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ABSTRACT
This paper describes a new method of indexing and search-
ing large binary signature collections to efficiently find sim-
ilar signatures, addressing the scalability problem in sig-
nature search. Signatures offer efficient computation with
acceptable measure of similarity in numerous applications.
However, performing a complete search with a given search
argument (a signature) requires a Hamming distance calcu-
lation against every signature in the collection. This quickly
becomes excessive when dealing with large collections, pre-
senting issues of scalability that limit their applicability.

Our method efficiently finds similar signatures in very
large collections, trading memory use and precision for greatly
improved search speed. Experimental results demonstrate
that our approach is capable of finding a set of nearest sig-
natures to a given search argument with a high degree of
speed and fidelity.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Retrieval Models, Search Process

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Document Signatures, Near-Duplicate Detection, Hamming
Distance, Locality-Sensitive Hashing, Nearest Neighbour, Top-
K

1. DOCUMENT SIGNATURES
Document signature approaches to information retrieval

involve representing documents, images and other search-
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able abstract objects as binary strings of fixed length, called
signatures. The signatures are derived in such a way that
they preserve in signature space the topological relationships
that exist in the original representation of objects. Local-
ity preserving hashing means that these representations are
locality-sensitive - similar documents or objects in the origi-
nal representation will also have similar signatures, and the
converse is true as well. This is in contrast to conventional
hashing approaches that are designed to produce different
hashes for any pair of documents (even if the documents are
very similar).

Locality-sensitive hashing (LSH)[8] is a method of dimen-
sionality reduction using binary signatures. The original
representation of an information object is typically some
form of very high-dimensional, often highly sparse, feature
vector derived with some probabilistic, language model, or
other suitable feature extraction/definition approach. The
binary signatures used in LSH methods offer a compres-
sion of the original representation onto a dense, fixed, low-
dimensional representation. LSH allows for comparing two
different segments of source text for similarity far more ef-
ficiently than traditional methods, such as cosine similar-
ity, especially if the source texts are large. In fact, a rela-
tively expensive cosine similarity computation between two
documents can be replaced with a Hamming distance [4]
calculation (counting the bits that differ between the two
signatures). This efficiency motivates most applications of
LSH and signatures, such as in information retrieval [3] and
near-duplicate detection [6]. There are a number of different
document signature models in use, including Minhash [1],
Simhash [7], Topsig [3] and Reflexive Random Indexing [2],
all of which use some variation of LSH.

While there are many aspects of document signatures that
make them attractive for a variety of purposes, performing
a search with a given search argument (a signature) requires
a Hamming distance calculation against every signature in
a collection. Even though the individual comparisons can
be performed using a small number of efficient machine in-
structions, this approach scales poorly to increasingly large
collections.

This paper is not concerned with the relative merits of
different approaches for signature generation; instead, we
focus on the common problem on how to search collection
of signatures efficiently.

To address this problem we present an inverted list ap-
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proach that utilises additional initial processing time and
memory to subsequently reduce the processing time required
to locate the closest document signature(s) to a given search
signature. This approach was motivated by the fact that any
approach that needs to consider all signatures will eventually
be too slow to handle larger collections. This is the same mo-
tivation behind inverted file approaches commonly used in
information retrieval that allow all documents that contain a
particular term to be identified; we chose a similar approach,
but inverting the signatures file by signature-substrings in-
stead of terms. This allows us to continue using the signa-
ture representation of documents while gaining some of the
search efficiency benefits of inverted file approaches. Exper-
imental results suggest that, while the memory usage can
be considerable, search performance of at least 25× that of
exhaustive approaches is achievable.

2. INVERTED SIGNATURE SEARCHING
Any approach that requires Hamming distances to be com-

puted between the search signature and every signature in
a collection is inherently of linear complexity. Regardless of
how efficient the Hamming distance computation is, increas-
ing the size of the collection means increasing the process-
ing time required to search it by the same factor. This can
quickly become computationally infeasible; an approach is
therefore required that ignores a large portion of the doc-
ument collection and calculates Hamming distances to the
remaining signatures, knowing the signatures that have been
ignored are unlikely to be close to our search signature.

Substring indexing
Each signature, identified by a signature-id (a number), is
a binary bit string comprised of a sequence of binary sub-
strings of fixed sizes. For simplicity of explanation we shall
assume that a signature length is some power of 2 in length,
and is evenly divided into a set of k substrings of equal
length, also some power of 2 in length; this is not a constraint
and indeed later in this paper we describe experiments where
this is not the case. A signature is thus regarded as a se-
quence of s substrings, N1, N2, ..., Ns. Each of the substrings
is n bits long, and the signature length is s× n.

We now invert the entire collection of signatures, storing
them by substring position, and by the respective n-bit sub-
string value. This means that for each of the k substring po-
sitions we have 2n posting lists. Each posting list consists of
all signature-ids where the signatures have the correspond-
ing n-bit substring in the corresponding position.

For example, consider a signature size of 32 bits and a sub-
string size of 8 bits. Given the substring 01110101 in position
2, we can find in the corresponding posting list (position 2,
value 117) the signature ids of all signatures in the collection
that have that value in that position. We note that there
are 28 = 256 posting lists for each position, and with 4 sub-
string positions we have 1024 posting lists in total. This is
independent of the collection size. With smaller collections
or greater substring sizes it is possible for some posting lists
to be empty, corresponding to the situation that some signa-
ture substrings do not occur in some positions anywhere in
the collection of signatures. In general we choose the length
of the substrings (n) such that the posting lists will be rel-
atively short while most posting lists are non-empty. This
depends trivially on the size of the collection - the larger the
collection the larger we choose n.

Consider a collection of N documents and a choice of n
bits per substring. If we double the collection size and in-
crease n by 1, we expect the average posting list length to
be about the same. This is due to the number of lists (2n)
doubling with each increment and hence providing twice as
many locations for a given signature to be placed. It is im-
mediately clear that for small values of n we can scale col-
lections to astronomical proportions and still keep substring
size small. It is important, for reasons that will become
clearer later in this paper, to choose n so as to optimise
the length of the posting lists, trading off processor mem-
ory requirements for processing speed. The data structure
for holding the inverted lists can be as simple as an array
of pointers whereby each pointer position in the array is
computed directly from the position and value of a corre-
sponding signature substring. Each pointer then leads to an
array of corresponding signature-ids. This facilitates direct
access to posting lists in memory and we shall refer to it
as a lookup table. This lookup table can be created in a
preprocessing stage and it can be stored on disk and read
into memory at system start-up (a once-off small cost) to
support subsequent searching operations.

Substring searching
With the lookup table available, finding an exact match to
a given search signature becomes a very efficient task; for
a 64-bit signature, and choosing n = 8, eight lists would
need to be consulted to find a signature that matches; find-
ing a matching signature is simply a matter of finding the
signature-id that has a match in all 8 positions by consult-
ing the respective posting lists for these positions and values.
While each of these lists would need to be scanned sequen-

tially, only a fraction (
1

28
) of the substring signatures in the

full collection will be accessed, and the average length of a

posting list is
N

28
each. This results in a substantial reduc-

tion in the amount of work required to perform the search.
For suitable choices of n this is computationally much less
expensive than comparing every signature to the search ar-
gument.

It is possible to trade progressively larger amounts of mem-
ory for increased performance by working with larger choices
of n, at the cost of requiring more (albeit shorter) posting
lists to be stored.

Performing an exact signature lookup in this fashion is
essentially a specific case of the general problem of perform-
ing an exact Hamming distance search. This is, naturally,
a very limited special case and is of limited usefulness, but
we can do much better with the data structure as we now
explain. The more general problem is to find signatures in
the nearest Hamming-distance neighbourhood of a search
argument. We present a solution to the Hamming distance
search problem which is based on these lookup tables and
can be performed so efficiently that the overall search time
will still be much smaller than what would be required for
an exhaustive search.

Extending the search neighbourhood
Consider the previous example, but with the Hamming dis-
tance neighbourhood threshold set to 1 instead of 0. The
increase in threshold values means that in addition to any
signatures that precisely match the search signature, we also
want to identify any signatures that differs from the search

11



signature by 1 bit.
A simple approach is to extend the search to lookup not

only the exact-match 8-bit substrings, but also lookup all
substrings that are one bit away. This is often referred to
as query expansion. For each 8-bit substring in the search
argument we need to allow for 8 near patterns that are only
1-bit away. In this case, in addition to searching the 8 po-
sition lists having the same substrings as our search argu-
ment, we also need to consult additional 8 × 8 = 64 lists.
These lists consist of the 8 possible permutations of the bit
substring for each of the 8 positions, requiring a total of
8 + 64 = 72 lookups instead of 8. In this example, a signa-
ture has a Hamming distance of no more than 1 providing
it is a precise match in all positions, or it appears in 7 of
the 8 positions with a precise match, and in the unmatched
position it appears in one of the 8 lists that are one bit away
from the search argument in this position.

This approach is far more efficient than linear searching,
but it is still very limited. For instance, all 2-bit permu-
tations of the 8-bit search patterns need to be consulted if
this approach is extended to a Hamming threshold of 2; this
would in turn require to check 8 × 56 additional lists on
top of the 72 as previously described. If the desired Ham-
ming threshold is 8, every list needs to be consulted and no
gain would be made compared to an exhaustive search. To
ensure that every signature in this collection within a Ham-
ming distance of 8 from our search signature is located, the
exhaustive approach is necessary. However, under most con-
ditions it is not necessary to locate every signature that is
within a certain distance of the search query. A more com-
mon type of search is finding the top-k nearest neighbours,
where the k closest signatures should be returned, regardless
of their actual distance. We can take advantage of this by
limiting the number of permutations of each substring we
consult. As we gradually extend the neighbourhood search,
the Hamming distance of signatures grows, and it becomes
less likely for a signature not yet seen in some positions to
be one of the k closest signatures. This is essentially the
basis for the approach we present in this paper. We explain
it in more detail in the next section.

2.1 Top-K signature searching
Given a search argument (i.e., a signature) we aim to find

neighbouring signatures using the lookup table. A signature
list in the following description is a reference to a posting
list for a given substring position and a given n-bit sub-
string. Henceforth we will be describing a more realistic
case of using 1024-bit signatures (a signature width shown
to be sufficient for information retrieval [3]) and 16-bit bi-
nary patterns. With signatures 1024 bits wide, we need to
consider the neighbourhood in each of the 64 positions of the
search argument. We consider not only the exact-matching
signature list, but also its Hamming neighbourhood. Given
a specific signature substring, for each position we have one
signature list that matches the search pattern, 16 signature
lists that have a value that is 1 bit away, 120 signature lists
that have a value that is 2 bits away, and so on (these are the
Newton binomial coefficients). The search is therefore ex-
panded with the set of 16-bit substrings that covers a wider
Hamming distance neighbourhood.

Hamming distance approximation
The determination of the Hamming distance of signatures to
the search argument proceeds by consulting the table and
keeping track of the distance estimate of signatures in the
collection. Each time a signature ID is observed in a list,
more information is revealed about its distance from the
search argument. Clearly, if a signature ID is observed in
all 64 positions, its distance to the search argument can be
computed with complete accuracy. However, if the signa-
ture is only observed in N of the 64 positions, the distance
is known accurately only in the subspace of those N from
64 positions, and in 64 − N positions it is unknown. We
can however compute a worst-case estimate of the distance
by assuming that the distance is maximal in all unobserved
positions. We can also compute a best-case distance by as-
suming that the unobserved positions for a given signature
will all be seen at the next Hamming distance we process.
For example, if we completed consulting the 3-bit neigh-
bourhood and observed a particular signature ID in N po-
sitions, in the best-case scenario we shall find the signature
in the 4-bit neighbourhood in all the remaining positions.
Then, the most optimistic estimate of the distance is ob-
tained by adding 4 ∗ (64 − N) to the known distance from
the N seen positions. For the pessimistic estimate of the
distance, 16 ∗ (64−N) is added to the known distance from
the N seen substrings (i.e. we pessimistically assume it will
only be seen at the 16-bit neighbourhood in remaining sub-
strings).

With the above procedure, we are now in a position to
progressively expand the search neighbourhood, and as we
do so we progressively improve our estimate of the nearest-
neighbourhood of a search argument. Continuing to expand
the search neighbourhood will eventually result in perfect
determination of the nearest neighbours; however, at a se-
vere cost to performance.

Early stopping
While stopping the neighbourhood expansion early will pro-
vide a neighbourhood estimation based on only an incom-
plete picture of the collection, we note that sometimes even
partial information will suffice to precisely identify the top-
k nearest neighbours. It is possible to stop the search as
soon as we have observed k distinct signatures in all their
64 positions and hence have the exact top-k signatures. We
note that distances of remaining signatures can only increase
as we expand the search. For instance, if we are looking
for k = 10 and there exist 10 signatures that are exactly a
Hamming distance of 1 from the search argument, then after
consulting the 0-bit neighbourhood and the 1-bit neighbour-
hood (17 lists per substring, 64∗17 = 1088 lists in total), we
have already collected the top-10 neighbours with complete
accuracy and we can stop.

Seeing all top-k signatures in all positions with short dis-
tances is a very strict requirement though; it turns out to be
too strict to be of any practical use. We conducted exper-
iments with 1 million random 1024-bit signatures, search-
ing for the top-16 neighbours of one of the signatures. We
stopped consulting the table when the distances of the top
16 signatures are completely determined from the signature
lists. The findings of this experiment suggest that the search
can be stopped only after consulting the 14-bit to 15-bit
neighbourhood: this is far too expensive, effectively con-
sulting all but 64 inverted lists from 1088, and thus this
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approach is not viable.
However, by keeping track of the best-case and worst-case

distances, we can stop the search when the best-case dis-
tance of the k + 1th nearest signature is larger than the
worst-case distance of the kth nearest signature. At this
point the top-k can no longer change. Note that we do
not know the exact distances of the top-k yet, but we can
easily compute that directly since we now only need to per-
form k distance calculations and this is a negligible cost (a
small fraction of a millisecond). This approach may seem
promising at first, but as it turns out, proceeding to the
point of certainty in set of top-k (rather than their accurate
distances) is still too expensive! With the same set of 1 mil-
lion random signatures, we find that a search for the nearest
16 signatures still typically terminates after consulting the
11-bit to 13-bit neighbourhood. That is still not a viable
approach either and requires processing the vast majority of
posting lists.

However, it is not necessary to progress to the point of
complete certainty either. As the Hamming distance neigh-
bourhood is expanded in the search, the probability that
the top-k signatures will change diminishes rapidly. For in-
stance, it is possible but highly unlikely that a signature
that was never observed at a neighbourhood of 3-bits dis-
tance in any of the 64 positions will subsequently be found
at the 4-bit distance in all of the 64 positions. Conversely,
it is possible but highly unlikely that a signature that was
observed at a distance of 0-bits in 60 substrings will not be
found until the 16-bit distance in the remaining 4 unseen
positions; it is highly likely to be observed sooner rather
than later as we expand the neighbourhood in these posi-
tions. This is due to the nature of random indexing; any
given set of bits is far more likely to be spread throughout
the signature and cover multiple substrings than appear in
the same substring.

This brings us to the key idea in this paper: we conjecture
that in order to determine with high accuracy the neighbour-
hood of a search signature, it is not necessary to proceed
with the calculation until complete information is available.
We can stop the calculation early and have high confidence
that a relatively small set of the nearest signatures, say M ,
will contain the top-k signatures with high probability. Fur-
thermore, we conjecture that when this set does not contain
all of the top-k nearest, the error will be relatively small
and other almost as near signatures will be identified. So
the search is stopped after consulting the lists that corre-
spond to a small Hamming distance neighbourhood, a set
of M nearest signatures is selected, having M >> k, and
an exhaustive distance calculation over these M signatures
is used to identify the top-k signatures. It is often the case
that k is relatively small. This is because k does not usually
depend on the collection size, but rather on the users’ reluc-
tance to review long result lists; this is typically determined
by user time constraints and limited patience rather than
collection size. If k is small, we can choose M >> k for ac-
curate selection of the final top-k after early stopping. This
approach allows us to more accurately estimate the top-k
without excessive distance calculations over the entire col-
lection by choosing k << M << N where N is the collection
size.

The estimation of the signature distance proceeds as fol-
lows: Initially all signatures are assumed to be at a pes-
simistic Hamming distance of 1024. As search progresses,

Bits changed Lists per substring % of signatures
0 1 0.62%
1 17 7.13%
2 137 34.76%
3 697 79.62%
4 2517 98.93%
5 6885 100.00%
6 14893 100.00%
7 26333 100.00%
8 39203 100.00%
9 50643 100.00%
10 58651 100.00%
11 63019 100.00%
12 64839 100.00%
13 65399 100.00%
14 65519 100.00%
15 65535 100.00%
16 65536 100.00%

Table 1: Number of posting lists checked per sub-
string based on the number of bits changed in the
search substring. The third column shows the aver-
age portion of the collection covered by this neigh-
bourhood in the Wall Street Journal collection.

all signatures that have not yet been encountered in any
of the positions inspected maintain a worst case Hamming
distance of 1024. On the other hand, a signature that is ob-
served in a particular position immediately receives a more
optimistic estimate of its distance. For instance, if a signa-
ture is observed in a list corresponding to a distance of 3
bits from the search argument substring then its worst case
Hamming distance is reduced by 13. Most nearby signatures
to the search argument are observed sooner rather than later
in most or all substring positions and their distances become
known with high accuracy. Of course, if the process is car-
ried through until all lists are consulted then the distance of
all signatures from the search argument is precisely known.

It is necessary to decide on the early stopping criterion.
The number of posting lists consulted is a function of the
search breadth in bits. Table 1 provides the number of signa-
ture lists, per position, that have to be consulted as function
of search breadth. The third column contains the percent-
age of distinct signature IDs encountered while processing
the list. This column corresponds to signatures derived from
the TREC Wall Street Journal collection of news articles.
The percentage figure corresponds to the fraction of doc-
ument IDs seen as the signature lists are processed. For
instance, when the signature lists are scanned up to a 3-bit
Hamming distance from the search argument, 697 lists are
processed and 79.62% of the document IDs in the collection
are encountered (at least once) in the process.

When the maximum search breadth is lower, the amount
of processing time required is reduced as fewer postings need
to be considered. Assuming an equal distribution of signa-
tures per list2, allowing a maximum search breadth of 3 bits
requires only 1.06% of the computational effort that would
be required for a full search up to the maximum distance
of 16 bits. The tradeoff is in accuracy; but as our experi-
ments shall demonstrate, in practice the approach is highly
accurate and the tradeoff is very attractive.

2Not necessarily a valid assumption for real data. Locality-
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After the distances for all signatures have been deter-
mined, the nearest signatures can be reranked using a full
Hamming distance calculation to ensure that the ranking
of these signatures is precise. At higher levels of search
breadth, more processing time is required but the likelihood
of documents that should appear in the top-k being omitted
is reduced. There are other speed-accuracy tradeoffs avail-
able; for instance, increasing M , the number of signatures
that are reranked using exact Hamming distance calcula-
tion, may result in fewer top documents being omitted at
the cost of a linear increase in processing time.

3. IMPLEMENTATION DETAILS

3.1 Data structures
Building the inverted signature table was implemented as

a two-pass process; the first pass is to determine how large
each of the signature lists are for the purpose of memory
allocation and the second pass is to fill them. Each list
is stored as an array of integers that uniquely identify the
signature within a signature file. The s × 2n lists3, along
with an integer giving the number of signatures in this list
are written to a file for reading by the search tool.

The amount of space required to store the table scales lin-
early with both signature width and collection size. While a

collection of 220 1024-bit signatures will take up
220 × 1024

8
bytes or 128 megabytes of space, the inverted table for this
same collection will require 4(220 × 64 + 216 × 64) bytes, or
272 megabytes. In this case, this means an overhead of 272
bytes per document; typically a small fraction of the total
size of the original collection.

The potentially large sizes of the inverted signature table
and signature file can impose limitations on the collections
that can be used with this approach depending on the hard-
ware available as, for performance reasons, both the table
and the signature files may be stored in memory. This is to
allow the exact Hamming distance of a given signature from
the search signature to be efficiently obtained for reranking
purposes.

The third data structure that uses a non-trivial amount
of memory is the score table, which needs one element for
each signature. We used 32-bit integers but smaller or larger
integers can be used depending on the collection size. This
structure still ends up being much smaller than the other
two previously described, at only ∼ 4 megabytes for our ex-
ample 220 signature collection. The score table is necessary
as the score for any signature may be increased by any of the
posting lists; it is not feasible to keep a top-k list or similar
structure that only contains the highest scoring signatures.
As Table 1 shows, most of the signatures are touched even
at relatively low search breadth thresholds.

Note that, for explanatory purposes, the following imple-
mentation description assumes a signature width of 1024 bits
and a signature position substring width of 16 bits. These

sensitive hashing will naturally result in similar documents
producing similar signatures - natural clustering - and some
spatial Hamming neighbourhoods will have more signatures
than others.
3s = number of substrings in a signature. n = substring
width (in bits). For example, a 1024-bit signature with 16-
bit substrings will have 1024/16 or 64 substrings per signa-
ture. (s = 64, n = 16)

are not implementation limits and tests have been performed
with a variety of substring widths, including those that are
not factors of the signature width.

3.2 The search process
The search tool begins the process to search for a partic-

ular signature by resetting the score table to 0 and iterating
through the search signature, one position at a time. For
each position, the Hamming distance neighbourhood array
is iterated through until the allowable search breadth thresh-
old is met.

To simplify determining the possible permutations of bits
that may be toggled in expanding the search neighbourhood,
the search tool precomputes a Hamming neighbourhood ar-
ray of all possible n-bit signatures and sorts the array by
the number of on-bits in each value. This is a one off cost at
system start up, not a query time cost. A substring can be
combined with these values with a XOR operation to pro-
duce substrings with the required number of flipped bits.
As an example, if the allowable search breadth threshold
is set at 4, the first 2517 values (see Table 1) of the Ham-
ming neighbourhood array will be iterated through in the
process of scoring documents. These 2517 values will con-
tain all possible 16-bit values with between 0 and 4 on-bits.
Each value in turn is combined with the search substring
by bitwise XOR and the resulting value, combined with the
position of the substring within the signature, identifies one
posting list in the inverted signature table. This list is then
iterated through and each signature that appears on the list
gets its score incremented by 16 − n where n is the num-
ber of on-bits in the corresponding entry in the Hamming
neighbourhood array.

After this process is complete, the score table will con-
tain scores for each signature. The top-k scores can now be
extracted from the array using a heap or similar structure4.
The top-k signatures then have their scores recomputed with
a full Hamming distance calculation and are sorted. The re-
sorted list then becomes the final result.

4. EXPERIMENTAL RESULTS
The effectiveness of inverted table searching is measured

in comparison to an exhaustive Hamming distance search
on the same data set. It should be noted that we are not
evaluating the utility of the signatures per se; we only eval-
uate our ability to identify the Hamming neighbourhood of
a search argument accurately. The utility of signatures in
signature search is instead related to the application that
uses signature approaches (e.g. duplicate detection, image
clustering, etc.): this evaluation is left for future work. As
the purpose of the inverted table approach is to provide a
more efficient way of finding the signatures with the low-
est Hamming distance from the search signature, for the
purpose of quality evaluation we take the true Hamming
neighbourhood as the quality ground truth. If we are able
to compute it precisely then we have perfect performance.
Furthermore, the degradation in performance can be simply
measured by the Hamming distance discrepancy observed
between the ground truth top-k signatures, and the top-k
signatures that our search identifies.

4In our implementation the top-k scores are extracted from
the array using a k-sized array that holds the k-highest scor-
ing signatures seen so far and replaces the signature with the
lowest score when a signature with a higher score is seen.
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Figure 1: How the HDR score of a search (with a 0-
or 3-bit Hamming neighbourhood) evolves as more
of the results are compared. Errors found early have
the largest effect on the final score. Based on 50
searches of the Wall Street Journal collection.

A standard metric used in evaluating the performance of
search engines is Average Precision [9] or Normalised Cu-
mulative Gain [5]. To get an analogous measure that works
in the Hamming neighbourhood we introduce a similarly be-
having metric called Hamming Distance Ratio (HDR). The
metric is based on the calculation of the cumulative Ham-
ming distance from the search argument of the Top-k sig-
natures, having the cumulative distance of the true Top-k
serve as the baseline for normalisation. Consider A - the list
of ranked true Top-k signatures, and B - the list of ranked
approximate Top-k signatures. We calculate the cumulative
Hamming distance ratio (HDR) of the lists at successive
rank positions as follows:

HDR(a, b) =
1

k
·

k∑
i=1

∑i
j=1 Aj∑i
j=1 Bj

(1)

If A and B are identical, the ratio is 1; if B is based on an
incomplete picture of the collection and hence shows larger
Hamming distances in the Top-k the ratio will drop propor-
tionately. As Figure 1 shows, errors have their largest effect
on the Hamming distance ratio early on as omissions closer
to the top of the result list penalise the final score more than
omissions further down, working in much the same way as
Average Precision. An exhaustive search would obtain a
HDR score of 1 and would be represented by a horizontal
line at 1 (the equivalent of a line-at-one in a recall-precision
plot, for a perfect retrieval result).

The quality of a given inverted table search is dependant
on the search neighbourhood (the degree to which early stop-
ping is performed). As explained earlier, the search breadth
also has implications on the processing time required to run
individual queries.

Table 2 shows the results of searches retrieving the top
100 results on two collections of signatures; one filled with
randomly-generated data, the other created using the TREC
Wall Street Journal collection as a source. We ran 60 searches
on each collection, choosing a random source signature from
the same collection to search against and repeating this
search 17 times, once for each search neighbourhood (0-bit
to 16-bit). The HDR ratios of each search were then aver-
aged to produce the tabulated results.

Figure 3 shows that with a set of signatures derived from
a real document collection, using sematic hashing, far su-

Breadth Random (HDR) Document (HDR)
0 63.44% 86.09%
1 63.56% 92.00%
2 74.55% 96.28%
3 89.48% 98.29%
4 95.69% 99.14%
5 98.97% 99.51%
6 99.59% 99.66%
7 99.94% 99.76%
8 99.98% 99.83%
9 99.99% 99.92%
10 99.99% 99.98%
11 100.00% 100.00%
12 100.00% 100.00%
13 100.00% 100.00%
14 100.00% 100.00%
15 100.00% 100.00%
16 100.00% 100.00%

Table 2: The effect of early stopping on performance
– the HDR of searches on random signatures and
signatures derived from text documents. Also see
Figure 2.
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Figure 2: The effect of early stopping on perfor-
mance. Based on data from Table 2.
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Breadth Query time (ms) Lists per substring
0 4.17 1
1 4.8 17
2 8.36 137
3 23.2 697
4 66.91 2517
5 162.71 6885
6 322.48 14893
7 538.09 26333
8 766.45 39203
9 955.05 50643
10 1088.4 58651
11 1157.07 63019
12 1183.4 64839
13 1190.97 65399
14 1187.46 65519
15 1188.1 65535
16 1189.94 65536

Table 3: The relationship between early stopping
and search time. Searching more posting lists re-
quires spending proportionately more time. Also
see Figure 3.

perior perfromace is acheivable with a smaller search neigh-
bourhood. The greater HDR scores of document-derived
signatures are due to the natural clustering of documents.
Documents signatures cluster by topics much more tightly
than random signatures do (which, it should be noted, also
cluster, albeit to a much lesser extent - that’s a well under-
stood property of random uniform data points) . Topical
clustering results in the closest signatures in the document
collection being much closer on average than those in the
random collection.

Widening the Hamming neighbourhood by increasing the
search breadth improves the HDR scores by bringing in
more documents, but this improvement comes with a cost
to search speed. Table 3 shows how searching a document-
derived collection of 220 signatures (using TopSig [3] to gen-
erate signatures) takes longer per query as the search breadth
is increased. As Figure 3 shows, the time spent on each
search correlates with the number of posting lists that need
to be considered for that search breadth (Table 1 shows the
relationship between search breadth and posting lists).

The time required to search this collection exhaustively is
195.07 milliseconds, making it a bit slower than using a 5-
bit search breadth. Note that all performance benchmarks
were performed on an i7 950 (3.07GHz) 4-core CPU (al-
though to-date we only used single threaded processing in
our implementation).

As described previously, the nature of the tradeoff between
memory and performance being made by this approach can
be tweaked by altering the width of the substrings. Our
experiments have largely covered the specific case of 16-bit
wide substrings; however, working with other sizes can pro-
vide significant advantages.

The relationship between substring widths, memory us-
age and performance leans towards wider substrings requir-
ing more memory but providing greater performance, as
Figure 4 shows; however, the relationships between these
variables is subtle. Very short substring widths can be less
memory-efficient as the signature ID of every signature must
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Figure 3: The relationship between early stopping
and search time. Based on data from Table 3.
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Figure 4: The relationship between substring width,
memory usage and performance.

be stored once for each list and smaller substrings means
more lists for each signature to go into. For example, with
64-bit signatures and 16-bit slice widths, each signature must
be stored in 4 lists; with 8-bit slice widths, each signature
must be stored in 8 lists. Thus, the best pattern width to
use for maximising performance isn’t necessarily the largest
made available by the memory size. In this case, a 23-bit
Hamming neighbourhood provides the most time-efficient
search, at ∼ 9.12 milliseconds; however, at the cost of re-
quiring ∼ 6365.88 megabytes of memory.

4.1 Scalability
Figure 5 shows how the query execution time increases

with the size of the collection for both exhaustive and in-
verted table searches. A 200,000 signature collection takes
39.4 milliseconds to exhaustively search, and 3 milliseconds
to search using the inverted signature table approach; an
improvement in speed of ∼ 13.13×. A 2 million signature
collection takes 382.4 milliseconds to exhaustively search,
but only 15.2 milliseconds using the inverted signature table
(a ∼ 25.16× improvement). As the curve suggests, search
is relatively faster with a smaller collection because a larger
portion of the signature lists referenced during neighbour-
hood expansion are empty and can therefore be immediately
discarded without further processing. As the collection size
increases more of the referenced lists are occupied and hence
a higher processing cost is incurred. When the collection
reaches the saturation point where all of the lists are used
the time required to perform a search becomes linear. This
can be resolved by increasing the substring width, which
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Figure 5: The relationship between collection size
and query execution time for inverted table and ex-
haustive searches in linear (top) and log-log (bot-
tom) scales. Using 23-bit substrings and a 3-bit
search neighbourhood.

increases the number of lists and therefore the saturation
point for the table.

It should be noted that we have used a state-of-the art
Hamming Distance calculation algorithm. The Hamming
distance of two words A and B can be calculated as the
Hamming weight of A xor B. This is an elementary, well
studied, and well understood problem and several simple
solutions that preform similarly exist that have not been
improved upon on standard hardware, including the use of
the popcnt hardware instruction or resorting to assembly
language. As a result we are absolutely confident that the
baseline we use is reliable and our timing comparisons are
sound.

5. LIMITATIONS
The requirement that the signature table remains in mem-

ory during processing (as the search process involves highly
random access) limits the use of this approach for collec-
tions that expand to a signature table that is too large to fit
in memory. This limitation is actually a fairly minimal one
considering the low costs of RAM and the fact that signa-
ture representations of collections are typically much smaller
than the collections themselves.

In practice, this is not a significant drawback as systems
with sufficient memory to handle even very large collections,
such as the 870-million document ClueWeb125, are avail-
able. In this case, the signature file would require (assum-
ing 1024-bit signatures) 103.71 gigabytes of memory, while
the inverted signature table would require (assuming 16-bit
substrings) a further 207.44 gigabytes. (Increasing the sub-
string width would not considerably increase this figure, as

5http://lemurproject.org/clueweb12/

the overhead from longer substrings is independent of collec-
tion size.) While considerable, this is not beyond the reach
of modern workstations.

6. CONCLUSION
We have presented an approach to improving the speed

of signature searching without a considerable loss to search
fidelity. While the effective use of inverted signature ta-
bles may be limited to certain applications (such as near-
duplicate detection and some clustering approaches) in those
situations they can provide great increases in performance
over exhaustive approaches.
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