their information needs. Examples include, sugges-
tions for query completion, spell corrections and query reformu-
lation. Among these, post-submit query reformulation sugges-
tions, typically found in the left-column of a search engine’s re-
sults page, focus on providing [ollow-up queries related (o a user’s
original query. These suggestions can be categorized as: (1) spe-
cializations that expand the original query by adding terms, (2)
generalizations that drop terms from the original query, and (3)
laterals that supgest alternatives related to the original query and
do not lexically overlap with the original query (e.g., suggesting
‘myspace’ to ‘facebook’).

Generating query suggestions has been the focus of several past
research efforts [8, 13, 25, 29, 35| (see Section 7). Virtually all
query sugeestion techniques strictly depend on scarch query lags to
discover query suggestions with sufficient statistics. Particularly, to
min¢ lateral suggestions, the primary source of information is past
user sessions, L.e. sequence ol queries issued by a single user
within a specific time window [4]. Unfortunately, relying on query
session logs can restrict the coverage ol queries [or which post-
submit suggestions are available: It is well known that the query
distributlions in web search are heavy tailed. To be more precise, in
the query logs of a major search engine, we found that about 30%
of unique queries that are observed in a given month are queries
that were not seen within the past year before that month. User ses-
sion logs are even further infrequent: in our experiments, we mined
user session logs to derive lateral suggestions and over a random
sample observed that 26.6% of unique queries have more than 3
suggestions, und 7.4% have between 1 and 4 suggestions, and the
biggest portion is the queries with no suggestions that constitute
66% of the unique query traffic.

In this paper, we look into building synthctic query roformu-
lation suggeslions, 1.c.. suggestions that are not solcly bascd on
past user scssions. Our work is motivated by the following obser-
vation, Consider a simple query such as “supercuts new jersey’ for
which no suggestions were provided by all major search engines.
By appropriately tokenizing and relaxing this query, we may ascer-
lain that “superculs’ can be substituted by ‘great clips’ or ‘lfantastic
sams’ or “cost cutters.” Further, by appending the context ‘new jer-
sey’ [rom the original query, we can generale query suggestions
such as ‘great clips new jersey’ or ‘fantastic sams new jersey.’ In
line with this example, we are adding a forth category of sugges-
tions which can be regarded as pardially loteral, where we break
the query into segments and make a lateral move of the parts, such
as suggesting ‘buca di beppo nutrition information® for ‘macaroni
erill nutrition information’, or ‘tampa bay fisheries’ for ‘tampa bay
agriculture.




The above example underscores several interesting challenges
that need to be addressed. First. generating post-submit query sug-
gestions differs from the task of query rewriting [3. 9, 16, 22, 26,
33, 34] which has mostly focused on rewriting queries to improve
scarch results. Generating query suggestions differs from query re-
writing in that we are now also interested in reformulations that
are semantically related but not identical to the original query. For
instance, for the user query ‘tampa bay fisheries” we may provide
‘tampa bay agriculture’ as an interesting (lateral) query suggestion;
however, this reformulation would not be considered [or the task of
improving search results since the latter query brings about differ-
ent search results. Second, candidates for applying trans(ormations
need to be systematically identified. For instance, given the query
‘supercuts new jersey’ not all terms (e.g.. ‘new’} can be substituted
by related terms. Third, exploring synthetic queries cun lead to
suggestions that are not “well-formed’ or suggestions that are not
semantically related to the user query. For instance, for the query
‘tampa bay fisheries” we may generate ‘tampa tribune fisheries” af-
teridentifying “tampa bay” and “tampa tribunc’ as rclated coneepts.
The resulting suggestion is however garbled and should be pruned.
Finally, most query re-writing techniques consider query reformu-
lation on a single query basis and do not account for the utility
of the suggcestion sct as a whole. For instance. the query ‘hawaii
sunset pictures’ could be reformulated as “hawaii sunset photos” or
‘hawaii sunset images’; while these suggestions are well-formed
and relevant to the original query, they are less likely o diller in
their result sets and thus in tumn yield a low utility suggestion set.
Note that this is nol an issue when rewriting queries Lo improve
search results.

To address these challenges, we develop an end-to-end sysiem
(see Figure 1) for synthesizing query suggestions. Our approach
relies on a variety of query transformations over the original query
in order to systematically explore cundidates for query suggestions.
As a key contribution, these generation methods do not solely rely
on past user sessions but instead using query logs as a guide con-
siders in concert several sources such as individual queries (i.e.
queries not restricted by a session) in query logs, semantic informa-
tion from web pages. and search results page. Given a set of candi-
date suggestions, we propose a hoelistic ranking mechanism which
takes into account suggestion’s (a) well-formedness, (b) relevance
to the original query, and (c) u/ility to the user given other sugges-
lions. In summary, our main coniributions are as [ollows:

® A general framework for synihesizing suggestions for query
reformulations that goes beyond query session logs.

e A varicty of query transformations to systematically gencrate
suggestion candidates (Sections 2 and 3).

® A holistic suggestion ranking technique that focuscs on sug-
gestion quality and utility {Section 4).

e An cxtensive experimental cvaluation that includes uscr stud-
ies and real-world datasets (Section 5 and 6).

2. RELAXING USER QUERIES

Query suggestions is an assistance technique provided by search
engines where given a user query g the search engine returns an
ordered set S of suggestions for follow-up queries. For a large
fraction of queries (c.g.. tail querics). providing query suggestions
is challenging since user scssion logs may not contain sufficicnt
information, QOur goal is to build for such queries an ordered set
of .S of uscful suggzestions for follow-up querics that are relevant to
the user’s original mission.

806

Input query mxz singapore

(
- Relax input quary s -
Query logs *
sbs tra singapors
= N Gengrate moral r Lion Lherapy
Web dociments J candidate b Wik aiia g
suggestions she bus guide
u nsT mEp
Semantic .
dictionaries SC;J;gZiT%::‘e l

sbs transit
m== map
she bas guide

ﬂ gingapora
Rank and prune
lowr utility
suggastions

\

Suggestion set

Figure 1: Stages of synthesizing query suggestions.

Given a query ¢. we begin by relaxing ¢ to query ¢ by identi-
fying and climinating phrascs in ¢ that arc not deemed important
to the original information sought by the user. The intuition for
this step is thal rare queries oflen conlain extraneous lerms thal are
not critical to the underlying user intent. Such long queries thus
suller from the problem of insulficient query log information [22],
and by eliminating unimportant terms we can derive the root query
for which we may have richer information in the query logs or web
pages. For example, the term “store”™ in the query “big lots furniture
store”” does not bring any significant information, hence we could
relax this query to “big lots furniture” and further to “big lots.”

We formulate the problem of identifyving non-critical terms in a
user query as a sequence labeling problem. More specifically, a
user query ¢ is treated as a sequence of tokens X = iy - -
which needs to be assigned a sequence of labels y = yip2 -« i
such that 33 € {C.D}. A label of C indicates a critical term
whercas a label of 7 indicates a term that can be dropped from
the original query. A promising approach for solving scquence la-
beling problems is Conditional Random Fields (CRFs) [23].
Training data: A practical challenge here is gencrating anno-
tated data consisting of querics where cach term in the query is
labeled as C or 1), Building large-scale annotated darta that com-
prehensively covers a wide classes ol queries is challenging and
further such data is not readily available. To address this, we pro-
pose a method Lo aulomatically construct annotated data based on
information available in search query logs. Our method is based
on the observation that users olten reformulate their queries when
their original query did not lead to any interesting search results and
furthermeore, these reformulations contain important information
regarding which terms may be replaced (i.e., dropped terms) and
which terms may not be replaced (i.e., critical terms). Specifically.
starting with user search queries, we split them into search sessions
by considering all gueries that occurred within a time frame of 13
minntes. Within a query session, we look at subsequent queries
such that (a) the queries differ by one term, (b) the first query did
not lead to clicks on any of the results, indicating an unsuccessful
query or uninteresting scarch results page, (¢) the second query led
to at least one click on the results, indicating a potentially inter-
csting scarch results page. Given a query pair ¢, g2, we label all
terms that are common to both queries as C' and the terms that were
removed [rom ¢; when generating ¢» as D.

gy

Features: We nsed a combination of features including lexical-,
query-logs-frequency-, and dictionary-based features derived from



description source

A simple approach to identify candidates would be to provide

frequency of ¢; auery logs ueries with high reformulation probability p(g 48 sugees-
standalonc frequency of ¢ query logs q S g‘. . P ¥ p( 1”"(‘]() & sugg
pairwise mutal information for (G, t1)  equety logs tions. This can simply be measured over the frequency counts in
1s fyst name dictionary the session IOgS: ( | ) sy f(Qn: fo) (5)
is last name dictionary D\Gulge) = f(q()
is location dictionary !
is stop word dictionary where [ (g, ¢} is the frequency that these two querics arc issucd
Hndikipadiseniey wikipisdia by the same vser within a short time frame (will be referred as
has digit lexical co-occurrence hercafter). The prablem with using reformulation
N b e Gt probability as the merit for suggestion candidate generation is that
position in query lexical ’ " ; ; 2
length lexical aquery that is not dependent on ¢, might have a high reformulation
probabilily just because ol its high marginal probability. To account
Table 1: CRF features for each term # in a query for this, one can use pointwise mutual information (PMI) instead,
g=t1.ta,- ,tn- f(q-n:(]c)

pmi{gn, ge) = log (f(_qf_-)f(q”)) {4)
where f(gn) and f(q.) are individual marginal counts. The dif-
ference is that PMI normalizes the reformulation probability by a
fuctor of f{g,); hence, it meusures the dependency of these two
gueries. One weakness of PMI is that it might become very unsta-
e : - ble for pairs of rare queries. As f(g.) and f{g,) get low, even a
standalone [requency and pairwise mutual informalion need further single coincidental co-occurrence might lead to a high PMI value.
discussion. i ) ) To account for this, one can use reformulation log-likelihood ratio

Thel standalone score 1ries o Caplur.e w.h!ilher a given lerm is (LLR) instead 201,
an entity or a real-world concept or not: intuitively, a concept (e.g..
california, ipod, madonna) should often occur in a standalene form
among the search query logs. Therefore, among the query logs we

various sources such as three months of query logs of a commercial
scarch cngine, Wikipedia, cte. Table 1 deseribes our feature sct
along with the sources used to derive them. In particular, given a
query ¢ = Iy, Ls.--- [, along with labels [y, {5 - - - [,, for each term,
respectively, we compute the Tisted feature for cach term £;, Of the
features shown in Table 1, the query-logs-based features, namely,

LLE(gn. qe} = plan, 4e) pmilgn. @c) + p(4n. ) proilan, 7,.)
+p (an 1 q“) p'ﬁ'),’i (a-n,“ (]c) + p(a-n H (_;(:) p'_rn',", (Ew * ar:)

must find queries of the form () == t,, capturing the fact that users where 7,,,., denotes the set of all queries except g, and similarly
are looking to learn more about the given concept. More formally. for g... LLR fixes the stability problem by taking the size of the all
we compute the query-log-based standalone score as: scssion data into account, and when the marginal query frequen-
i cics f(g..) and f(g.) get lower, other terms will start to dominate.
_ Q==& : . . i ; .
s{ts) = - : (L) We generate suggestion candidates using query refermulations with
|t St ot LR above a certain threshold optimized empirically. (We will pro-
The pairwise mulued informalion (pmi) score is computed for vide details about the session data later in Section 5). Additionally,
a pair of consccutive terms occurring in the query: intuitively, this we also apply various [ilters to guard against robots and spam de-
score measures the “cohesiveness™ of pairs of terms (e.g., ‘san fran- tails of which are out of scope of this paper.

cisco’ would have a high pmi scorc compared to ‘drinking water’). As an example ol applying this co-occurrence-based operator.
More formally, we compute the pmi score for a pair (¢;, ;1) as: {or the query ‘acouslic guilar strings’, we oblain “classical guitar’
N as a suggestion candidate after eliminating the term “strings’ from
pmi(fs ti_1) = ],()gr('(ti’—tj*l) (2) the original query. Or for ‘cheap vegus hotels resorts”, it gives “las

Ct) - Cltim1) vegas specials’ after dropping the term ‘cheap’.

where C'() is the number of queries that contain term 2: and ({2, )
is the number of queries that contain ordered pair (, ).

Upon eliminating terms that are labelled us non-critical, we use
the resulting relaxed queries to generate candidates for query sug-

gestions for the original query. Note that the set of relaxed queries i !
themselves serves as suggestion candidates. both critical as well as the dropped query terms. This transfor-
mation relies on distributional similarity methods [24] that model

3. GENERATING SUGGESTION CANDIDATES 1. pistritutional Hypothesis [14]; the distributional hypothesis

3.2 Semantic relations from web corpus

Our next method, explores candidates by replacing query terms
by terms that are distributionally similar (i.e., synonyms, sib-
lings, hypernyms, etc.) to them. We apply this transformation to

We now discuss a suite of algorithms to generate candidates for links the meaning of words to their co-occurrences in text and states
query suggestions for a query. Our algorithms extend information that words that occur in similar contexts tend to have similar
available in session logs utilizing information from query logs and FILCOALLILGS.
web pages to simulate user sessions and derive suggestions. In practice, distributional similarity methods that capture this hy-

< i pothesis are built by recording the surrounding contexts for each
3.1 Co-occurrence in query sessions term in a large corpus and storing them in a ferm-contest mo-

While searching for information, users usually issue related queries trix | 24]. Term-context matrix consist of weights for contexts with
within a given session [4]. Sometimes they add or drop a term to terms as rows and context as columns, and each cell ;5 is assigned
their queries, or sometimes make a laferal move such as issuing a score to reflect the co-occurrence strength between the term <
“nikon d40” and “canon 50d”. One rich source for generating sug- and context j. Methods differ in their definition of a context (e.g..
gestion candidates for a given query is to feteh the past session logs, text window or syntactic relations), or in their means to weigh con-
and find queries that it is being manually formulated into |20, 29]. texts (c.g., frequency, tf-idf, pointwise mutual information), or ul-
In practice, this rich reformulation data is typically available only timately in measuring the similarity between two context vectors
for frequent querics and thus, we work with the root query obtained (c.g., using Fuclidean distance, Cosine, Dice). We build a term-
after query relaxation. context matrix as follows: we process a large corpus of text (e.g.,

807



web pages in our case) using a text chunker [24]. Terms are all noun
phrase chunks with some modifiers removed: their contexts are de-
fined as their rightmost and leftmost stemmed chunks. We weigh
each context f using pointwise mutual information |7]. Specifi-
cally, we canstruct a pointwise mutual information vector PAT (w)
for each term w as: PMI(w) = (prvdwr, pmdws, -+, PMwm ).
where piredy, ¢ is the pointwise mutual information between term
and feature f and is derived gs:
Canf * N

AERTED WSE

Pty = log

where ¢,z is the frequency of feature [ occurring for term w, n
is the number of unique terms, m is the number of contexts, and
N is the total number of features for all terms. Finally, similarity
scores between two lerms are compuied by compuling a cosine sim-
ilarity between their prmi context vectors [31]. As an example of
applying the distributional similarity-based operator, [or the query
‘football hall of fame 2010 inductees™ we generate "football hall of
fame 2010 award winners’ since °inductees’ and ‘award winners’
are distributionally similar phrases.

3.3 Substitutions from co-clicked URL queries

Aside from co-occurrences, another dimensionality in the ses-
sion logs that can bring additional valuable information is to con-
sider the queries that lead to clicks to common URLs as in [29].
Query pairs with co-clicked URLS can be used to build a substitu-
tions dictionary. This dictionary can be used to provide alterna-
tives for the root query as well as for providing substitutions for the
dropped terms in a confert-oware manner, such that the term
“turkey” can be substituted with “thanksgiving”™ in the context of
“recipes” and with “turkish” in the context of “embassy” but not
the opposites.

To build a substitutions dictionary, we build a query-URL bi-
partite graph with gueries and urls as nodes and an edge ¢ —
belween a query node ¢ and an url node w il a user clicked on url w
after issuing query ¢. To eliminate outliers or noisy data, we only
relain edges wilh clickthrough rate (i.e., clicks vs. views) above
0.01. Using this graph, we identify all pairs of queries that are con-
nected (o af least 2 and al most 10 common URLs'. There are two
things that we have considered while constructing the query-URL
bipartite graph:

& We removed URLs that are connected to more than 200 queries
(most of which tum out to be very popular destination pages
like youtube . com, amazon. com etc.). This prevents us from
connecting vaguely related queries und bringing in irrelevant
substitutables.

For the URLSs from tail domains, we used the domain-level
information instead of the particular URL. If for a given do-
main, we have Iess than 30 unique querics leading to a click
to a URL in that particular domain, we consider this a as a tail
domain, and define the co-clicks over the domain, instead of
the particular URLs., We found that this helps for enriching
the suggestion sets for tail intents without losing the context,

When generating suggestion candidates, we simply look into the
substitution dictionary for all possible substitutions. For cxam-
ple, for the query ‘turkey recipes’, if the relaxed query is ‘turkey’,
we look al the subslilutables of the dropped term ‘recipes’ (o lind
‘roasting times’, “stuffing recipe’ , “how te roast’ and many others,

Iwe decided to nse an upper bound here as well, hecause with too
many common URLs, the query pairs are starting to become syn-
onyvmous with almoest identical result sets, which provides almost no
utility to the uscrs, This will be detailed in Section 4.1

808

and generate the candidates ‘turkey roasting times’, ‘turkey stuffing
recipe’ and “how to roast turkey’ 2.

3.4 Context from original query

After exploring suggestion candidates of the relaxed query, in
many cascs it is helpful to push the dropped term back into the
query to generate a partially lateral move. Naturally. this con-
text is only pushed to suggestions without the dropped terms or
their substitutions. As an example, [or the query ‘acousiic guilar
strings’, we generated ‘classical guitar’ using the co-occurrence-
based operator {Section 3.1) o which we push the term ‘strings’
to generate the suggestion ‘classical guitar strings.” This operator
re-inserts the original query context inlo the suggestions,

To summarize, we consider an expanded set of suggestions de-
rived by relaxing the original query as well as using different com-
binations of operators discussed above.

4. RANKING SUGGESTIONS

While combining various information sources and text-based op-
erations discussed in the previous section allow us to systematically
construct candidates for query suggestions, they may also lead to
erroneous query suggestions. Specifically, we may have at hand
suggestions that are garbled; for example, in our experiments, for
the query ‘tampa bay fisheries’ one of the snggestions generated
nsing co-occurrence data and pushing the dropped term from the
query was ‘tampa tribune fisheries’ (the original query was relaxed
to generate ‘tampa bay’ for which session co-occurrence data pro-
duces ‘tampa tribunc’ as a suggestion), Similarly, the candidatc
sugeestions by applying various operators may not be relevant to
the original query, To address these issucs, we build a supervised
ranking model to decide which candidate suggestions are valid.

The desiderata [or ranking candidate suggestion [or a given query
include: (a} well-formedness of the suggestion (Section 4.1}. (b)
relevance W the query (Section 4.2, and (¢) wtility (0 users (Sec-
lion 4.4). Additionally, we use a variety of lexical and synlactical
features and train a gradient boosted decision tree (GBDT) [12]
over this feature space for ranking candidate suggestions.

4.1 Well-formedness of a suggestion

In this step, our goal is to demote suggestions that are garbled,
i.e., that do not conform to a real-world concept or language formu-
lation. For instance, the suggestion "tampa tribune fisheries’ is nota
a real-world concept and similarly “marilyn monroc compendium’
is a parbled suggestion. This is a critical in owr setting since the
sugecstions arc ‘user-facing’: in contrast traditional query rewriting
methods send rewritten queries to the search engine (i.e., backend)
where the engine simply returns few or no results in casc of poorly
formed queries. To capture the well-formedness of a suggestion,
we use stalislical lnnguage models which is a probability distri-
bution P{s) over a sequence iy, wa, - - - Wy, of words expressed
as: P (wn, wo, - we ) = [I7 Plwdwr we. - wy—1). Weuse
an n-gram model which computes the above probability based on
“memory” of past (n-1) words given as:

m
Ploy, wa. - ) m HP(-w,-\wz-_(,,,_l) ce )
i=1

In our experiments, we use a tri;lgram model where
Plwy, - wim) =2 HP(w,;|w.,—,2),w,; 1)

i=1

which is estimated using a maximumn likelihood estéimnlor as:

2Whila generating the candidates we keep the strncture of the co-
clicked URI queries and do not put the placed term into the position
of the dropped term (as it would end up with many garbled sugges-
tions like ‘turkey how to roast’



agt:  oap "
Py o5 Cltigtt—ytis)

1) = (6)

U2ty |
where C'{uy owy 1w;) is the relative frequency of observing the
waord wy; given that it is preceeded by the scquence w1 .

A common problem in building language models is that of word
sequences that do not occur in the training set used to compute
quantities in the above equation. In such cases, C{wy_suy_qwy)
and therefore Pluw;|ici—2, wi—1) equals . Te address this prob-
lem, several smoothing lechniques have been proposed (hat appro-
priately discount the MLE estimates in (6) and use the left-over
probabilily mass [or sequences not observed in the (raining data.
Several smoothing techniques have been proposed in the past and
we use 4 commonly used method, namely, Kneser-Ney smooth-
ing |21]. Kneser-Ney smoothing interpolates higher-order models
with lower-order models based on the number of distinct confexts
in which a term occurs instead of number of occurrences of a word.
Formally,

e { Oy, wal 0. o

Plwg|wy wo) — (73

AN {wa b2 (w3 |wo)

Sy arn) Chlawy . ten)

where D is a discount [actor [21] and N () is the number of unique
contexls following term .,

An important observation in our setting is that we are dealing
with potentially valid suggestions that may not occur in the query
logs. Specifically, since our suggestions are synthetically derived
we want to incorporate sources other than query logs. With this in
mind, we build and combing language models from query logs as
well as web pages. We combine these models as:

Pelwa|w,ws) = A~ Palws|wr, we) + (1 — N) Pw{wsa|w,ws)

where A is the interpolation weight optimized on a heldout training
set. In the ranking step, we use Fg, Fo and Py as features that
caplure well-formedness of a candidate.

4.2 Relevance to original query

To assess the relevance of each suggestion candidate to the origi-
nal query, we designed three types of features for each pair of query
and its suggestion candidate. In this section, we discuss how we de-
rive these features using query logs as well as search results.

4.2.1  Click-vector similarity

An obvious relevance feature along the lines with the co-clicked
URL candidate gencration method is to Jook at the overlap between
the clicked TURLs for each query pair. For a given query, consider
the lollowing document click-vecior over the set of all documenits
cl(g) = [chi(g), cdala),. ... clx{q)], where K is the number of
clicked documenis. We calculate the cosine similarity between the
overlapping URLs in the click-vectors of each query and suggestion
candidate pair as our [irst relevance [ealure,

cl{gi) - cl(gz)
Tellaoy el )] ®)

This [eature by delinition is non-zero [or the candidates that are
coming from the co-clicked URL candidate generation method. On
the other hand, the coverage over other candidate generation meth-
ods is quite low since we are working with synthetic suggestions
not observed in the past. Note that although this feature relies on
query logs, it does not require the query and suggestion to occur in
the same session; later in thig section, we derive features that are
not derived from query logs.

Sitnericr, =

4.2.2  Context-vector similarity

A relevanee feature along the lines with the distributional hy-
pothesis is to look at the similarity of the distribution of other terms

809

Require: Concept dictionary D, gquery g
1: Retricve sct R of top-k results for g
T = Terms from D contained in B
Lliminate from T terms in g
for term # € I do
d(t) = number of results that ¢ appears
r(t) = total rank that ¢ appears

_ Lk dit))—rit)
1(t) = ORI
() = dgr)}‘n"r)
end for

: Cet the 20 terms with highest score S(¢)

ab(Q) = [S(tl)s S(t'l): e S(tZU)]

Algorithm 1: Algorithm Lo compute Lhe aboulness veclor.

that each guery is searched along with. For example. consider two
queries ¢, and gy, and assume that in the session logs, the most
frequent queries that include these two queries include ““{g. } down-
load”, “{g2) download”, “install {g,)"" and “install {¢g2}", From the
context with which the query is searched together with, it is clear
that both queries arc software related.

For a given query, consider the context vector as the frequencics
of the terms that it is searched along with co{g) = [f1, f2. ..., fi].
where L is the number of co-queried lerms in the session logs. Sim-
ilar to above, we evaluate the cosine similarity for a pair of context-
vectors of the overlapping conlexl lerms of each query - suggestion
candidate pair as:

colq.) - colaz)
Teotan otz

Although this is a useful feature for frequent queries. over a uni-
formly sampled query set the context-vector similarity has a very
low coverage. In our experiments, many queries in our data set are
rare (and long) queries that have a very low probability of being
scarched within other querics. and do not have a context vector.
Furthermore, the suggestion candidates that arc coming from sub-
stitutions from web corpus are not even gnaranteed to be observed
in the query Toes, hence context is not defined,

(9)

-
Stiheontens =

4.2.3  Web-based aboutness similarity

So far, we discussed two features based on user query logs {i.c.,
observed data); however, of course, these features are sparse and
will fail to asscss the relevance of rare querics or querics that arc
not observed in the past. In the absence of session logs, one can
usc the scarch engine itself and look at the results to determine how
related two queries are. Specifically, an earlier work by Raghavan
and Sever [28] compares the ordered result sets returned for each
query (o measure query similarity, Their method requires ranking
of all documents and O(N2) complexity, where /N the number of
documents, which is intractable for the web search scenario.

A subsequent approach is given by Fitzpatrick and Dent where
they use the sel overlap of the top & documents [10]. This is a
tractable solution, however the result set overlap is only good at
finding alimost synonymous queries, and the overlap drops sharply
when the queries are related but not (almost) identical. In the
context of query suggestions, we are not interested in identifying
nearly identical queries; instead, we need to assign reliable rele-
vance scores to related query pairs as well. For example, althongh
they are related and would make useful suggestions for each other,
‘python’ and ‘tuby” have zero results in commeon in top 50. Thus,
a measure simply based on the scarch results is insufficient and our
next feature is capturcs what the results arc about.

To assess a suggestion’s relevance to the query, we build an
aboulness vector [6] of the query and the sugzestion and com-
pute the similarity between these vectors. An aboutness vector suc-




cinctly describes a document and is represented as a set of salient
concepts in the document along with their scores. Methods to build
aboutness vectors differ in their definition of concepts (c.g., terms,
named-entities, unigrams). In this work, we rely on a pre-built con-
cept dictionary built using the method propesed in [2]. Our dictio-
nary censist of 27 million phrasal concepts and named-entities ob-
taincd from a large web crawl as well as well as query logs and is
intended to cover most “interesting” phrases on the web. (For steps
to build the concept dictionary please refer to [2].)

Algorithm 1 describes our algorithm (o compulte the aboulness
vector for a given a query g using the concept dictionary 3. The
(inal score S5(f) is a {unction of d{t), the number of documents
that the term ¢ appears and, R{#) the rank score. R(%) gives higher
weights to the terms that are contained in higher ranked documents:
since documents that are ranked higher are more important than
ones that rank lower, terms that are contained in higher ranked doc-
uments are more important. Given the aboutness vectors of the
query ¢, and the suggestion candidate g2, we calculate the cosine
similarity between these two veetors to find the web-based about-
ness similarity

ab(q) -ab(g)
lab{g1)[[[lablg2)]

We found that Sim et 15 quite usctul since it can assign reli-
able relevance scores to related queries. For example, for the above
example, ‘python’ and ‘ruby’ have a Siimapey: score of 0.29, with
the aboulness terms ‘download’ *programming language’ and ‘im-
plementation” in commen. This first may sound lower than ex-
pecled. but note that this is a quile difficull comparison due Lo other
meanings of the queries {snake and gemstone) that occupy some
portion of the aboulness veclor. Hence, ‘python’ vs *boa snake’ or
‘ruby’ vs “saphire” also have non-zero Simgpauz as well.

Another good thing about Sir,pe.: 18 that it has full coverage.
It can be computed as long as the query returns some results. Al-
though it cannot be computed for zero-result queries, we still con-
sider it as full coverage, since query suggestions with zero results
cannot be relevant to the user by definition.

S'i'rn(bb(rut = (1[))

4.3 Suggestions ranker

In addition to the above, we also employ features that capture
the lexical characteristics of a suggestion such as binary [eatures
which include, whether the suggestion contains a digit, punctua-
tien, alphanumeric characters, as well as the length of the sugges-
tion. Other family of features include the source that generated the
suggestion. For instance, the feature SRC.CO is set to 1 when a
suggestion is generated using the co-occurrence statistics. Finally,
we also employ dictionary-based features that checlk if query terms
that were dropped, inserted, or left intact belonged to any specific
category. In particular, we use dictionaries to determine if these
terms are locations (e.g., city, state, or country), wikipedia entitics
(c.g., surgery, alzhcimer), or stop words (c.g., the, of. an).

We use Gradient Boosting Decision Tree (GBTT) as the learner
[12]. and pose the problem as a classilication of good and bad
queries. In this classification setting, for each test sample GBDT
outputs the probability of good. We prune the test samples with
probability of good less than p(good) < 0.5 and rank the remain-
ing by this probability.

4.4 Suggestion utility

The final step is to filter out the low utility suggestions. Of all
the picces in the pipeline, there is nothing that ensures that util-
ity of the suggestions, and thus the system may generate irrelevant
suggestions, ¢.g., suggestions with no scarch results. Also, in all
likelihood, the system can generate query suggestions that are syn-

810

onymons to the original query, with an almost identical result set,
We assert that a query suggestion should be presented only if it
Icads to a sutficiently different result sct as compared to those of the
original query and other presented suggestions. For this purpose,
we define a measure of utility of the suggestion g. conditioned on
gp. a query that is already presented to the vser, U{gs|gp).
Given g, and gp, let URRL, = [uwt, ... ten] and URL, =
. pnr] be the result sets of these two queries. For the top
10 URLs in the result page of ¢, we define the examination prob-
ability of the URLs using the rank discounts in (he commonly used
DCG formula [18]. |
plefua) = L) = d(ug, g5) = 10{.&2(1“1' T 1)

where 7 is the rank of the URL and « is a binary random variable
that shows whether the URL is examined or not. Again for each
uy € URL,, we also define the examination probability that the
user will examine the URL in the result page of g, as follows,
plefus) = 1) =

(11)

0wy & URT,

1 Upg &Ry, (123
E{d(gy, usil} 2 E{d(gs, ua)}
L {d{yprg;) gy C UREy,
Fld(a, E{d{ag,. )} < B{d{qa.n.)}

In words,

s i, cannot be observed via ¢, if it is not in the result sct of
p, hence the examination probability is zero.

e If ¢, returns g, at least as high as ¢, does. the examination
probability is 1

e If ¢, returns us, lower than g, does, the examination proba-
bility of this URL is the ratio of the rank discounts of the two
corresponding ranks.

We define the pairwise conditional utility I (¢s|g,) by combining
(11yand (12) as
Ulgslgs) = 1— Z plefw) = 1gs) ple(w) = 1gp) (13)
wE URL,

Intuitively, the first term in the summaiion gives how imporiant
this particular URL is for the query g.. and the second term gives
how likely it is that the same user would examine this URL in g,
with the assumption that the user would go as deep into the result
sel in gp. Hence, U(gs|gp) is, by definition is 0 il the resulls of
the two queries are exactly the same or ¢ has zero results. Also.
U{qs|n) would be close to 0 for queries that share many URLs and
rank them similarly. After defining U{gs]g,). we use the follow-
ing greedy approach to ensure that all suggestions are sufficiently
different from the original query as well as each other.

e (et the ranked suggestion list with decreasing scores.

® For the [irst one in the ranked suggestion list, and put il into
the final suggestion set if it satisfies U (g4 |g,) > v where ¢,
is the original query.

& For all remaining querics, get the one with the highest scon
and put it into the final suggestion set if it satisties U/ { g, |4y, )
~ for the original query and all querics in the final sct.

User study to select the optimal -« value for the utility model is
presented in Scction 6.5,

Putting it all together, our end-to-end framework systematically
explores candidate for query snggestions while allowing sugges-
tions that may or may not lexically overlap with the original query.
To this end, we proposed a supervised ranking algorithm to elimi-
nale irrelevant or low ulilily suggestions. Il is noteworthy that cur
pipeline is amenable to be incorporated in a web search engine
since it can be run in an offline manner {o generale a diclionary
of queries and their suggestions.

C
>



5. EXPERIMENTAL SETUP

Query Set: We collected a random sample of 100,000 fully
anonymized queries sent to Yahoo! seuarch engine in the month
of August. 2010 along with their frequency. Of these, we identified
those for which the search engine does not present any suggestion
and drew a random sample of 10.000 queries biased by their fre-
queney (see Intreduction for query snggestion distribution.) . Our
goal was to capture querics from different quantiles of this distri-
bution. Note that by nature the queries that the search engine can-
not provide any suggestions are very likely to be tail querics of
the overall query distribution. We perform 10-fold cross-validation
over this datasel.

Distributional similarity filters: For this. we use a collec-
tion of 500 million web pages crawled by a commercial search en-
gine crawl. We construct our distributional similarity database by
adopting the methodology proposed in [27]. We POS-tagged our
web corpus vsing Brill's tagger [5] and chunked it using a variant
of the Abney chunker [1]. We built a distributional database from
this chunked corpus using the method outlined in Section 3.2.

Clickthrough data: To generale the co-click graph and com-
pute the co-occurrence log-likelihood ratio, we used 6 month of
anonymized query clickthrough logs of Yahoo! search engine. The
co-click graph consists of 2.7M unique queries and 55.6M unique

URLs in total, with 167.3M edges in between them. The co-occurrence

data has 4.3M unique {q., ¢ ) pairs for 913K unique ;.
Compared methods: We are unaware of any existing sys-
tem for synthetically generating suggestions from several candidate
generation methods and blends them. However, several methods
for generating suggestions have been proposed, which we use as
sources for candidate suggestion generation [20), 291, Therefore,
we build baseline techniques for comparison using each candidate
gencration source:

e CO+PS:co-occurrence with pushing the dropped lerms
€0 :co-occurrence
DS :distributional similarity of the dropped term
Q+CK :coclicks of the original query
R+CK :coclicks of the relaxed query
D3+CK:coclicks of DS

e CO+CK:coclicks of co-occurrence of relaxed query

e HYB :hybrid method that combines all
Note that we allow all the above methods to share the same query
relaxation techniques and the ranking model.

User studies: All user studies and manual annotation tasks de-
scribed were performed by a group of eight professional search en-
gine gquality evaluators experienced with assessing the quality of
query snggestions and search results.
Evaluation method: Professional annotators provided binary
judgments for the 10,000 queries we sampled, good, for the rel-
cvant and uscful sugzestions, and bad for the irrclevant, garbled,
zero-result, or synonymous (hence useless) suggestions. Annota-
tors were asked to input their judgments after looking at the results
page and comparing thosc for the query and suggestion; this is im-
portant ta eapture the utility of a suggestion,
Evaluation metrics: We cvaluate the performance of cach sys-
tem using information retrieval measures, namely, precision and
recall defined as:

e Precision: Given a list I of snggestions for a query, we

compute pI'CCiSiOl] a8 Nuweher of cwv'elcg ‘su.ggssz‘ta'ns in

the precision values at varying ranks averaged over querics
with at least one suggestion.

. We study

811

&0

S0

40

30

20 4—

Fraction of queries

10 +

4 12 pi} 40 a0
Numbker of suggestions

150 310

Figure 2: Distribution of number of suggestion can-
didates per query.

Fraction of suggestions

fei] £2+2K

SCHPS L34k [+2 R-CK

a5
Source

Figure 8: Distribution of number of suggestions for
each candidate generation source.

e Recall: Given a list L of suggestions for a query, we com-

w |Number of correct suggestions in L
pll[L- recall as All corvect suggeations for guery|

correct suggestions for query is the union of the correct sug-
geslions across all methods.

6. EXPERIMENTAL RESULTS

6.1 Coverage of extended suggestion pool

Our main goal is to increase the coverage of the queries for which
useful suggestions can be provided to the users. Thus, our first
experiment studics the increase in this coverage along various di-
rections. Note that our experiments consisted only of queries for
which a commercial scarch cngine docs not provide any sugges-
tions and therefore results reported in this secticn naturally trans-
lale to an increase in the coverage of queries with suggestions. (Im-
plementation details of this suggestion service are proprietary and
out of scope of this paper.) Figure 2 shows the distribution of the
Lletal number of suggestion candidates explored by our candidate
generation methods per query. As we can see, our proposed query
suggestion generation methods provide a large set of candidates.
We further break down the suggestions by the source in Figure 3,
and see that all methods have some substantial contributions, and
some of them like €0, CO+CK, CO+PS and DS are contributing
much more than the others.

To investigate the quality of the suggestion candidate pool, we
look at the number of good suggestions per query in Figure 4. Be-
fore the pruning and ranking stage, 24% of the querics have at least
one good suggestion candidate, This is encouraging since the query
sct was sampled from those with no suggestions, which constitutes
66% of the unique query traffic. We again break down the good
suggestion distribution into individual sources. Among the most
contributing sources there is the CO method, invesligatled earlier
by Jones et al. [2(}], and three other candidate sources that we pro-
posed in this paper provide good suggestions almost as much as that
one. Also, all of the sources have some substantial contribution.

where all

6.2 Quality of extended suggestions

We now evaluate the quality of the ranked lists for cach source.
Each list is run through the well-formedness, relevance, and utility



query suggestions

free aulo parls manual

anto body parts, discounl ante parts, aulo parl stores

minneapolis davs inn

minneapolis comfort inn, minneapolis moteal §, minneapolis super ¥, minneapolis best western

muscular sysiem diagram

human skeletal system diagram, circulatory system diagram, human muscular syvsiem, skelolal anatomy

puppy training 101

dog training basics, puppy housctraining, dog whisperer, puppy training tips

csl crime gecnc investigalion cast

csi miami cast, ¢si now york cast, csi episode guide, chs csi miami

honda insight veview

ford fugion review, 2010 toyota prius, toyota prius review, honda civic hybrid

chsesgive compnlsive disorder symptoms

ocd test, ocd symptoms, canses of oed, ocd treatment, svmptoms of oed

Table 2: Examples for query suggestion pairs

Fraction of queries

a 10 o0 an a1 190

Number of good suggestions

Figure 4: Number of good suggestions per query.

Fraction of good suggestions

@ caick

oS 25 DS K

Figure 5: Distribution of good suggestions for each
candidate generation source.

filters and for fairness, all sources share the same CRF relaxation,
relevance thresholds.

Table 2 lists a few sample suggestions generated for our test
queries. Figures 6 and 7 show the average precision and recall,
respectively, of the ranked list produced by the GBDT modcl. We
see that some of the sources like Q+CK are guite precise. but their
recall as well as the depth of the ranked list is very low. €0 and
CO+CK  are the ones with the highest recall. also they can provide
up to 8-10 suggestions per query.

It is noteworthy that the precision for HYB is computed over more
samples than those for the baseline since HYB produces the longest
list of suggestions (see Figure 7). This, in tum, results in less vari-
ance of the precision values as compared to the baselines. In Figure
7. we observe that the recall for HYR is addilive over the baselines,
i.e., individual sources. The overlap between the suggestion can-
didates generated by each source is low with each source bringing
in different and valuable candidates. Figure 8 gives the average f-
measure over the suggestions set at each rank for all sources. As
expected, HYB outperforms all individual sources including the
carlier methods CO |20] and Q+CK, R+CK [29].

HYB in Figure 8 generates a relatively long list with 10 or more
suggestions; in practice typically k& = 5). If the desired size k is
known a priori, one can tune the ranking stage to optimize for the
precision and recall up to that & value. For example, if a deep list is
not needed, the aim might be to display « single suggestion per
query, and increase the quality as much as possible. This is
perfectly reasonable. The exact number of suggestions to be dis-
played is a design choice: depending on where on the page they
will be displayed, too many suggestions might distract the user.

812

s
i+l
2
2 o
g
o
23 = CO == R+CK |]
vz —&— CO4+PS DS+CK|]
—— DS -4 CC4+CK|
o —de= Q+CK  =8= HYB ||

a L L L L L L L L

5 ) 7 8 - 10
Rank

Mean precision at varying ranks.

1 T T T T T T T

=GO
== CO+PS
== Q+CK
—4—R+CK
DS+CK
== CO+CK
=a8-HYR

Recall

Figure 7: Average recall at varying ranks.

For this scenario, to optimize the f-measure at the top position, one
can tune the GBDT confidence threshold, and compromise for the
precision and recall at the lower ranks to improve the precision and
recall at rank 1. Sce Figure 9 for a comparison of the f-measurc for
top 5 ranks for varying relevance confidence threshold levels. For
cxample with the threshold 0.8, onc can increase the f-measure at
rank 1 very significantly to (.82, by compromising the depth of the
list; hence, the recall (and therefore the f-measure) decays much
more sharply [or increasing ranks as compared Lo the values with
the threshold 0.5 -the black curve in Figure 8.

In summary, il a deep list is not needed, wilh a more strict rele-
vance confidence threshold HYB can provide a ranking with 0.83
recall at rank 1, 0.56 recall at rank 2, 0.83 precision al rank 1, 0.85
precision at rank 2 and an average list length of 1.4. Precision value
at rank two is .85, which is at the same level of quality of the sug-
gestions that the search engine can provide for frequent queries via
existing techniques -some of which we use as sources. Recall the
distribution over the suggestion coverage provided in the Introduc-
tion section; 26.6% of unique queries have more than 5 sugges-
tions, and 7.4% have between | and 4 suggestions. and 66% of the
unique query distribution has no suggestions. It is remarkable that
HYB with rclevance threshold level 0.8 can increase the coverage
of querics with at Icast onc good suggestion from 34% to 47.2% of
the unigue query distribution, hence brings a coverage increase of
39% withoul compromising precision.




CoO

e —8- CO+PS
il —=DS

fe- Q4CK
B == R-+CK

F-measure

4

5 3
Rank

Figurc 8: Avcrage f-mecasure at varying ranks

6.3 Query relaxation performance

After comparing each source, we now evaluate individual com-
ponents in the pipeline starting with the CRF model [rom Section 2.
Our evalvation of the proposed CRF model is two-lold. For our
first evaluation, we ran 10-fold cross-validation and compared our
model against a baseline method that eliminates the last term in
the query. Table 6.3 compares these methods and shows that us-
ing a CRF model substantially improves the precision (15% gain)
with a4 small amount of drop in recall (2%). Our second evaluation

method precision recall
CRE 0.82 0.87
Baseline 0.71 0.89

Table 3: Performance of query relaxation method.

involved a user study where annotators were provided the queries
for which the CRF had dropped atleast onc term. Annotators were
asked to label (a) whether a query contained a non-critical term,
(h) whether the CRF sclected the correct term to drop. Of these
queries 70% of queries did have a non-critical term, and for these
querics CRF seleets the correct term 81% of the time. Finally, a
feature analysis of the model showed that the stand-alone ratio is
consistently the most important [eature in all 10 runs.

6.4 Feature analysis of suggestion ranker

To better understand the importance of various features used in
our ranking model (Section 4.3), we examined for each feature the
coverage as well as the importance ranking noted by the GBDT
model. An encouraging result is that the GBDT feature importance
ranking was consistent and thus stable across individual runs in our
1{)-fold cross-validation. Specifically. in all [0 rans Stm., 5.+ is the
most important featurc. Also, web and combined langunage model
scores Phy and FPe, and Sim.riex are consistently among the top
five most important features. Not surprisingly. the most important
features are the ones with higher coverage, Sitiqbown: With full cov-
erage, combined (71%) and web (66.9%) language model scores.
The one with the smallest coverage among the most important fea-
lures is Siérrtepier with 17.5%. Also. lexical lealures seem more
important than the source [ealures overall.

6.5 Utility model performance

Finally, we discuss the performance of our utility model (Sec-
tion 4.4). To select an optimal -y value, the threshold by which we
decide to remove the query suggestion from the set due to redun-
dancy. we carried ont a user study where annotators were given 500
randomly seleeted pairs of querics and their suggestions., Annota-
tors were asked it'the suggestion is uscful or redundant for the given
query. Figure 10 shows U(g|g,) value versus the editor grade
(a naisc jitter is added into the editer grade for a better visualiza-
tien), along with the precision-recall curve of U/ (g.|g,) for varying

813

F-measure

T s+ 5 =
Rank
Figure 9: Awverage f-measure for varying relevance
confidence threshold.

+ values. For this model, we decided to use ~ = .70, which corre-
sponds to 0.94 precision and 0.67 recall on this datasct, as marked
in Figure 10. In our experiments, the utility model removes low
utility suggestions such as “cooking channcl (v’ — *“cooking chan-
nel television”, “tampa bay fisheries™ — “tampa bay fishery”.

presisior -rezall giaoh

=== aralng
—Lig, gt

editor grade

Figure 10: Utility estimate U{gs|¢s) versus the editor
Judgment (left), and precision recall curve of ¥/(g.|qy)
with the operating point at + = 0.70 and the precision
recall curve of the baseline (majority) classifier.

7. RELATED WORK

Providing query suggestions: Research on query sugges-
tion methods have largely relied on observed queries and developed
similarity measures based on these observations. In [11] associa-
tion rules are used to mine query recommendations from queries in
individual uscrs’ scarch scssions which arc defined as fixed length
periods of interaction. In contrast, [36] builds a graph representa-
tion of the of the scquential scarch querics and combines it with a
content based similarity method to account for the sparsity of the
query logs. These methods simply minc query reformulations from
observed queries. Other methods leverage the click information,
as well. Tn [29], a query similarity measure is developed based on
lerm-weight veclor space represenlations of the queries and clicked
URLs. Query term and click pattern overlap is used in [35] to de-
velop query similarity measures in order (o cluster user queries.
Random walks on query-click graph is used by [8]. Slightly dif-
{erently, Markov Random Field models are used over the query-
click graph to generate bid terms in [13]. In [25], query-click graph
based random walk techniques are further refined by considering
the time to first visit to a query node. Main shortcoming of the
query recommendation methods listed above is the limitation of
suggestions to observed queries. This works fine for the frequent
queries but not s¢ well for the rare queties in the tail.

Earlier methods of generating alternative queries also included
query expansion by pseudo-relevance feedback where additional
query terms are obtained from the documents retricved by the orig-
inal query. Thesc terms arc used to cxpand the original query to
retrieve more specific documents. Limitations of this method such
as query drift are well documented [30]. Query term delction has
been tried in [19] but it leads to loss of specificity. In [32], query



term substitution is considered using the retrieved documents, and
in |2] user input is sought for selecting appropriate related terms,
but these methods add an additional step to query reformulation.
Automatic term substitution using query logs is considered in [20}],
however a non-contextual query scgmentation is used leading to
many marginally vseful reformulation candidates. Their filtering
method also lacks a language model. so it does not have the right
information to separate well-formed queries from illegible ones,
This is probably acceptable for bid term generation for ad match-
ing bul not so [or query suggestions (o be offered lo a search user.

Earlier work has explored comparing information from query
logs and other textual sources [15, 9]. Closest (o our work is the
method in [9] which examines anchor text in web pages solely
for the task of query suggestions. Interestingly, Dang and Croft
show that suggestions generated using anchor text are comparable
to those penerated using query logs. This work builds an alter-
native to query logs using web pages whereas our work uses web
and additional textual information to extend query session logs, es-
pecially for rarc querics. Further, our proposed method explicitly
handle the case of lateral gnery reformulations. Recently, Szpektor
ct al’ [17] showed how templates can be used to provide suzges-
tiens for rare queries; our work considers the generic problem of
providing suggestions for any rarc query,

Re-writing long queries To improve the performance of
search engines on long queries {or tail queries), several prior re-
search ellorts have looked inlo query re-wriling via term subsiitu-
tion or term reduction [3, 9, 16, 22, 26, 33, 34]. While these prob-
lems are well-studied and have shown signilicanl improvements in
performance on TREC data, their utility on web environment is not
well undersiood. Long query re-wriling is conceplually related o
our candidate generation step; however, a critical difference is that
we focus on generating query reformulations to be offered as an
ordered set to the user instead of improving search results. In our
setting, we need to consider non-lexically overlapping vet seman-
tically related query reformulations as well us consider the quality
and utility of a ‘nser-facing’ suggestion set as a whole.

Identifying key concepts in gueries: Finally, identi-
fying key concepts in the context of search queries has also been
extensively studied over TREC data and over scarch cngine logs
to some extent |3]. Conceptually, this is related to our query re-
laxation step, however our end-to-end approach considers the web
search selting and vses complements such methods with algorithms
to generate and rank candidate suggestions.

8. CONCLUSIONS

Tn this paper, we presented a supervised learning-based end-to-
end framework to synthesize query suggestions offered to search
engine users as [ollow-up queries. Our lechnique uses query logs
as a guide (o caplure user search and intent behavior and lever-
ages information available in web pages, search results, as well as
click logs Lo derive suggestions. We systematically decompose a
query and apply various transformations to automatically generate
suggestion cundidates and propose a ranking method that incorpo-
rates language models and other useful features to select high qual-
ity suggestions. We show that our system increases the coverase
of unique queries with at least one good suggestion from 34% to
47.2%, leading to a 39% increase by high quality suggestions.

9. REFERENCES

[17 5. Abney and 8. P. Abney. Parsing by chunks. In
Principle- Baged Porsing, 1991,

[2. P. Anick. Using terminclogical feedback fov web search
refinement: a log-based study. In STGIR ‘05, 2003.

[3° M. Bendersky and B. Croft. Discovering key concepts in
vorbose querics, In SIGIR 08, 2008,

814

[4]

[19]

[20

[21]
[22]

[23]

(28]

[29]

[30]
[31]
[32]
[43]

[34]

. Boldi, F. Bonchi, €. Castillo, D. Donato, A. Gionis, and

S. Vigna. The query-How graph: model and applications. In
CTKM 08, 2008,

F. Brill. Transfovmation-based error-drviven learning and
natural language processing: A case study in part-of-speech
tagging, Computational Linguistics, 21(4), 1995,

P. D. Bruza and ‘1. W. Huibers. A study of aboutness in
information vetricval. In AT 784, 1996,

K. W, Church and P. Hanks, Word association norms, mutual
information, and lexicography. In ACL ‘849, 1989,

N. Craswell and M. Szummer. Random walks on the click
graph. In SIGIR 0%, 2007.

V. Dang and B. Croft. Query reformulation using anchor text,
ln WSDM 10, 2010

L. Fitzpatrick and M. Dent. Automatic feedback using past
querics: soclal scarching? In S1CH# ’97. 1997.

1. M. Fonsecca, P. 3. Golgher, L. 8. de Mowra, and N. Ziviani.
Using association rules to discover scarch cngines related
queries. In LA-WED ‘03, 2003.

J. H. Friedman. Greedy function approximation: A gradient
boosting machine. Annais of Steiisiics, 29, 2000,

A, Fuxman, P. Tsaparas, K. Achan, and R. Apgrawal. Using the
wisdom of the crowds for keyword peneration. In WWIAT 03,
2008.

Z. Harris. Distributional structure. Word, 10(23), 1954,

J. Hunng, J. Goo, J. Miao, X. Li, K. Wang, and F. Belr.
Exploring web secale langnage models for seavch query
processing. In WWW “10, 2010.

5. Huston and B. Croft. Evaluating verbose query processing
techniques. In SIGIR “1¢, 2010.

Y. M. Idun Sepeltor., Aristldes Gionis. Improving
recommendation for long-tail queries via temiplates. Tn WIWW
’11, 2011.

K. Jarvelin and J. Kekélidinen. Cumulated gain-based
cvaluation of IR techniques, ACAM d'rans. Inf. Syst., 20, 2002,
R, Jones and D). C. Fain. Query word deletion prediction. In
SIGIR ‘02, 2003,

It Jones, B, oy, O, Madani, and W, Greincr, Generating
query substitutions. In WWW 06, 2006.

R. Kunceser aud H. Ney. Tmproved backing-off for m-gram
language modcling. JCASSP 1225, 1, 1985,

G. Kumaran and V. R. Carvalho. Reducing long querics using
query quality predictors, In STGIR 08, 2009,

J. D. Lafferty, A. McCallum, and F. . N. Pereira. Conditional
random ficlds: Probabilistic models for segmenting and labeling
sequence data. In fCML 04, 2001,

D. Lin. Antomatie relricval and clustering ol similar words. In
COLING 98, 1955,

Q. Mei, D. Zhou, and K. Church. Query snggestion using
hitting time. In CIKM *08, 2008,

G. K. Niranjan Balasubramanian and V. R. Carvalho.
Exploring reductions fur long web queries. In STCTR 710, 2010.
P. Pantel, B. Crestan, A. Borkovsky, A.-M. Popescu, and

V. Vvas, Web-scale distributional similarity and entity set
expansion. In EMNLEP (14, 2000,

V. V. Raghavan and H. Sever. On the reuse of past aptimal
quevies. In STGTR 95, 1995,

. H. Ricardo Baeza-Yates and M. Mendoza. Query
recommenclation using query logs in search engines. In Trends
in Database Technolvgy - EDBT 2004 Workshops, 2005,

I. Ruthven. Re-examining the potential effectiveness of
interactive query expansion. Tn STGTR 03, 2003.

G. Balton. On the use of term associations in autematic
information retricval. In COLING, 1986,

E. Tevra and C. L. Clarke. Scoring missing tevms in information
retricval tasks, In CTKM ‘04, 2004,

M., B. Van Dang and W. B, Croft, Learning te rank query
reformulations. In SICIR ‘10, 2010.

X. Wang and (. Zhai. Mining terim association pattcrns from
scarch logs for effective query reformulation. In CTEM 08,
2008.

J.-R, Wen, J.-Y, Nie, and IL.-J, Zhang, Clustering uscr querics
ol a search engine. ln WWW ’01, 2001.

Z. Zhang aud O. Nasraoui. Mining search engine query logs [or
query recommendation. In WIWW 06, 2006.






