
805

Synthesizing High Utility Suggestions
for Rare Web Search Queries

Alpa Jain
Yahoo! Labs

alpa@yahoo-inc.com

Umut Ozertem
Yahoo! Labs

umut@yahoo-inc.com

Emre Velipasaoglu
Yahool Labs

emrev@yahoo-inc.com

ABSTRACT
Search engines are continuously looking into methods to allevi­
ate users' effort in finding desired informalion. For this, nIl major
search engines employ query suggestions methods to facilitate ef­
fective query formulation and reformulation. Providing high qual­
ity query suggestions is a critical task for search engines and so
far most research efforts have focused on tapping various informa­
tion available in search query logs to identify potential suggestions.
By relying on this single source of information, suggestion provid­
ing systems often restrict themselves to only previously observed
query sessions. Therefore, a critical challenge faced by query sug­
gestions provision mechanism is that of coverage, i.e., the number
of uniquc queries for which users arc providcd with suggestions,
while keeping the suggestion quality high. To address this problem,
we propose a novel way of generating suggestions for user search
queries by moving beyond the dependency on search query logs
and providing synthetic suggestions for web search queries. The
key challenges in providing synthetic suggestions include identi­
fying important concepts in a query nnd systematically exploring
related concepts while ensuring that the resulting suggestions are
relevant to the user query and of high utility. We present an end­
to-end system to generate synthetic suggestions that builds upon
novel query-level operations and combines information available
from various textual sources. We evaluate our suggestion system
over a large-scale real-world dataset of query logs and show that
our methods increase the coverage of query-suggestion pairs by up
to 39% without compromising suggestion quality or utility.

Categories and Subject Descriptors
H.3.3 lInforrnation Search and RetrievalJ: Query formu­
lation

General Terms
Algorithms. Design. Experimentation, Measurement

Keywords
Query recommendations, search query logs, rare queries

Permission to make digital or hard copies of all or part of this work for
personal or classroom usc is granted without fcc provided that copies arc
not made or distlibuted for profit or commercial advantage and that copies
hear lhis nOlice and the full citation on lh~ lirst page. To copy otherwise, to
repuhlish. to post on servers or lo redistribute lo liSlS, requires prior specilic
pennission and/or a fee.
SIGIR'll, July 24-2g. 2011, ileijing, China.
Copyright 2011 ACM yn-1-4503-0757-4/U/07 .. .s10.00.

1. INTRODUCTION
Search engines provide a variety of tools to assist users ill better

formulating their infonnation needs. Examples include, sugges­
tions for query completion. spell corrections and query reformu­
lation. Among these, post-s'uomd q-uer:1J 'f'ejm'lnulai'ion sugges­
tions. typically found in the left-column of n search engine's re­
sults page, focus on providing follow-up queries related to a user's
original query. These suggestions can be categorized as: (l) spe­
cializations that expand the original query by adding terms, (2)
ge.n,e.ralizat'ions that drop terms from the original query, ;:md (3)
lo.t(;T(J.ls that suggest alternatives related to the original query and
do not lexically overlap with the original query (e.g., suggesting
'myspace' to 'facebook').

Generating query suggestions has been the focus of several past
research efforts [8, 13, 25, 29, 35[(see Section 7). Virtually all
query suggestion techniques strictly depend on search query logs to
discover query suggestions with sufficient statistics. Particularly, to
mille lateral suggestions, the primary source of infonnation is past
useT sessions, i.e., sequence of queries issued by a single user
within a specific time window r41. Unfortunately, relying on query
session logs can reslrict the coverage of queries for which post­
submit suggestions are available: It is well known that the query
dislribulions in web search are heavy tailed. To be more precise, in
the query logs of a major search engine, we found thnt about 30%
of unique queries thal are observed in a given month are queries
that were not seen within the past year before that month. User ses­
sion logs are even further infrequent: in our experiments, we mined
user session logs to derive lateral suggestions and over a random
sample observed that 26.6% of unique queries have more than 5
suggestions, and 7.4% have between 1 and 4 suggestions, and the
biggest portion is the queries with no suggestions that constitute
66% of the unique query traffic'

In this paper, we look into bllildinq 8ynthctic qncTy Tcfo,mu­
lation suqqc8/ion8, i.e" suggestions that are not solely based on
past user sessions. Our work is motivated by the following obser­
vation. Consider a simple query such as 'superellts ne\v jersey' for
whieh no suggeslions were provided by all major search engines.
By appropriately tokenizing and relaxing tIns quelY, \l,'e may ascer­
tain that 'supercuts' can be substituted by 'great clips' or 'fantastic
sams' or 'cost cutters: Further, by appending the context 'new jer­
sey' from the original query, we C"ill generate query suggestions
such as 'great clips new jersey' or 'fantastic sams new jersey.' In
line with this example, we are adding a forth category of sugges­
tions which can be regarded as p(ut'ially lateral, where we break
the query into segments and make a lateral move of the parts. such
as suggesting 'buca di beppo nutrition information' for 'macaroni
grill nutrition information', or 'tampa bay fisheries' for 'tampa bay
agriculture.'

806

The above example underscores severdl interesting ehi.lIlenges
(hat need [0 he addressed. Fin;l, genemting flOst-suhmi(query sug­
gcstions diffcrs from the f<lsk of query rewriting 13. 9, 16,22, 26,
33, 341 which has mostly focused on rewriting queries 10 improve
scarch rcsul lS. Gcncrating quc-ry suggcstions diffc-rs from qucry re­
writing in (hal we are now also interested in refonnulmions that
are scmantically related but not idcntical to the original qucry. For
instance, for the user query 'tampa bay fisheries' we may provide
' tampa bay agriculture ' as an interesting (lateral) query suggestion;
however, lhis reformulmion would not be considered for tlle lask of
improv ing search results since the latter query brings about differ­
ent search results. Second, candidates [or applying lfansfonmnions
need to be systematically identified. For instance, given the query
'supercuts new jersey' not all terms (e.g., 'new') can be substituted
by related terms. Third , exploring synthetic queries can lead to
suggestions that are not 'well-formed' or suggestions that are not
semanti<.:alJ y re lated to the user query. For instance, for the query
'tampa hay fishe.ries' we may genemte 'tampa tribune fisheri es ' af­
rer identify ing ' ramp" bilY' and ' tampa lribune' as rehlted concepts.
The resulling suggestion is however garbled and should be pruned.
Finally, most qucry re-writing tcchniques consider query refonnll­
Imion on u single query basis and do nO(account for the lttilit.v
of the suggestion set as a wholc. For instance, Ihe query ' hawaii
sunset picmIes ' could be refonnubted as 'hawaii sunsel phO(os' or
' hawaii sunset images'; while these- suggestions are well-fo rmed
and relevant to the Original query. they are less likely lO differ in
their result sets and thus in tum yield a low utility suggestion set.
Note tllal Ihis is not an issue when rewriting queries Lo improve
search result s.

To address these challenges, we develop an end-to-end system
(see Figure I) for synthesizing query suggestions. Our approach
relies on a vari ety of query transformations over the original query
in order to systematica lly explore candidates for query suggestions.
As a key contrihution, these generation methods do not solely rely
on past user s~ssion s but instead using query logs as a guide con­
siders in conce·lt several sources such <1... .. individm.ll queries (i.e ..
queries not restricted hy a session) in query logs, semantic infonna­
(ion from web p<lg~. and search resulls page. Given a set of c;.mdi­
date suggestions, wc propose a holistic ranking mechanism which
mkes into account sugge-stion's (a) wcll-/ormcdncss, (b) relevance
to the original query, and (c) ulili ly to the user given O(her sugges­
Lions. In summary, our main contributions are as follows:

• A general framework for syni!tesizinn suggestions for query
reformulations that goes beyond query session logs.

• A variety of query transformations to systematicall y generate
suggestion candidates (Sections 2 and 3).

• A holi stic suggestion ranking technique that focuses on sug­
gestion quality and utility (Section 4).

• An ex tc.nsivc experimental evaluation that includes user s(ud­
ies and real-world datasets (Section 5 and 6).

2. RELAXING USER QUERIES
Query suggestions is an <Jssistance technique provided hy search

e-ngines where given;] user query q the search engine returns an
ordered set S of suggestions for follow-up queries. For ,I large
fraetioll of queries (e.g .. _ tail querics), providing query suggesrions
is challenging si nce lIscr session Jogs may not con tain suffic ient
information. Our goal is to build for such queries all ordered set
of S of useful suggc.stions for follow-up queries that are rclevant to
the user's original mission.

Input query

Suggestion set

m:::::. .:.1nqapore

!
~h.-; t.V'In.-;: t. o;:n'J" porf>
f11c .cal L'::'- ::'-Of:<:L':':::>n Lhcr-"f"Y

sbs bJS gt:ide

Sb,9 tran ,9:t ,~: ngapore

m:::~ mi!.p
I> b.~ b .. 1> 9 c . .i.,k

Figure 1 : Stages of synthesiz ing quc l'y s uggcst ions.

Given a query q. we begin by relax ing q to query q' by identi­
fying and eliminating phmscs in q (hat arc not deemcd important
to the original information sought by the user. The intuition for
this step is that rare queries oflen conwin exlraneous terms thal are
not critical to the underlying user intent. Such long queries thus
suITer [rom Ihe problem of insufficienl query log infonnation [22],
and by eliminating unimportant terms we can deri ve the root query
for which we may have richer infonnaLion in the query logs or web
pages. For example, the term "store" in the query "big lots furniture
store" does not bring any significant information, hence we could
relax this query to "big lots furniture" and further to "big lots."

We formulate the prohlem of identi fyi ng non-critical terms in a
user query as a sequence labeling problem. More specifically, a
llser query q is treated as a sequence of tokens x = 1I. 1V.2 ··· 1I.n.

which needs to he as,-; igned a sequence of lahels y = YiY'J. .. ' 1Jn
such that Yi E {C : D~. A label of C indicates a cri tical term
whcreas a label of f) indiea(cs a (crm that can be droppcd from
the origilli.ll qucry. A promising "ppro<'lch for solving scquence la­
beling problems is Conditional Random Fields (CRFs) f23 l­

Training data: A prac tical challcnge hcrc is gene-rating anno­
hued data consisting of queries whcre each term in the que-ry is
labeled as C or D. Building large-scale annotated data that com­
prehensively covers a wide classes of queries is ch;1Uenging and
further such data is not readily available, To address this, we pro­
pose a method to automatically construct annolated data based on
information available in search quely logs. Our method is based
on the observation that users often reformulate their queries when
their original query did not lead to any interesting search results and
furthermore, these reformulations conta in important information
regarding which terms may be replaced (i.e .. dropped terms) and
which terms may not be replaced (i.e. , criti cal terms). Specifically,
st.arting with user search queries: we .split them into search sessions
hy considering all queries that occurred with in a time fmme of 15
minutes. Within a query sess ion, we look at suhsequent queries
such that (.1) the queri es differ by one term. (b) the fi rst query did
not lead to clicks on any of the resul ts. indicating an unsuccessful
query or uninteresting se,lrch results page, (c) the second query led
to at least one cl ick on the resul ts, indicating a potentially inler­
esting scarch rcsult.;; page. GivclI a query pair /11: Q2. we- label aJJ
lenns that are common to both queries as C and (he terms that were
removed [rom </1 \ hen generating (/2 as D.

Features: We uscd a combinati on of featu res inCluding lcxical-,
query-logs-frequency-, and dictiomuy-based features derived from

807

description

frequency of t;
st.andalone frequency of ti
pain-visc nnlLual informalion for (t.; , t.' _ l)

is fir st n,une
is la::;t narue
is locution
is !'>top wor d
is wikipcdia cnll'.,\,

has digit
has punctuations
posit.ion in query
length

source

query Jog:-;
qucry log!'>
qucry logs

dictionary
dictionary
dictionary
dictionary
wikipcdia

lexical
lcxicfil
lcxicfil
lexicfil

Table 1: CRF features for each term ti in a query
q=t1 ,t2,' ,tn'

various sources such as three months of query logs of a commercial
search engine, Wikitxdia, etc. Table 1 describes our feature set
along with the sources used to derive them. In particular, given a
query q = h, t2 In along with labels I I : b ... In for each term,
respectively, we compute the listed feature for each term k Of the
features shov-/ll in Table 1, the query-logs-based features, namely,
standalone frequency and pairwise mutual information need further
discussion.

The standalonf i:iCOTf:'; tries to caplure whelher a given term is
an entity or a real-world concept or not: intuitively, a concept (e.g ..
california, ipod. madonna) should often occur in a standalone form
among the search query logs. Therefore, among the query logs we
must find queries of the form q == t i, capturing the fact that users
are looking to learn more about the given concept. More formally,
we compute the query-log-based standalone score as:

*,) = IQ == ti l
. I queries tha.t conta.in ti I

(1)

The pa'irwisfm'lltual inJornwtion (pmi) score is computed for
a pair of consecutive terms occurring in the query: intuitively, this
score measures the "cohesiveness" of pairs of tenns (e.g., 'san ti'an­
cisco' would have a high pmi score compared to 'drinking water').
More fonnally, we compute the pmi score for a pair (ti. tH I) as:

(2)

A simple approach to identify candidates would be to provide
queries \l/ith high reformulation probability p(qnlqc) as sugges­
tions. This can simply Ix measured over the frequency counts in
the session logs:

(3)

where },(qn, q,,) is the frequency that these two queries arc issued
by the smne user within a short time frmne (will be refened as
co-occurrencc hereafter). The problem with using reformulation
probability as the merit for suggestion candidate generation is that
a query that is not dependent on qc might have a high reformulation
probability just because of its high marginal probability. To account
for this. one can lise pointwise mutual information (PMI) instead,

'() I (!('In,'lc))
prn·" (j11, qc =.og !(qc)!((Jn) (4)

where f(qn) and f(qc) are individual marginal counts. The dif­
ference is that PMI normalizes the reformulation probability by a
factor of f(qn): hence. it measures the dependency of these t\VO
queries. One weakness of PMl is that it might become very unsta­
ble for pairs of rare queries. As f(q,J and f(qn) get low. even a
single coincidental co-occurrence might lead to a high PMI value.
To account for this, one can use reformulation log-likelihood ratio
(LLR) instead 1201,

LLR(qn, qc) = p(qn, qc) prni(qn, qc) + p((jn, 7L) p'm:i(qn, 71J
+p(71" , q,J pTni(7jn' q,-,) + p(7j" , 7jJ prni(7j" ~ 7jJ

where 71nex t denotes the set of all queries except qn and similarly
for q". LLR fixes the stability problem by taking the size of the all
session data into account. and when the marginal query frequen­
cies f (q,,) and f (q,,) get lower, other terms will start to dominate.
We generate suggestion candidates using query reformulations with
T J ,R above a certain threshold optimized empirically. (We \vill pro­
vide details about the session data later in Section 5). Additionally,
we also apply various 1illers to guard against robots and spam de­
tails of which me out of scope of this paper.

As an example of applying this co-occurrence-based operator,
for the query 'acoustic guitar strings', we oblain 'classical guitar'
as a suggestion candidate after eliminating the term 'strings' from
the original query. Or for 'cheap vegas hotels resorts', it gives 'las
vegas specials' after dropping the term 'cheap'.

3.2 Semantic relations from web corpus where C(:r) is the number of queries that contain term:r and C(:L Y)
is the number of queries that contain ordered pair Cr, V).

Upon eliminating terms that are labelled as non-critical, we use Our next method, explores candidates by replacing query terms
the resulting relaxed queries to generate candidates for query sug- ~y tenns that me distributionalLy similar (~.e., synonym~, sib-
gestions for the original query. Note that the set of relaxed queries hngs, h~~rnyms, etc.) to them. We apply thIS transf~rmatton to
themselves serves as suggestion candidates. botl~ enUe?1 as w~ll ?s t~e dro~p~d ~uery terms. ThIS transfor-

matIon relIes on distrIbutIonal SImIlzU"lty methods r241 that model
3. GENERATING SUGGESTION CANDIDATESlhe Distribui'iuua[IIypothesis [14]: the distributional hypothesis

We now discuss a suite of algorithms to generate candidates for links the meaning of words to their co-occurrences in text and states
query suggestions for a query. Our algorithms e:rtend information thal 'wmds that OCC'll',. 'in s'inlilar conte:rts te'nd to havf:'; i:i'imilar
available in session logs utilizing information from query logs and 'rnuJ.lI,'/,T/,gs.

web pages to simulate user sessions and derive suggestions. In practice, distributional similarity methods that capture this hy-

3.1 Co-occurreuce in query sessions
While searching for information, users usually issue related queries

within a given session [4]. Sometimes they add or drop a term to
their queries, or sometimes make a lateral move such <1.<'; issuing
"'nikon d40" and "canon SOd". One rich source for generating sug­
gestion candidates for a given query is to fetch the past session logs,
and find queries that it is being manually formulated into [20, 29[.
Tn practice, this rich reformulation data is typically available only
for frequent queries and thus, we work with the root query obtained
after query relaxation.

pothesis are built by recording the surrounding contexts for each
term in a large corpus and storing them in a tenn-conte:rt ma.­
t'ri:r l24J. Term-context matrix consist of weights for contexts with
terms as rows and context as columns. and each cell :rij is assigned
a score to reflect the co-occurrence strength between the term i
and context j. Methods differ in their definition of a context (e.g.,
text window or syntactic relations), or in thcir means to weigh con­
texts (e.g., frequency, tf-idf, pointwise mutual information), or ul­
timately in measuring the similarity bet\veen two context vectors
(e.g., using Euclidean distance, Cosine, Dice). We build a term­
context matrix as follows: we process a large corpus of text (e.g.,

808

web pages in our case) using a text chunker [241. Terms are all noun
phrase chunks with some modifiers removed; their contexts are de­
fined as their rightmost and leftmost stemmed chunks. We weigh
each context f using pointwise mutual information 171. Specifi­
cally, we constmct a pointwise mutual infonnation vector PAIT(w)
for each term was: PMl(w) = (pmi'Wl ,prniw 2,'" ,pntiwm),

where pm-iwj is the pointwise mutual information between tcrmw

and feature f and i.S deriVed(S:

pmiwf = tog En '.·wi;;m ..) (5)
i_I c r f' j_l c WJ

where cwf is the frequency of feature J occurring for term 'W , n
is the number of unique terms, In is the number of contexts. and
J.'V is the total number of features for all terms. Finally, similarity
scores between two terms are computed by computing a cosine sim­
ilarity between their pmi context vectors r311. As an exmnple of
applying the distributional similarity-based operator, for the query
'football hall of fmne 2010 inductees ' we generate 'football hall of
fame 2010 award winners' since 'inductees' and 'award \vinners'
are distributionally similar phrases.

3.3 Substitutions from co-clicked URL queries
Aside from co-occurrences, another dimensionality in the ses­

sion logs that can bring additional valuable information is to con­
sider the queries that lead to clicks to common URLs as in l29J.
Query pairs with co-clicked URLs can be used to build a 8ub8titu­
tiO'TI,s dictionary. This dictionary can be used to provide alterna­
tives for the root query as well as for providing substitutions for the
dropped terms in no rnnte.rt-o.wo:rc mo:nner, such that the term
"turkey" can be substituted \vith "thanksgiving" in the context of
"recipes" and \l,'ith "turkish" in the context of "embassy" but not
the opposites.

To build a substitutions dictionary, we build a query-URL bi­
partite graph with queries and urIs as nodes and an edge q -----> n
between a query node q and an url node 'U if a user clicked on url 'U

after issuing query q. To eliminate outliers or noisy data, we only
retain edges with clickthrough rate (i.e., clicks vs. views) above
0.01. Using this graph, we identify all pairs of queries that are con­
nected to at least 2 and at most 10 common URLsl. There are two
things that we have considered while constructing the query URL
bipattite graph:

• We removed URLs that are connected to more than 200 queries
(most of which tum out to be very popular destination pages
like youtube. com, amazon, com etc.). This prevents us from
connecting vaguely related queries and bringing in irrelevant
substitutables.

• For the URLs from tail domains, we used the domain-level
information instead of the particular URL. If for a given do­
main, wc have less than 30 unique queries leading to a cliek
to a URL in that particular domain, we consider this a as a tail
domain, and define the co-clicks over the domain, instead of
the particular URLs. We found that this helps for cnriching
the suggestion sets for tail intents \vithout losing the context.

When generating suggestion candidates, we simply look into the
substitution dictionary for all possible substitutions. For cxam­
pie, for the query 'turkey recipes', if the relaxed query is 'turkey',
\ve look at the substitutables of the dropped term 'recipes' to find
'roasting times ' , 'stuffing recipe' , 'how to roast' and many others,

I\Ve decided to use >In llpper boun d h ere >IS welL beca,llse with too
Tllany common URLs, the query pa.irs a.re start ing to become syn­
onynlOUS ·with <\hnost identical r esult sets, ·which provides <\lmost n o
utility to the users. This will be detailed ill Section L~L

and generate the candidates 'turkey roasting times', 'turkey stuffing
recipe' and 'how to roast turkey'2.

3.4 Context from original query
After exploring suggestion candidates of the relaxed query. in

many cascs it is helpful to push thc dropped tcrm back into the
query to generate a partially Lateml move. Naturally, this con­
text is only pushed to suggestions without the dropped terms or
their substitutions. As an exmnple, for the query 'acoustic guitar
strings ' , we generated' classical guitar' using the co-occurrence­
based operator (Section 3.1) to which we push the term ' strings'
to generate the suggestion 'classical guitar strings.' This operator
re-inserts the original query context into the suggestions.

To summarize, we consider an expanded set of suggestions de­
rived by relaxing the original query as well as using different com­
binations of operators discussed above.

4. RANKING SUGGESTIONS
While combining various information sources and text-based op­

erations discussed in the previous section allow us to systematically
construct c;:mdidates for query suggestions, they may also lead to
erroneous query suggestions. Specifically, we may have at hand
suggestions that are garbled; for example, in our experiments, for
the query 'tampa bay fisheries' one of the suggestions generated
using co-occurrence data and pushing the dropped term from the
query was 'tampa tribune fisheries' (the original query was relaxed
to generate 'tampa bay' for which session co-occurrence data pro­
duces 'tampa tribunc' as a suggestion). Similarly. thc candidate
suggestions by applying variolls operators may not be relevant to
thc original query. To addrcss these issues, we build a supcrviscd
ranking model to decide which candidate suggestions are valid.

The desiderata for ranking candidate suggestion for a given query
include: (a)weLl-forrnedne8s of the suggestion (Section 4.1), (b)
Td evance to the query (Section 4.2, and (c) utility to users (Sec­
tion 4.4). Additionally, we use a variety of lexical and syntactical
features and train a gradient boosted decision tree (GBDT) [12]
over this feature space for ranking candidate suggestions.

4.1 Well-formedness of a suggestion
In this step, our goal is to demote suggestions that are garbled,

i.e., that do not conform to a real-world concept or language formu­
lation. For instance, the suggestion 'tampa tribune fisheries' is not a
a real-world concept and similarly 'marilyn monroe compendium'
is a garbled suggestion. This is a critical in our setting since the
suggestions arc 'user-facing': in contrast traditional qucry rcwriting
methods send rewritten queries to the search engine (i.e., backend)
whcre thc cngine simply rcturns few or no results in case of poorly
formed queries. To capture the well-formedness of a suggestion,
we use statistical la.nquo.qe models \vhich is a probability distri­
bution P(s) over a sequencew1 ,ti') , ... 10m of words expressed
as:P(tV1, 102,' .. tern) = n;-=-l P(Wi 1101,102, ... ,'1.I"i-1). We use
an n-gram model which computes the above probability based on
"memory" of past (n-I) words given as:

m

peU'I, tV2," .wm) ~ II P(lvi lu'i_(n_l) . ,'wi-d
i=l

In our experiments, we use a tri;.¥ram model where

P(w"",wm) "" II P(WdW i_2),Wi ,)

' =1

which is estimated using a nw:rimum likelihood e8tima.tor as:

2,Vhile gener ating the candidat es we keep the strnctur e of the co­
clicked URI. queries a.nd do not put t he placed t erm into the position
of the dropped term (<\~ it would end up w ith lllMly ~arbled sU l-\ges­
tion~ like ' t urkey how to ron.st·

809

((i)

where C(10; '2 'Wi lWi) is the relative frequency of observing the
word 'Wi given that it is preceeded by the sequencc 'U)i_21O'_-I.

A common problem in building language models is that of word
sequences that do not occur in the training set used to compute
quantities in the above equation. In such cases, C(1L'i_2'iUi_1'Wi)

and therefore J--'(wilwi_2,lL'i_1) equals O. To address this prob­
lem, several smoothing techniques have been proposed that appro­
priately discount the MLE estimates in (6) and use the left-over
probability mass for sequences not observed in the training dnta.
Several smoothing techniques have been proposed in the past and
we use a commonly used method, namely, Kneser-Ney smooth­
ing l2lj. Kneser-Ney smoothing interpolates higher-order models
with lower-order models based on the number of distinct cm-,.ter:ts

in which a term occurs instead of number of occurrences of a word.
Formally.

\vhere D is a discount factor [21] nnd N(x) is the number of unique
contexts following tenn x.

An important observation in our setting is that \ve are dealing
with potentially valid suggestions that may not occur in the query
logs. Specifically, since our suggestions are synthetically derived
we want to incorporate sources other than query logs. With this in
mind, we build and combine language models from query logs as
well as web pages. We combine these models as:

Pe(w3Iw" Hi') =), , Po (""lw" w,) + (1 -),)Pw(w3Iw" "',)

where)" is the interpolation weight optimized on a heldout training
set. In the ranking step, we use Pc, Po and Vw as features that
capture well-formedness of a candidate.

4.2 Relevance to original query
To assess the relevance of each suggestion candidate to the origi­

nal query, we designed three types of features for each pair of query
and its suggestion candidate. In this section, we discuss how we de­
rive these features using query logs as well as search results.

4,2, I Click-vector similarity
An obvious relevance feature along the lines with the co-clicked

URL candidate generation method is to look at the overlap between
the clicked URI,s for each query pair. For a given query, consider
the following document click-vector over the set of all documents
cl(q) = [el, (q), el,(q)" .. , t,{g(q)[, where }{ is the number of
clicked documents. We calculate the cosine similarity between the
overlapping URLs in the click-vectors of each query and suggestion
c;mdidate pair as our Iirst relevance feature,

. cl(q,) . cl(q,)
5'111",,,, = IIcl(qdllllcl(q,)11 (8)

This feature by definition is non-zero for the candidates that are
coming from the co-clicked URL candidate generation method. On
the other hand, the coverage over other candidate generation meth­
ods is quite low since we are working with synthetic suggestions
not observed in the past. Note that although this feature relies on
query logs, it does not require the query and suggestion to occur in
the same session; later in this section, we derive features that are
not derived from query logs.

4.2.2 Context-vector similarity
A relevance feature along the lines with the distributional hy­

pothesis is to look at the similarity of the distribution of other terms

R.equire: Conccpt dictional"}T D, CJucry q
1: Ret.rieve :'let. R of top-k result:'l for q
2: T = Terms from D contained in R
:1: Eliminat.e from T t.erms in q
4: for t.erm tED do
5: d(t) = number of HoSUltS that t appears
6: ret) = total rank t.hat. t appears
7: U(t) = 1("'+1) d(t)1-r(t)

rI(t) Ie

8: Set) = d(t) kRlt)

9: end for
10: Get the 20 terms \vith highest score Set)

Algorithm 1: Algorithm to compuLe the abouLness vector.

that each query is searched along with. For example, consider two
queries (ll and (j2, and assume that in the session logs, the most
frequent queries that include these two queries include "(Ql) down­
load". "(q'l,) download", "install (ql)" and "install (Q2)". From the
context with which the query is searched together with. it is clear
that both queries arc software related.

For a given query, consider the context vector as the frequencies
of the terms that it is searched along with co(q) = [11, h· ... , ILl,
where L is the number of co-queried terms in the session logs. Sim­
ilar to above, we evaluate the cosine similarity for a pair of eontext­
vectors of the overlapping context tenns of each query - suggestion
candidate pair as:

• CO(ql) . co(q,)
Sm),,"n',"" = Ilco(qL) 1IIIco(q,) II (9)

Although this is a useful feature for frequent queries. over a uni­
formly sampled query set the context-vector similarity has a very
low coverage. In our experiments, many queries in our data set are
rare (and long) queries that have a very low probability of being
searched within other queries, and do not have a context vector.
Furthermore, the suggestion candidates that arc coming from sub­
stitutions from web corpus are not even guaranteed to be observed
in the query logs, hence context is not defined.

4.2.3 Web-based aboutness similarity
So far, we discussed two features based on user query logs (i.e.,

observed data); however, of course, these features are sparse and
will fail to assess the relevance of rare queries or queries that are
not observed in the past. In the absence of session logs, one can
usc the search engine itself and look at the results to determine how
related two queries are. Specifically, an earlier work by Raghavan
and Sever r281 compares the ordered result sets reUlrned for each
query to measure query similarily. Their method requires ranking
of all documents and 0(1\''2) complexity, where N the number of
documents. which is intractable for the web search scenario.

A subsequent approach is given by Fitzpatrick nnd Dent where
they use the set overlap of the top k documenls [10]. This is a
tractable solution, however the result set overlap is only good at
finding almost synonymous queries, and the overlnp drops sharply
when the queries are related but not (almost) identical. In the
context of query suggestions, we are not interested in identifying
nearly identical queries; instead, we need to assign reliable rele­
vance scores to related query pairs as well. For example. although
they are related and would make useful suggestions for each other,
'python' and 'ruby' have zero results in common in top 50. Thus,
a mea<;ure simply based on the search results is insufficient and our
next feature is captures what the results are about.

To assess a suggestion's relevance to the query, \ve build an
abonl.ness vector r61 of the query and the suggestion and com­
pute the similarity between these vectors. An aboutness vector suc-

810

cinctly describes a document and is represented as a set of salient
cnnrr:pts in the document along with their scores. Methods to build
aboutness vectors differ in their definition of concepts (e.g., terms,
named-entities, unigrams). In this work, we rely on a pre-built con­
cept dictionary built using the method proposed in r21. Our dictio­
nary consist of 27 million phrasal concepts and nmned-entities ob­
tained from a large web crawl as wel1 as well as query logs and is
intended to cover most "interesting" phrases on the web. (For steps
to build the concept dictionary please refer to r21-)

Algorithm 1 describes our algorithm to compute the aboutness
vector for a given a query (j using the concept dictionary D. The
Hnal score S(t) is a function of d(t), the number of documents
that the term t appears and, R(t) the rank score. R(t) gives higher
weights to the terms that are contained in higher ranked documents:
since documents that are ranked higher are more important than
ones that rank lower, terms that are contained in higher ranked doc­
uments are more important. Given the aboutness vectors of the
query (jl and the suggestion candidate (j2, we calculate the cosine
similarity between these two vectors to find the web-based about­
ness similarity

. ab(q,) . ab('1')
Slm"b"," ~ Ilab(q,)llllab(Q2)11 (10)

We found that Sima/lout is quite useful since it can assign reli­
able relevance scores to related queries. For example, for the above
example, 'python' and 'ruby' have a Simabout score of 0.29, with
the aboutness terms 'download' 'programming language' and 'im­
plementation' in common. ll1is first may sound lower than ex­
pecled, but note that this is a quite diHicull comparison due to other
meanings of the queries (snake and gemstone) that occupy some
portion of the aboutness vector. Hence, 'python' vs 'boa snake' or
'ruby' vs 'saphire' also have non-zero /hrn'about as well.

Another good thing about Sinl'uiJol<f is that it has full coverage.
It can be computed as long as the query returns some results. Al­
though it cannot be computed for zero-result queries, we still con­
sider it as full coverage, since query suggestions with zero results
cannot be relevant to the user by definition.

4.3 Suggestions ranker
In addition to the above, \ve also employ features that capture

the lexical characteristics of a suggestion such as binary features
\vhich include, whether the suggestion contains a digit, punctua­
tion, alphanumeric characters, as well as the length of the sugges­
tion. Other family of features include the source that generated the
suggestion. For instance, the feature SRC. CD is set to I when a
suggestion is generated using the co-occurrence statistics. Finally,
we also employ dictionary-based features that check if query terms
that were dropped, insetted, or left intact belonged to any specific
category. In pmticular, we use dictionaries to determine if these
terms arc locations (e.g., city, state, or country), wikipedia entities
(e.g .. surgery. alzheimer), or stop words (e.g., the. of, an).

We use Gradient Roosting Decision Tree (GRDT) as the learner
[12], and pose the problem as a classification of good and bad
queries. In tlns classification setting, for each test smnple GBDT
outputs the probability of good. We prune the test samples with
probability of good less than p(good) < 0.5 and rank the remain­
ing by this probability.

4.4 Suggestion utility
The final step is to filter out the low utility suggestions. Of all

the pieces in the pipeline. there is nothing that ensures that util­
ity of the suggestions, and thus the system may generate irrelevant
suggestions. e.g., suggestions with no search results. Also, in all
likelihood, the system can generate query suggestions that are syn-

onymous to the original query, with an almost identical result set.
We assert that a query suggestion should be presented only if it
leads to a sufficiently different result set as compared to those ofthe
original query and other presented suggestions. For this purpose,
we define a measure of utility of the suggestion q.~ conditioned on
qp, a query that is already presented to the user, U (qslqp).

Given q~ and qp, let unr.,~ = [u,~l, 'U.~ .. \"l and unr.I' =

[Upl , up.''' 1 be the result sets of these two queries. For the top
10 URLs in the result page of q.~, we define the examination prob­
ability of the URLs using the rank discounts in the commonly used
DCG formula [18].

1
p(e(n,,) ~ 11'1.,) ~ d(n'i' q.,) ~]og,(ri + 1) (11)

where T is the rank of the URL and r is a binary random variable
that shows whether the URL is examined or not. Again for each
lhi E U RL 8 , we also define the examination probability that the
user will examine the URI, in the result page of %, as follows.

p(c(1J~;) = llqp) =

U.si E fJRL[l' (12)
b'{d(qr" u",n 2: b'{d(q", H. in

C URL p .

< E{d((b H"dJ
In words,
• o..,i cannot be observed via qI" if it is not in the result set of

ql" hence the examination probability is zero.

• If fJp returns 1I..~i at least as high as q~ does, the examination
probability is 1

• If (jp returnsll's1 lower than (js does, the examination proba­
bility of this URL is the ratio of the rank discounts of the two
corresponding ranks.

We define the pairwise conditional utility []((js I (jp) by combining
(II) and (12) as

U(q,l"p) ~ 1- L p(c(u) ~ 11",) p(t(u) ~ II"p) (J:J)
a E UHL~

Intuitively, the Iirstterm in the summation gives how important
this particular URL is for the query (j8' and the second term gives
hO\v likely it is that the same user \.vould examine this URL in qp,
with the a.,>sumption that the user would go as deep into the result
set in qp. Hence, U(qslqp) is, by deIinition is 0 if the results of
the two queries are exactly the same or (js has zero results. Also,
U (q~ l(jp) would be close to 0 for queries that share many URLs and
rank them similarly. After defining U((jslqp), we use the follow­
ing greedy approach to ensure that all suggestions are sufficiently
different from the original query i1,-" well as each other.

• Get the ranked suggestion list \vith decreasing scores.

• For the lirst one in the ranked suggestion list. and put it into
the final suggestion set if it satisfies U (qslqp) ~ "(where qp
is the original query.

• For all remaining queries, get the one with the highest score
and put it into the final suggestion set if it satisfies U (q~ Iql') ~
"(for the original query and al1 queries in the final set.

User study to select the optimal I value for the utility model is
presented in Section 6.5.

Putting it all together, our end-to-end framework systematically
explores candidate for query suggestions while allmving sugges­
tions that mayor may not lexically overlap with the original query.
To this end, we proposed a supervised ranking algorithm to elimi­
nate inelevant or low utility suggestions. It is noteworthy that our
pipeline is amenable to be incorporated in a web search engine
since it can be run in an offline manner to generate a dictionary
of queries and their suggestions.

811

5. EXPERIMENTAL SETUP
Query Set: We collected a random sample of 10{),000 flilly
anonymized queries sent to Yahoo! search engine in the month
of August, 2010 along with their frequency. Of these, we identified
those for which the search engine does not present any suggestion
and drew a random sample of 10,000 queries biased by their fre­
quency (sec Introduction for query suggestion distribution.) Our
goal was to capture queries from different quantilcs of this distri­
bution. Note that by nature the queries that the search engine can­
Ilot provide any suggestions aTC vcry likely to be tail queries of
the overall query distribution. We perfonn lO-fold cross-validation
over this datasel.

Distributional similarity filters: For this, we use a collec­
tion of 500 million web pages crawled by a commercial search en­
gine crawL We construct our dislributional similarity database by
adopting the methodology proposed in r271. We POS-tagged our
\veb corpus using Brill's tagger [5] and chunked it using a variant
of the Abney chunker II J. We built a distributional database from
this chunked corpus using the method outlined in Section 3.2.

Clickthl'ough data: To generate the co-click graph and com­
pute the co-occurrence log-likelihood ratio, \ve used 6 month of
anonymized query ciickthrough logs of Yahoo! search engine. The
co-click graph consists of 2.7M unique queries and 55.6M unique
URL" in total, withl67.3M edges in between them. The co-occurrence
data has 4.3M unique (Cle, (]n) pairs for 913K unique (le.

Compared methods: We are unaware of any existing sys­
tem for synthetically generating suggestions from several candidate
generation methods and blends them. However, several methods
for generating suggestions have been proposed, which we use as
sourccs for candidatc suggcstion gcneration r20, 291. Thercforc,
we build baseline techniques for comparison using each candidate
gcncration source:

• CO+PS:eo-occurrence with pushing the dropped tenus

• CO :co-occurrenee

• DS :distributional similaIity of the dropped tenn

• Q+CK :coclicks of the original query

• R+CK :coclicks of the relaxed query

• DS+CK:cociicks of DS

• CO+CK:cociicks of co-occurrence of relaxed query

• HYB :hybrid method that combines all
Note that we allow all the above methods to share the same query
relaxation techniques and the ranking model.

User studies: All user studies and manual annotation tasks de­
scribed were performed by a group of eight professional search en­
gine quality evaluators experienced with assessing the quality of
query suggestions and search results.

Evaluation method: Professional annotators provided binary
judgments for the IO/)(X) queries we sampled, good, for the rel­
cvant and useful suggcstions, and bad for thc irrclevant, garbled,
zero-result. or synonymous (hence useless) suggestions. Annota­
tors werc askcd to input their judgments after looking at thc results
page and comparing those for the query and suggestion; this is im­
portant to capture the utility of a suggestion.

Evaluation metrics: We cvaluatc thc pcrformancc of cach sys­
tem using infonnation retrieval measures. namely, precision and
recall defined as:

• Precision: Given a list L of suggestions for a query, we
compute precision as ,·\"wnou' of c(Jn.ttl:(Uqqf s ti (Jn~ in L. We study

the precision values at varying ranks avcragcd over qucries
with at least one suggestion.

~ ~ t-----__ ,-----------------------~
.~ 40 t-.r---Ie-----------------------~
•
~w t-.---Ie-----------------------~

.~ 20 +-. ---11------------------------1
~ w t-.---Ie-----------------------~

• • •
Number of suggestions

Figure 2: Distribution of number of suggestion can­
didates per query.

g '"
t: 1,

-

-

• a 10+-.. -------11---11---------------1
Q

" Sour~

.. ---;-
Figure 3: Distribution of number of suggestions for
each candidate generation source.

• Recall: Given a list L of suggestions for a query, we com-

pute rccall as 1~~~/t~~~l~~~t~:;~~~:;i~~:~e_~~il:>r~:,:;-ly~,1 whcrc all
correct suggestions for query is the union of the correct sug­
gestions across all methods.

6. EXPERIMENTAL RESULTS
6.1 Coverage of extended suggestion pool

Our main goal is to increase the coverage of the queries for which
useful suggestions can be provided to the users. Thus. our first
experimcnt studies the incrcasc in this coveragc along various di­
rections. Note that our experiments consisted only of queries for
which a commercial scarch cngine docs not providc aniJ suggcs­
tions and therefore results reported in this section naturally trans­
late to an increase in lhe coverage of queries with suggestions. (Im­
plementation details of this suggestion service are proprietary and
OLlt of scope of this paper.) Figure 2 shows the distribution of the
total number of suggestion candidates explored by our candidate
generation methods per query. As we can see, our proposed query
suggestion generation methods provide a large set of candidates.
We further break down the suggestions by the source in Figure 3,
and see that all methods have some substantial contributions. and
some of them like CO, CO+CK, CO+PS and DS are contributing
mueh more than the others.

To investigate the quality of the suggestion candidate pool, we
look at the number of good suggestions per query in Figure 4. Be­
fore thc pmning and ranking stagc, 24% ofthc qucrics have at least
one good suggestion candidate. This is encouraging since the query
set ,vas sampled from thosc with no suggestions, which constitutes
66% of the unique query traffic. We again break down the good
suggestion distribution into individual sources. Among the most
contributing sources there is the co method, investigated earlier
by Jones et al. [20], and three other candidate sources that we pro­
posed in this paper provide good suggestions almost as much as that
one. Also. all of the sources have some substantial contribution.

6.2 Quality of extended suggestions
Wc nO\v evaluate thc quality of the ranked lists for cach source.

Each list is run through the well-fonnedness, relevance, and utility

812

query suggestions
fr ee auLo jxnls manua
ruinneapolie; days inn
mllscu ar sysLcm (" lag;null

auLa)O(y parLs, (" iscollnl allLo pans, aula parL SLores
lninlle<lp~lic; COlnfor t inn, lninn eapolic; motel 0, minneapolis e;Up er b, lninneapolic; bee;t we;;tern
111n1an I" 'C cla sysLcm (" iag;nllll, circlI aLar,), s,ysLem iagr aln , Hllnan muscu ar s,vsLell1, I" ·c cla anaLollly

puppy training 101
csi crinlC scene invesliKalion casl
honda. insight review

do,\!; trainin,'2; bac;ice;, puppy houe;ct-raining, dog whic;pcrcr, puppy training t ipc;
csi -mimlli C~SL, COli new yoI' c cal'll, csi episo e gllk e, C)1" csi Iniami

o)sessive conlpn sive (isor er symptoms
ford hmion review, 2()"IQ toyota prim;, toyota prim; r eview, honda civic hy brid
oc test, ocr symptoms, causes of oC(, oc treatment, s;v-mptoms of oc

Table 2: Examples for query suggestion pairs

eo

'i
•
Q '" " 'B
~

I
Number of good suggestions

Figure 4: Number of good suggestions per query.

.. l0 r-
~ 21 +-------..------------_1

~ 7,' 1-1------1I----,;;--------l
! 15 +-~-~--11--~-------_1

~ 10 +-~-~--11--~-------_1
~
~ I I I

Figure 5: Distribution of good suggestions for each
candidate generation source.

filters and for fairness, all sources share the same CRF relaxation,
relevance thresholds.

Table 2 lists a few sample suggestions generated for our test
queries. Figures 6 and 7 shmv the average precision and recall,
rcspcctively, of thc ranked list produccd by the GBOT modcl Wc
see that some of the sources like Q+CK are quite precise, but their
rccall as wcll as thc dcpth of thc rankcd list is very low. co and
CO+CK are the ones with the highest recall . also they can provide
up to 8-10 suggestions per qucry.

It is noteworthy that the precision for HYB is computed over more
samples than those for the baseline since HYB produces the longest
list of suggestions (see Figure 7). This. in tum, results in less vari­
ance of the precision values as compared to the baselines. In Figure
7. we observe that the recall for HYB is additive over the baselines,
i.e., individual sources. The overlap between the suggestion can­
didates generated by ench source is low with each source bringing
in different and valuable candidates. Figure 8 gives the average f­
measure over the suggestions set at each rank for all sources. As
expected, HYB outperforms all individual sources including the
earlier methods co l20J and Q+CK, R+CK l29j.

HYB in Figure 8 generates a relatively long list with 10 or more
suggestions; in practice typically k = G). If the desired size k is
known a priori. one can tune the ranking stage to optimize for the
precision and recall up to that k value. For example, if a deep list is
not nccded, the aim might be to display 0. single sU.Il.qeslion per
qu.ery. and increase the qu.a.lity as much as possible. This is
perfectly rea<;onable. The exact number of suggestions to be dis­
playcd is a dcsign choicc: depcnding on whcre on thc pagc thcy
will be displayed, too many suggestions might distract the user.

.~~~~~~--------,

-iii- co+ps DS+CK
_ DS CO+CK

-+- Q+CK HYB

o"L -:----;-----:------o~~~,
Rank

Figure 6: Mean precision at varying ranks .

Rank

Figure 7: Average recall at varying ranks.

For this scenario, to optimize the f-measure at the top position, one
can tune the GBDT confidence threshold, and compromise for the
precision and recall at the lower ranks to improve the precision and
rccall at rank 1. Scc Figurc 9 for a comparison of thc f-mcasurc for
top 5 ranks for varying relevance confidence threshold levels. For
example with thc thrcshold 0.8, onc can incrcasc thc f-measurc at
rank 1 vcry significantly to 0.82, by compromising thc dcpth ofthc
list; hence, the recall (and therefore the f-measure) decays much
more sharply [or increasing ranks as compared to the values with
the threshold 0.5 -the black curve in Figure 8.

In summary. if a deep list is not needed, \vith a more strict rele­
vance confidence threshold HYB can provide a ranking with 0.83
recall at rank 1. 0.56 recall at rank 2. 0.83 precision at rnnk 1. 0.85
precision at rank 2 and an average list length of 1.4. Precision value
at rank two is 0.85. which is at the same level of quality of the sug­
gestions that the search engine can provide for frequent queries via
~xisting techniques -some of which we use as sources. Recall the
distribution over the suggestion coverage provided in the Introduc­
tion section; 26.6% of unique queries have more than 5 sugges­
tions, and 7.4% have between I and 4 suggestions, and 66% of the
unique query distribution has no suggestions. It is remarkable that
BYB with rclevancc thrcshold Ievcl 0.8 can incrcasc the covcrage
of qucrics with at least onc good suggcstion from 34% to 47.2% of
the unique query distribution , hence brings a coverage increa<;e of
39% without compromising precision.

813

('_9

'l.S

'J.'

o 0

Rank

--+- co
___ CO+PS

- DS
..... O+CK
-+- R+CK
....... DS+CK
+ CO+CK
...... HYB

Figure 8: Average f-rncasurc at varying ranks

6.3 Query relaxation performance
After comparing each source, we now evaluate individual com­

ponents in the pipeline slarting with the CRF model [rom Section 2.
Our evaluation of ti1e proposed CRF model is two-fold. For our
first evaluation, we ran lO-fold cross-validation and compared our
model against a baseline method that eliminates the last term in
the query. Table 6.3 compares these methods and shmvs that us­
ing a CRt' model substantially improves the precision (15% gain)
\vith a small amount of drop in recall (2(/0). Our second evaluation

method precision recall

CIlt' 0.82 0.87
l3aseline 0.71 O.S9

Table 3: PCl'forrnancc of query relaxation method.

involved a user study where annotators were provided the queries
for which the CRF had droppcd atleast onc term. Annotators werc
asked to label (a) whether a query contained a non-critical term,
(b) whether the CRF selected the correct term to drop. Of these
queries 709(, of queries did have a non-critical term, and for these
queries CRF selects the correct term 81 % of the time. Finally, a
feature analysis of the model showed that the stand-alone ratio is
consistently the most important feature in all 10 runs.

6.4 Feature analysis of suggestion ranker
To better understand the importance of various features used in

our ranking model (Section 4.3), we examined for each feature the
coverage as well as the importance ranking noted by the GBDT
model. An encouraging result is that the GBDT feature importance
ranking was consistent and thus stable across individual runs in our
I O-fold cross-validation. Specifically, in all 10 runs S'im'(J/)(mt is the
most important fcaturc. Also. wcb and combincd language model
scores P w and Pc , and Simdick are consistently among the top
five most important features. Not surprisingly, the most important
features are the ones \l,'ith higher coverage, Simaoout with full cov­
erage, combined (71o/c}) and web (66.900 language model scores.
The one with the smallest coverage mnong the most important fea­
tures is 8imd ick with 17.5%. Also. lexical features seem more
important than the source features overalL

6.5 Utility model performance
Finally, \ve discuss the performance of our utility model (Sec­

tion 4.4). To select an optimal ~l value. the threshold by which we
decide to remove the query suggestion from the set due to redun­
dancy, we camed out a user study where annotators were given 500
randomly selected pairs of queries and their suggestions. Annota­
tors were asked ifthc suggcstion is uscful or redundant for thc given
query. Figure 10 shows U(q~lq]J) value versus the editor grade
(a noise jitter is added into the editor grade for a better visualiza­
tion), along with the precision-recall curve of U (q8Iqp) for varying

; ,
Rank

....... 0.2
-iii- 0.4

-+- 0.6
....... 0.8

Figure 9: Average f-measure for varying relevance
confidence threshold,

~l values. For this model, we decided to use "i = 0.70. which corre­
sponds to 0.94 precision and 0.67 recall on this dataset, as marked
in Figure 10. In our experiments, the utility model removes low
utility suggestions such as "cooking channel tv" -----> ;;eooking chan­
nel television", "tmnpa bay fisheries" -----> ;'tmnpa bay fishery".

Figure 10: Utility estimate U(qslqp) versus the editor
judgment (left), and precision recall curve of U(qs Iqp)
with the operating point at '"";/ = 0.70 and the precision
recall curve of the baseline (majority) classifier,

7. RELATED WORK
Providing query suggestions: Research on query sugges­

tion methods have largely relied on observed queries and developed
similarity measures based on these observations. In III J associa­
tion rules are used to mine query recommendations from queries in
individual uscrs' scarch sessions which are defined as fixed length
periods of interaction. In contrast [36[builds a graph representa­
tion of the of the sequential search queries and combines it with a
content based similarity method to account for the sparsity of the
query logs. These methods simply mine query reformulations from
observed queries. Other methods leverage the click infonnation,
as well. Tn r291 , a query similarity measure is developed based on
term-weight vector space representations of the queries and clicked
URLs. QuelY tenn and click pattern overlap is used in r351 to de­
velop query similarity measures in order to cluster user queries.
Random walks on query-click graph is used by [8]. Slightly dif­
ferently, Markov R;mdom Field models nre used over the query­
click graph to generate bid terms in [13]. In [25], query-click graph
based random walk techniques are fUl1her refined by considering
the time to first visit to a query node. Main shortcoming of the
query recommendation methods listed above is the limitation of
suggestions to observed queries. This works fine for the frequent
queries but not so well for the rare queries in the tail.

Earlier methods of generating alternative queries also included
query expansion by pseudo-relevance fe·edback where additional
query terms arc obtained from the documents retrieved by the orig­
inal query. Thcsc tcrms are used to expand the original qucry to
retrieve more specific documents. Limitations of this method such
as query drift arc well documented [301. Query term deletion has
been tried in [191 but it leads to loss of specificity. In r321, query

814

term substitution is considered using the retrieved documents, and
in l2J user input is sought for selecting appropriate related terms,
but these methods add an additional step to query reformulation.
Automatic term substitution using query logs is considered in [201,
however a non-contextual query segmentation is used leading to
many marginally useful refonnulation candidates. Their filtering
method also lacks a language model, so it docs not have the right
infonnation to separate well-fonned queries ii'om illegible ones.
This is probably acceptable for bid term generation for ad match­
ing but not so for query suggestions to be offered to a search user.

Earlier work has explored comparing information from query
logs and other textual sources [15, 9]. Closest to our \vork is Lhe
method in [9] which examines anchor text in web pages solely
for the ta,<.;k of query suggestions. Interestingly, Dang and Croft
show that suggestions generated using anchor text are comparable
to those generated using query logs. This work builds an alter­
native to query logs using web pages whereas our work uses web
and additional textual information to crtr:nd query session logs, es­
pecially for rare queries. Further, our proposed method explicitly
handle the case of lateral query reformulations. Recently, Szpektor
et al' r171 shmved how templates can be used to provide sugges­
tions for rare queries: our work considers the generic problem of
providing suggestions for aniJ rare query.

Re-writing long queries To improve the perfonnance of
search engines on long queries (or tail queries), several prior re­
search efforts have looked into query re-writing via term substitu­
tion or tenn reduction r3, 9, 16, 22, 26, 33, 341. \¥bile these prob­
lems are well-studied and have shown signiIieant improvements in
performance on TREC data, their utility on web environment is not
\vellunderstood. Long query re-writing is conceptually related to
our candidate generation step; however, a critical difference is that
\ve focus on generating query reformulations to be offered a8 an

ordered 8et to the user instead of improving search results. In our
setting, we need to consider non-lexically overlapping yet seman­
tically related query reformulations as well as consider the quality
and utility of a 'user-facing' suggestion set as a whole.

Identifying key concepts in queries: Finally, identi­
fying key concepts in the context of search queries has also been
extensively smdied over TREC data and over search engine logs
to some extent [3 [. Conceptually, this is related to our query re­
laxation step, hO\vever our end-to-end approach considers the web
search setting and uses complements such methods with algorithms
to generate and rank candidate suggestions.

8. CONCLUSIONS
Tn this paper, we presented a supervised learning-based end-to­

end framework to synthesize query suggestions offered to semch
engine users as follow-up queries. Our technique uses query logs
as a guide to capture user search and intent behavior and lever­
ages information available in web pages, search results, as well as
click logs to derive suggestions, We systematically decompose a
query and apply varioLis transformations to automatically generate
suggestion candidates and propose a ranking method that incorpo­
rates language models and other useful features to select high qual­
ity suggestions. We show that our system increases the coverage
of unique queries with at least one good suggestion from 34% to
47.2%, leading to a 39°fc, increase by high quality suggestions.

9. REFERENCES
[I: s, Abney and S. P. Abney. Parsing by clnlnks. Tn

Principlt:-RaO'ul Par8img, 1901.
[2: P. Anick. Using t.enninological feedback for web search

refinemcnt: a log-based study. In SIGIR "03, 2003.
[3: :LvI. Bender sky and B. C r oft. Discoverinll, key con cepts in

verbose qucrie;;. In SIGIR 'U8. 2008.

[4] P. Boldi. F. Bonchi. C. Ca;;tillo. D. DOllato. A. Gionis. and
S. Vigllil. The query-How graph: model a.JI(I applicatiolls. In
crrO,I'08. 2008.

[5] E. Brill. 'Transfornw.t.ion-based error-dl"iven learnin~ and
natural langml,ge processing: A case study in part-~f:'speech
tagging. Computational Linguistics, 21(4). 1\:)9[,.

[6] P. D. Bruza and '1. \V. Huibers. A study of abomncss in
information retrieval. In AI '96'. 1996.

[7] K. "\V. Church and P. Hanks. \VoId association nonns. mutual
information, and lcxicography. In ACL '89. 1989.

[8] N. Cras well and I\f. S7.urnrner. nandorn \valks on t.}1e click
graph. In SIGIR 'WI, 2007.

[91 V. Dang and B. Croft. Qucry rcformulution using anchor text.
In WS'1J .1,.1 '10.2010.

[101 L. Fitzpatrick and :1\1. Dent. Automatic feedback ul'>ing past
querics: social scarching? In SICIll '9 r!, 1997.

[11] 13 . .1\,1. .Fonscca, P. 13. Colghcr, E. S. de !\lonra, and .'J. Ziviani.
Using association rules to discovcr search cngines relatcd
queries. In LA- ~FEn '08, 2003.

l12] J. H. Fr iedman. Greedy function approxim <ltion: A gradient
boosling machine . . 4nnal,9 of S/,aUsI'i,c .,;, 29, 2000.

l13] A. Fuxman, P. Tsaparas, K. Ach<'11L and H .. Agrawal. Using Lhe
"\visdOIIl of the crowds for keyword generation. In vFvFR" '08.
2008.

[14] Z. Harris. Distributional structure. vFoni, 10(2;~), 1954.
[15] .T. Hllallg, .T. Gao, .1. rvliao, X. Li, K. \\Tallg , alld F. Delir.

Exploring w eb scale l<'1ngnage models for search qnery
proce:;sing-. In rVVV~V'lU, 2()1().

[Hi] S. Huc;ton and B. Croft. Evaluatinl-', verbose quer y p r ocessiul-',
tedllliques. In SIGlR '10,2010.

[17] Y. 11. 11.1<\11 Szpektor, Aristides Gionis. 11Ilproviug
recommendation for long-tail queriec; via templatec;. Tn ~F~V~F
'11,2011.

[18] K . ..Ti\rvelin and ..T. Keki\lH,inen. Cl.Innllat.ed gain-b(\~ed
evaluation of lIt teehniqucl'>. ACAI 'Frans. Inf. SysL 20. 2002.

[lD1 IL Joncs and D. C. Fain. Query word deletion prcdiction. In
SIGIR '03. 2003.

[20] R Joncs, B. Itey. O. Madani, and \V. Greiner. Gcncrating
query substitutions. In VVIV~V '06. 2006.

[21] It. Kneser and H. Ncy. Improved backing-off for HI-gram
language modeling. ICASSP 1995, 1. 199,).

[221 G. Kumaran and V. R. Carvalho. Reducing long queries using
query quality prcdictors. In SIGIR 'Og. 2009.

[231 J. D. Lafferty. A. I\IcCallum. and F. C. ="l'. Pereira. Conditional
random fields: Probabilistic models for scgmcnling and labeling
scqucncc data. In lCA1L '01, 200 1.

[24] D. Lin. Automatic rclricval and clustcring of similar words. In
COLIl'lG '98, HHJ8.

[25] Q. Mci, D. Zhou. and K. Church. Qucry suggest.ion using
hitting time. In ClKAI '08, 2008.

l26] G. K. Niranjan Dalasubramanian and V. R.. Carvalho.
Explorilll-\" reductionc; for 10111-\" web queriec;. III SIGIR '10,2010.

[27] P. Pantel , K Cl'est<'1n, A. llorkovsky, A.-1\1. Popescu, <'1mI
V. V:va.'i. \Vell-scale (liHtriillltioua.l similarity aJl(I elltity set
expansion. Tn F:ll/{lvTP 'OD, 2000.

[28] V. V. R.aglmvan Find H. Sever. On the reuse of P;-).st optimal
quel'ies. Tn STGTR'Y:;, 19%.

[29] C. H. Ricardo Rae7.tl,-Yates and ~'l. 1,Tendo7.tl.. Quel'Y
reCOlllIuendation usin!l," query log-s in sea.rch engines. In T r'ends
in Dat(~b(LS C Technology - EDBT 2U04 vVodos hops. 2005.

[30] I. Ituthvcn. fie-examining the potential eH'ect.ivene;;;; of
interactive query expansion. Tn STGrR '03,200:.),

[:3'1] G. Salton. On t.}1e u~e of term associations in aut.omatic
information rctrieval. In CDLING, 1986.

[:~2] E. 'rena and C. 1.. Clal'ke. Scoring mis;;ing tenus in information
rct.rieval tuski'>. In CIK}!;! '04, 2004.

[331 M. B. Van Dang and \V. B. Croft. Learning to rank query
rcformulalions. In S'1G'IR '10.2010.

[34] X. \Vung and C. Zhai. 11ining term UE,sociution pattcrn::, from
search logs for cffcctive qucry rcformulution. In elK]'.;! '08,
2008.

[351 J.-It. "\Vcn, J.-Y. Kic, and II.-J. Zhang. Clustcring uscr qucries
of <1 se<'1rch engine. In \lVlI\."\lV '01, 2orll.

[36] Z. Zhang and O. Nasraoui. 1-lining search engine query' logs for
qucry rccommcndalion. In \·VlVHl 'OC, 2()OG.

