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ABSTRACT
We propose a framework which can perform Web page seg-
mentation with a structured prediction approach. It formu-
lates the segmentation task as a structured labeling prob-
lem on a transformed Web page segmentation graph (WPS-
graph). WPS-graph models the candidate segmentation bound-
aries of a page and the dependency relation among the ad-
jacent segmentation boundaries. Each labeling scheme on
the WPS-graph corresponds to a possible segmentation of
the page. The task of finding the optimal labeling of the
WPS-graph is transformed into a binary Integer Linear Pro-
gramming problem, which considers the entire WPS-graph
as a whole to conduct structured prediction. A learning
algorithm based on the structured output Support Vector
Machine framework is developed to determine the feature
weights, which is capable to consider the inter-dependency
among candidate segmentation boundaries. Furthermore,
we investigate its efficacy in supporting the development of
automatic Web page classification.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
Web pages are typically designed to facilitate visual in-

teraction with the human readers. The designer normally
organizes the information of a page into different units or
functional types [22], which are arranged in coherent vi-
sual segments in the page, such as header, footer, navigation
menu, major content, etc. It is a trivial step to recognize
those visual segments for readers. However, it is still a chal-
lenging problem for computer since the source code of Web
pages is not encoded in such a way to differentiate the se-
mantic blocks. To overcome the gap between the manner of
the pages designed/read by human and the manner of the
pages operated by the computer, Web page segmentation is
regarded as an essential task in Web information mining.
The aim of Web page segmentation is to decompose a Web
page into sections that reveal the information presentation
logic of the page designer and appear coherent to the readers.
For example, if we consider the page in Figure 1, Web page
segmentation should recognize those segments separated by
the red boundary lines. Identifying such segments is useful
for different downstream applications. One application is to
re-organize a Web page so that it can be properly displayed
or redecorated for devices with small-sized screen [1, 17, 20].
Then, people with visual impairment can easily digest them
with their screen readers [21]. Link analysis, Web document
indexing, and pseudo-relevance feedback can be more effec-
tive with the appropriate segments detected [12, 22, 29].
Duplicate content detection, Web page classification, and
content change detection can be conducted on finer infor-
mation units so as to obtain better performance [7, 19, 27].

One group of previous works on Web page segmentation is
heuristics-based [6, 19]. Cai et al. employed heuristic rules
to capture structure features and visual properties [6]. Their
method recursively segments the larger blocks into smaller
ones in a top-down manner. However, this greedy manner
is myopic and it may be trapped locally and stop to search
better solutions. In addition, the patterns used in page de-
sign are unlimited and cannot be covered by a finite set of
rules. Kohlschütter and Nejdl employed text density in dif-
ferent portions of a Web page as a clue to conduct segmen-
tation [19]. Their method ignores other types of information
such as image, frames and whitespace which provide useful
clues for page segmentation. Chakrabarti et al. proposed a
graph-theoretic approach to deal with Web page segmenta-
tion [7]. They cast the problem as a minimum cut problem
on a weighted graph with the nodes as the DOM tree nodes
and the edge weights as the cost of placing the end nodes in
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Figure 1: An example of Web page segmentation.

the same segment or different segments. A learning based
method was developed to determine the weights of edges.
This method sometimes reports non-rectangular segments
which are generally inaccurate. Different from [6], both [19]
and [7] only obtain a flat segmentation of a Web page with-
out knowing the hierarchical structure of the segmentation.

In this paper, we propose a framework to solve the above
shortcomings of the existing works. Our framework per-
forms Web page segmentation with a structured prediction
approach by formulating the segmentation task as a struc-
tured labeling problem on a transformed Web page segmen-
tation graph (WPS-graph). WPS-graph is a directed acyclic
graph, as exemplified in Figure 2(b), and its vertices are
composed of the candidate segmentation boundaries of the
corresponding page, as depicted in Figure 2(a). Each vertex,
i.e. boundary, is able to split the current segment into two
sub-segments. The directed edges capture the dependency
relation between the associated boundaries. Each labeling
scheme of the WPS-graph, which assigns a binary label for
each vertex to indicate whether or not the boundary should
split the current segment, corresponds to a possible segmen-
tation of the page. Different from the heuristic rule-based
top-down search in [6], our framework performs the label
prediction simultaneously for all vertices of the WPS-graph
with a trained statistical model. The hierarchical structure
of the intermediate segmentation steps is recorded by the
layers in the WPS-graph. Thus, the output of our frame-
work provides a good structural analysis of pages enabling
better utilization for different Web mining tasks such as page
classification. Furthermore, as exemplified with Figure 2,
our framework can automatically avoid non-rectangular seg-
ments via the horizontal and vertical boundaries.

DOM structure, visual property, and text content features
of a Web page are jointly considered in our framework. DOM
structure features capture the structure characteristics of
the segments, such as the structure similarity of the neigh-
boring segments, the regularity of the DOM structure, etc.
Visual property features capture visual clues of segments,
such as background color, whitespace, font size, etc. The
text content features capture some important semantic char-
acteristics of the segments, such as the text similarity of the
neighboring segments, the title keywords in a segment, etc.
To allow different impacts of the features, a weight is associ-
ated with each feature. A machine learning algorithm based
on the structured output Support Vector Machine frame-
work [32] is developed to determine the feature weights.
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(b) WPS-graph of (a).

Figure 2: An example page and its WPS-graph.

The learning algorithm can consider the inter-dependency
among the vertices of a WPS-graph during the training pro-
cess. Therefore, the feature weights are determined with
a global view on WPS-graphs but not merely on individ-
ual segmentation boundaries. To infer the optimal labeling,
we consider the entire WPS-graph as a whole to conduct a
structured prediction in which the labeling determination of
one vertex, i.e., boundary, is coordinated with the others.
To do so, we transform the labeling task into a binary In-
teger Linear Programming (ILP) problem [35], whose linear
programming relaxation can be efficiently solved with the
simplex algorithm [11].

Extensive experiments have been conducted on a large
data set. The results demonstrate that our framework achieves
better performance compared with two state-of-the-art meth-
ods. To investigate the efficacy of our framework in support-
ing other Web mining tasks, another experiment, namely
Web page classification, is conducted. In this task, we pro-
pose a novel method to assemble the segmentation output
of a page for constructing a more effective feature vector.

2. RELATED WORK
Web page structure analysis has been one hot research

area for the past decade. There are several directions in
this area, including single page oriented segmentation [6, 7,
19], site-oriented page segmentation [14], informative con-
tent extraction [13, 25, 31, 34], template (or boilerplate)
detection [2, 33, 37], data record detection and entity ex-
traction [3, 4, 5, 16, 24], etc. These directions are closely in-
terwoven. Some directions share similar methodologies but
aim at different products, such as site-oriented page segmen-
tation and template detection. Some can be regarded as a
preparation step for another purpose.

Single page oriented segmentation aims at segmenting an
input Web page into distinct coherent segments or blocks
(such as main content, navigation bars, etc.) based on its
own content. Besides the works [6, 7, 19] discussed above,
Chen et al. [9] distinguish five block types, namely, header,
footer, left side bar, right side bar, and main content. Fer-
nandes et al. [14] proposed a site-oriented method for Web
page segmentation. Hattori et al. proposed a segmentation
method based on calculating the distance between content
elements within the HTML tag hierarchy [17].

Aiming at improving the performance of Web page clus-
tering and classification, Yi et al. proposed a site style tree
(SST) structure that labels DOM nodes with similar styles
across pages as uninformative [37]. In [15], the URL fea-
tures were shown to be effective in homepage identification,
which can be regarded as a special case of page functional
type classification.
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Figure 3: Steps of WPS-graph construction.

3. PROBLEM FORMULATION

3.1 Web Page Segmentation
Web page segmentation is the task of breaking a page into

sections that reveal the information presentation structure
of the page designer and appear coherent to the readers. To
facilitate the description of our framework, one illustration
page example is given in Figure 2(a). The lines in the page
are candidate boundaries for splitting the page into visual
segments. The solid lines are the boundaries that should
split the segments where the boundaries locate into sub-
segments. For example, b1 and b2 split the entire page into
the upper, middle, and lower parts. While the dashed lines
are the boundaries that do not perform splitting operation,
such as b8, b9, and b10. Therefore, the final segmentation
result is as depicted by the solid boundaries. Performing
page segmentation is equivalent to determining a label as-
signment which assigns the label Y (splitting operation) or
the label N (not a splitting operation) to each boundary. For
the page in Figure 2(a), the solid boundaries take the label
Y, while the dashed boundaries take the label N. A segmen-
tation should follow the structure constraints of the page.
For the above example, only after the boundaries b1, b2, b3
and b4 simultaneously decide to split, it becomes meaningful
to consider which label b6 and b7 should have. If any one of
b1, b2, b3 and b4 is labeled with N, b6 and b7 are automat-
ically labeled with N. This kind of constraints compose of
a topology graph G, named Web page segmentation graph
(WPS-graph) in this paper. The WPS-graph of the page in
Figure 2(a) is given in Figure 2(b).

Let C denote a label assignment by taking a label from {Y,
N} for each vertex, i.e., boundary, in G. The segmentation
task is formulated as the following optimization problem:

C∗ = argmax
C

F (G,C;w), (1)

where F is an objective function that evaluates the fitness
of C for G. The variable w gives the weights of the DOM
structure, visual property and text content features. Such
design globally evaluates the fitness of a label assignment C
for G so that the determined segmentation is more accurate.
Note that each legal label assignment must satisfy all the
dependency constraints depicted by the edges of G. Funda-
mentally, some existing methods such as [6, 7, 19] can also
be represented in the form of F (G,C;w). For example, the
visual block tree approach in VIPS [6] can be transformed
into our WPS-graph. And recursively segmenting the larger
blocks can be transformed into determining the labels of the
corresponding boundaries. The DoC criteria in VIPS can

Algorithm 1: Construction of WPS-graph.

1: initialization: s0 ← p, Q.enqueue(s0), G ← ∅
2: while ¬Q.empty() do
3: s← Q.dequeue()
4: if s is separable then
5: add the boundaries bi..j in s as vertices into G
6: add new edges for bi..j
7: Q.enqueue(subsegments of s)
8: end if
9: end while

be regarded as simple DOM structure and visual property
features. Different from these methods, our model conducts
a global evaluation on the fitness of a segmentation for a
page.

3.2 WPS-graph

Definition 1 (WPS-graph). For a Web page p, its
WPS-graph G = {B,E} is an acyclic directed graph. Each
vertex b in B is a candidate segmentation boundary in p.
Each directed edge e : 〈bi, bj〉 in E indicates the constraint
(C(bj) = Y) −→ (C(bi) = Y), where C is a label assignment
for the vertex set B of G.

The construction of WPS-graph for a page is described in
Algorithm 1. Initially, the entire page is regarded as one
segment and denoted as s0. Meanwhile, the WPS-graph is
∅. Refer to Line 1 in Algorithm 1 and part (a) in Figure 3.
While the segment queue Q is not empty, the segment at
the front of Q is processed, as depicted in Line 3. Take
s0 as an example as depicted in part (b) in Figure 3. The
candidate horizontal boundaries b1 and b2 split s0 into three
sub-segments and they are added as vertices into G, as given
in Line 5 in Algorithm 1. For the new vertices, namely, b1
and b2, no new edges need to be added since s0 is the entire
page and b1 and b2 do not depend on any previous boundary.
The current G is as depicted in the lower section of part (b)
in Figure 3. The sub-segments, namely, so1 (on the boundary
b1), s

o
2 (also known as sb1), and sb2 (beneath the boundary

b2) are enqueued, as shown in Line 7 in Algorithm 1. To
continue, after so1 is found inseparable, so2 is processed as
depicted in part (c) in Figure 3. The boundaries b3 and b4
are added as new vertices in G. b3 and b4 depend on b1 and
b2 so that the edges are added accordingly as depicted in
the lower section of part (c). The sub-segments, namely, so3,
so4 and sb4, in the upper section of part (c) are enqueued.
For the sake of simplicity, we also use soi to denote the sub-
segment on the left of bi and sbi to denote the sub-segment
on the right of bi. Then, s

b
2 is processed as depicted in part

(d) in Figure 3. The boundary b5 and the edge 〈b2, b5〉 are
added into the graph. The construction process terminates
until Q is empty.

Several issues should be noted in the construction. First,
a candidate boundary cannot cut across any sub DOM tree.
For example, there is no subtree whose one part is in so1 and
the other part is in so2. Second, when judging the separability
of a segment, the horizontal boundaries inside it are exam-
ined first since they are more commonly used than vertical
boundaries. Third, in separability judgment, if a segment is
composed of a single DOM tree, we recursively use the lower
level subtrees of it instead. For example, if s0 is composed
of a single <table> and the table has several <tr>’s, we
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will find the boundaries between each neighboring pair of
<tr>’s. If so2 is composed of a single <table> with a single
<tr>, we will find the boundaries between each neighboring
pair of <td>’s of the <tr>. Fourth, each vertex at most
directly depends on two other vertices. Theoretically, a can-
didate boundary b inside the segment s depends on all four
boundaries of s, among which b indirectly depends on at
least two and at most three of them. In part (e) in Figure 3,
we can see that b6 and b7 indirectly depend on b1 and b2.

3.3 Informative Boundary
The segments with essential information are normally ar-

ranged in conspicuous position of a page, such as the mid-
dle of the first screen. Such segments are known as in-
formative segment [13, 23]. Incorrectly segmenting infor-
mative segments causes larger loss. Taking the news con-
tent segment in a news page as an example, any segmen-
tation that mistakenly segments the paragraphs of the con-
tent into different segments is not a favorable result. This is
called over-segmentation mistake. On the other hand, if the
news content segment is combined with other segments and
becomes a subpart of the combined segment, insufficient-
segmentation mistake occurs. To make the informative seg-
ments accurately segmented, we define the related bound-
aries as informative boundaries and give them some special
treatment.

Definition 2 (Informative Boundary). If a bound-
ary is mistakenly labeled, the related informative segment
will be overly or insufficiently segmented. Such boundary is
an informative boundary.

Suppose so4 is an informative segment in the demo page in
Figure 3, b1, b2, b3, b4, b6, and b7 are informative boundaries.
Since b3 and b4 depend on b1 and b2, we only need to ensure
that b3 and b4 are correctly labeled as Y. Similarly, after b6
and b7 are correctly labeled as N, the boundaries that depend
on b6 and b7 will be labeled as N automatically. Therefore,
we define proper informative boundary as follows.

Definition 3 (Proper Informative Boundary).
Suppose bi is an informative boundary and outside the in-
formative segment, if there is no bj which directly depends
on bi and is also outside the informative segment, bi is a
proper informative boundary. Suppose bk is an informative
boundary and inside the informative segment, if bk directly
depends on a proper informative boundary outside the infor-
mative segment, bk is a proper informative boundary.

In the above example, b3, b4, b6, and b7 are the proper in-
formative boundaries.

4. FEATURES
Let Ψ(G,C) denote the combined feature representation

of G and its label assignmentC. Thus, the objective function
F in Equation 1 is formulated as:

F (G,C;w) ≡ 〈Ψ(G,C),w〉, (2)

which is the linear combination of the features in Ψ(G,C)
with their corresponding weights given inw. For each bound-
ary b in B of G, we define a group of features from its sur-
rounding segments to assist the determination of its label.
For the example in Figure 2(a), if the segments so5 and sb5
have different background colors, the label Y is probably

more suitable than the label N for the boundary b5. If one
text segment contains very similar terms as in the title of
a news page, we probably should not split the boundary
beneath this segment since it will separate the title and the
main content of the news. According to the sources, the fea-
tures are categorized into two types, namely, local feature,
and context feature,

4.1 Local Features
Local features of a boundary bi are computed based on

the characteristics of its surrounding sub-segments, i.e., soi
and sbi . We design two types of local features, namely, local
segment features, and local segment relation features.

Local segment features are designed to capture the char-
acteristics of a single segment soi or sbi . Let Φ(soi ) denote
the feature vector related to soi . The combined feature map
of soi and the label ci of bi is denoted as:

Ψl(soi , ci) ≡ Φ(soi )⊗Λc(ci), (3)

where ⊗ is the operator of tensor multiplication, Λc(ci) is
the canonical representation of the label ci:

Λc(ci) ≡ (δ(Y, ci), δ(N, ci)), (4)

where δ(Y, ci) is an indicator function and has the value 1 if
ci = Y and the value 0 otherwise. As revealed by Equation 3,
each single feature is mapped to a dimension according to
the label ci. Similarly, the combined feature map of the
segment sbi and the label ci is denoted as:

Ψl(sbi , ci) ≡ Φ(sbi)⊗Λc(ci). (5)

Local segment features include basic features, geographic
features, color features, content features, text appearance
features, text richness features, tag richness features, font
size features, etc. Some examples are the number of links
in the segment, the background color of the segment, the
number of terms in a segment that also appear in the page
title, the token based text density over the segment size, etc.

Local segment relation features reveal the relation of the
two segments. Let Φ(soi , s

b
i) represent the features summa-

rized for capturing the relations between soi and sbi . The
combined feature map is denoted as:

Ψl(soi , s
b
i , ci) ≡ Φ(soi , s

b
i)⊗Λc(ci). (6)

Such features include height difference in the DOM, text
length difference, color difference, size difference, font size
difference, typeface difference, text similarity, etc.

4.2 Context Features
Human readers also consider the context information in

identifying page segments. Take the page given in Fig-
ure 2(a) as an example. In addition to the local features
from so10 and sb10, the sibling segments so8 and so9 also pro-
vide useful hints to determine the label of b10. Suppose
the DOM structures of these four segments are similar, it is
very likely that they present four records of the same type
of information. Thus, it is probably not preferred to split
the boundary b10. We design two types of context features,
namely, context segment features, and context segment re-
lation features, for each bi to capture the characteristics of
the segments in the sibling sequence. Context segment fea-
tures include the average DOM structure similarity with the
sibling segments, occurrence frequency based on DOM struc-
ture similarity, mean and standard deviation of occurrence
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intervals, etc. Context segment relation features reveal the
relation of the two segments’ context features, such as the
difference of occurrence frequency, occurrence characteris-
tics of the forest of them, etc. The combined context feature
maps are denoted as:

Ψc(soi , ci) ≡ Υ(soi ;S)⊗Λc(ci), (7)

Ψc(sbi , ci) ≡ Υ(sbi ;S)⊗Λc(ci), (8)

Ψc(soi , s
b
i , ci) ≡ Υ(soi , s

b
i ;S)⊗Λc(ci), (9)

where S is the sequence of the corresponding sibling seg-
ments, Υ is the features extracted according to the charac-
teristics of the segments in S.

4.3 Aggregated Feature Representation
By aggregating the above features, the combined feature

map of a boundary bi and its label ci is presented as:

Ψ(bi, ci) ≡

⎛
⎜⎝
⎛
⎝ Ψl(soi , ci)

′

Ψl(sbi , ci)
′

Ψl(soi , b
b
i , ci)

′

⎞
⎠

′ ⎛
⎝ Ψc(soi , ci)

′

Ψc(sbi , ci)
′

Ψc(soi , s
b
i , ci)

′

⎞
⎠

′⎞
⎟⎠ . (10)

The combined feature representation of a WPS-graph G and
its label assignment C is the combination of the feature map
from each boundary:

Ψ(G,C) ≡
∑
bi

Ψ(bi, ci). (11)

As shown above, different features are combined and the
difference of their impacts will be captured by the corre-
sponding weights in w.

5. INFERENCE OF SEGMENTATION
To infer a label assignment satisfying the dependency con-

straints, one strategy is to consider the vertices one by one in
the topological order as depicted by the WPS-graph. Only
when all the ancestors of a vertex are labeled with Y, we
will evaluate Y and N for it. Otherwise, we assign the label
N to this vertex. However, this manner is myopic and can-
not achieve an optimal solution. To overcome this problem,
we formulate the label inference on G as a binary Integer
Linear Programming (ILP) problem with the label depen-
dency constraints transferred as the constraints of the binary
ILP. The source code of the inference is publicly available at
http://www.se.cuhk.edu.hk/~textmine/.

Let F ∗
i denote the partial objective value achieved by the

vertex bi with the label c∗i in the optimal label assignment
C∗. F ∗

i can be represented as:

F ∗
i = (Fi − F i)xi + F i, (12)

where xi = δ(Y, c∗i ). Fi and F i are calculated as follows:

Fi = 〈Ψ(bi, Y),w〉, (13)

F i = 〈Ψ(bi, N),w〉. (14)

If xi = 0, we have F ∗
i = F i and c∗i = N. Otherwise, we have

F ∗
i = Fi and c∗i = Y. Thus, the optimal value of F can be

computed as F ∗ =
∑n

i=1 F
∗
i , where n = |B|. The task of

finding the optimal label assignment as given in Equation 1
can be transformed as solving a binary ILP problem:

max
n∑

i=1

F ∗
i = max (

n∑
i=1

(Fi − F i)xi + F i),

s.t. xi ∈ {0, 1},
〈bi, bj〉 ∈ E⇒ xi ≥ xj . (15)

The second constraint ensures that if there is an edge from
bi to bj in E of G and bi has the label N, i.e., xi = 0, bj must
also have the label N, i.e., xj = 0; if bj has the label Y, i.e.,
xj = 1, bi must also have the label Y, i.e., xi = 1. After
removing the unchanged term F i in F ∗

i , Formula 15 can be
equivalently written as the following compacted form:

max f ′x, s.t. x ∈ {0, 1}n and Ax ≤ {0}m, (16)

where f ′ is the coefficient vector and fi = Fi−F i, A ∈ R
m×n

is the constraint matrix, where m = |E|. Each constraint
xi ≥ xj corresponds to one row in A whose j-th element is
+1, i-th element is -1 and other elements are 0.

However, binary ILP has been proved to be NP-hard [35].
To solve it, we first relax the binary ILP in Equation 16 to
a linear programming (LP) problem which has efficient and
widely used solvers such as simplex [11]. Then, it can be
proved that the linear relaxation has an integral optimal so-
lution, which is thus also the optimal solution of the original
binary ILP problem. The constraint x ∈ {0, 1}n is written as
x ∈ Z

n
+ and x ≤ {1}n. x ≤ {1}n and Ax ≤ {0}m are jointly

written as Bx ≤ b, where B =

(
A
In

)
, b =

( {0}m
{1}n

)
.

Thus, we get an ILP problem:

max f ′x, s.t. x ∈ Z
n
+ and Bx ≤ b. (17)

The linear relaxation of the problem in Formula 17 is:

max f ′x, s.t. x ∈ R
n
+ and Bx ≤ b. (18)

One nice property of the LP problem in Formula 18 is that
the constraint matrix B is totally unimodular [35], which
can be proved straightforwardly and is omitted due to the
tight space. This property guarantees that the LP problem
has an integral optimal solution for any integer vector b
for which it has a finite optimal value [35]. Therefore, the
integral optimal solution of the LP in Formula 18 is also an
optimal solution of the ILP in Formula 17. Obviously, it is
also an optimal solution of the binary ILP in Formula 16,
from which the ILP is transformed.

To speed up the inference algorithm, the leaf vertex bi in
G whose value satisfies F i ≥ Fi can be safely labeled as N

and removed from the inference procedure. The reason is
that the labeling of its ancestor vertices does not affect bi.
Obviously, this removal preprocessing is recursive until each
of the remaining leaf vertex bj has F j < Fj .

6. TRAINING
We develop a machine learning algorithm based on the

structured output Support Vector Machine framework [32]
to determine the feature weights. Our learning algorithm
considers the inter-dependency among the vertices of aWPS-
graph during the training process. Therefore, the feature
weights are determined with a global view on WPS-graphs
but not merely on individual segmentation boundaries. The
source code of this learning framework is publicly available
at http://www.se.cuhk.edu.hk/~textmine/.

6.1 Learning Framework
Let {(Gi,Ci)}Ni=1 denote a set of training data instances.

The quadratic program form of the SVM model with slack
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re-scaled by the loss is:

min
w,ξ

1

2
||w||2 +

C

N

N∑
i=1

ξi

s.t. ∀i, ∀C ∈ Y \Ci : 〈δΨi(C),w〉 ≥ 1− ξi

Δ(Ci,C)
, (19)

where ξi ≥ 0 is the slack variable of Gi, C > 0 is a trade-
off constant of the two parts and takes value 1 in this pa-
per, Y is the set of all possible label assignments of Gi,
〈δΨi(C),w〉 = F (Gi,Ci;w)−F (Gi,C;w) is the margin be-
tween the objective values of Ci and C, and Δ(Ci,C) de-
notes the loss caused by the label assignment C. Similarly,
the quadratic program form of the SVM model with margin
re-scaled by the loss is:

min
w,ξ

1

2
||w||2 +

C

N

N∑
i=1

ξi

s.t. ∀i, ∀C ∈ Y \Ci : 〈δΨi(C),w〉 ≥ Δ(Ci,C)− ξi. (20)

Tsochantaridis et al. proposed a cutting plane based al-
gorithm to solve this optimization problem in its dual for-
mulation [32]. It selects a subset of constraints from the
exponentially large set Y to ensure a sufficiently accurate
solution. The procedure of finding the feature weights is
briefly summarized in Algorithm 2. Si is the working set of
selected constraints for the instance Gi, α’s are the Lagrange
multipliers, and ε is the precision parameter. The algorithm
proceeds by finding the most violated constraint for Gi in-
volving Ĉ (refer to Line 5). If the margin violation of this
constraint exceeds the current ξi by more than ε (refer to
Line 7), the working set Si of Gi is updated. α’s and w are
also updated with the updated working set accordingly. We
refer the reader to [32] for more details of the algorithm.

In the learning procedure as depicted in Algorithm 2, it is
required to optimize the cost function in Line 4 for finding
the most violated constraint corresponding to Ĉ:

Ĉ = argmax
C∈Y

H(C). (21)

The upper and the lower forms ofH(C) in Line 4 correspond
to the slack re-scaling and margin re-scaling definitions as
given in Formulae 19 and 20 respectively.

6.2 Optimization for Slack Re-scaling
Recall that the missing of the informative segments of a

page causes larger loss. Our slack re-scaling formulation as
given in Formula 19 is able to take this into consideration
with a loss function defined based on informative segments:

Δ(Ci,C) ≡ exp {
∑

b∈Binfo
δ̄(Ci(b),C(b))

|Binfo|
}, (22)

where Binfo denotes the set of proper informative bound-
aries, C(b) is the label of b in C, δ̄ is an indicator function
which takes the value 0 if Ci(b) = C(b) and takes the value
1 otherwise. If Binfo = ∅, we set Δ(Ci,C) = 1.

To optimize the following cost function:

H(C) ≡ (1− 〈δΨi(C),w〉)Δ(Ci,C), (23)

we enumerate a subset of possible loss value levels as de-
fined in Equation 22. The derivation of the optimal Ĉ for
Equation 23 is summarized as Proposition 1.

Proposition 1. Let C∗ denote the label that achieves the
optimal value for F and B×

info denote the proper informative

Algorithm 2: Finding feature weights via structured
output SVM learning.

1: initialization: {(Gi,Ci)}Ni=1, C, ε, ∀i : Si ← ∅
2: repeat
3: for i = 1, · · · , N do

4: H(C) ≡
{

(1 − 〈δΨi(C),w〉)Δ(Ci,C)
Δ(Ci,C)− 〈δΨi(C),w〉

5: Ĉ = argmaxC H(C)
6: ξi = max {0,maxC∈Si

H(C)}
7: if H(Ĉ) > ξi + ε then

8: Si ← Si ∪ {Ĉ}
9: update α’s and w with ∪iSi

10: end if
11: end for
12: until no Si has changed during iteration

boundaries wrongly labeled in C∗. Let {B′
info} be all subsets

of Binfo having more elements than B×
info, and let C′ be the

label assignment that achieves the largest F value when all
boundaries in B′

info are wrongly labeled and all boundaries in

Binfo \B′
info are correctly labeled. The label Ĉ maximizing

H(C) is from ∪B′
info

{C′} ∪ {C∗}.

The proof of Proposition 1 is straightforward and omitted
due to the space limitation.

6.3 Optimization for Margin Re-scaling
The margin re-scaling formulation in Formula 20 is de-

signed to perform a general segmentation of pages. For this
design, we define a hamming distance based loss function:

Δ(Ci,C) ≡
∑
b∈B

δ̄(Ci(b),C(b)), (24)

where each boundary is treated equally. To optimize the
second cost function as given in Equation 25:

H(C) ≡ Δ(Ci,C)− 〈δΨi(C),w〉, (25)

it is equivalent to optimize:

H ′(C) ≡ Δ(Ci,C) + F (Gi,C;w). (26)

Let Ĉ′ denote the label that achieves the largest value of
H ′, and Ĥ ′

i denote the partial value of H ′ achieved by the
vertex bi having the label Ĉ′(bi), denoted as ĉ′i. Ĥ ′

i can be
represented as:

Ĥ ′
i = (H ′

i −H
′
i)xi +H

′
i, (27)

where xi = δ(Y, ĉ′i). H
′
i and H

′
i are calculated as follows:

H ′
i = δ(ci, Y) + 〈Ψ(bi, Y),w〉, (28)

H
′
i = δ(ci, N) + 〈Ψ(bi, N),w〉. (29)

Referring to Equations 12, 13, and 14, the task of finding
the label assignment Ĉ′ maximizing H ′ can also be solved
in the same way as given in Section 5.

7. EXPERIMENTS

7.1 Experimental Setting
Data Preparation. We categorize the pages on the Web

into 10 broad types as given in the first column of Table 1.
1,000 pages of the first 9 types were randomly picked from a
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Table 1: Different types of pages on the Web and
the number of each type in our data set.
Functional
type (ID)

Description Page
#

Index (1) The major part of the page is composed of links
for the navigation purpose, such as the thread list
of forums, the home page of a portal site, etc.

366

Image (2) The page is designed to present images. 180
Forum (3) Presenting the major content of forum posts. 100
Product (4)Presenting the detailed descriptions of products. 71
Search Re-
sult (5)

Presenting the search result of various search en-
gines.

70

Blog (6) Presenting the major content of Blog posts. 69
Download
(7)

Presenting the download information for soft-
wares, music, and videos.

50

News (8) Presenting the major content of the daily news, or
the major content of various articles.

48

Video (9) The page is designed to present videos. 46
Other (10) Including adult pages, wap pages, etc. 0

Sum 1,000

large page repository, since adult pages are normally omit-
ted by applications and wap pages are designed differently
compared with normal Web pages. The number of pages
in different types is given in the third column of Table 1.
The total number of pages in our data set is almost 10 times
of that used in some previous works [7, 19]. In addition,
the smallest type contains 46 pages, which is a reasonable
number for conducting type-specific experiment. To perform
data annotation, we developed a browser-based user-friendly
tool for annotators to specify the label of each boundary. Af-
ter the annotators finish annotating one page, they label the
informative segment in the page. If the page is not an index
page, the segment that presents the major information of
the page is annotated as informative segment, such as the
news content segment of a news page and the result segment
of a Web search page.

Evaluation Metrics. The segmentation result gener-
ated by a Web page segmentation method groups the visual
elements of a Web page into cohesive regions visually and se-
mantically. Similar to the previous works [7, 19], we regard
each generated segment as a cluster of visual elements and
employ cluster correlation metrics to conduct the evalua-
tion. The first metric is the Adjusted Rand Index (ARI) [18].
Rand Index is defined to measure the agreement between an
output clustering and the ground truth clustering by count-
ing the pairs of elements on which two clusterings agree [28].
The Rand Index lies between 0 and 1, with 0 indicating that
the two clusters do not agree on any pair of elements and 1
indicating that the two clusters are exactly the same. ARI
is a corrected-for-chance version of the Rand Index, which
equals 0 on average for random partitions, and 1 for two
identical partitions. Therefore, the larger the ARI value is,
the better the performance is. Mutual Information (MI) is
a symmetric measure to quantify the statistical information
shared between two distributions [10]. It can provide an
indication of the shared information between a pair of clus-
terings. The second metric employed in this paper is the
Normalized Mutual Information (NMI) introduced in [30],
which is the MI between two clusterings normalized with
the geometric mean of their entropies. NMI ranges from 0
to 1 and larger value indicates better performance.

Comparison Methods. Kohlschütter and Nejdl ob-
served that the number of tokens in a text fragment, i.e.

Table 2: Comparison of segmentation results on the
entire data set.

ARI NMI

WPS Slack 0.732 0.824
WPS Margin 0.749 0.841

BF-RULEBASED (ϑmax = 0.65) 0.605 0.761
CCLUS (λ = 0.62) 0.489 0.662
GCUTS (λ = 0.53) 0.630 0.770

text density, is a valuable feature for segmentation deci-
sions [19]. Therefore, they proposed a block fusion model
that utilizes the text density ratios of subsequent blocks to
identify segments, where the Web page segmentation prob-
lem is reduced to solving a 1D-partitioning task. Among
the variants of their model, BF-RULEBASED achieves the best
performance. BF-RULEBASED constrains the density-based fu-
sion operation between subsequent blocks with a set of gap-
enforcing tags and a set of gap-avoiding tags. We imple-
mented BF-RULEBASED for conducting comparison. The opti-
mal fusing threshold ϑmax is tuned with the training set of
our data. Chakrabarti et al. proposed a graph-theoretic ap-
proach to deal with Web page segmentation [7]. They cast
the problem as a minimization problem on a weighted graph
with the nodes as the DOM tree nodes and the edge weights
as the cost of placing the end nodes in the same segment
or different segments. They presented a learning framework
to learn these weights from manually labeled data. The
proposed CCLUS algorithm solves this problem with corre-
lation clustering on a graph that only contains leaf DOM
nodes of a page as the nodes of the weighted graph. The
proposed GCUTS algorithm solves this problem with energy-
minimizing cuts on a graph that regards each DOM node as
a node of the graph. GCUTS involves a rendering constraint
to ensure that, if the root node of a subtree is in a partic-
ular segment, all the nodes in the entire subtree are in the
same segment. We implemented both CCLUS and GCUTS to
conduct comparison. Our training data is employed to learn
the feature weights as well as the trade-off parameter λ of
two counterbalancing costs in the objective functions.

7.2 Overall Segmentation Results
Recall that, in Section 6.1, we employ two quadratic forms

of SVMmodel, namely, slack re-scaling and margin re-scaling,
which incorporate informative segment oriented loss and
Hamming loss respectively. Accordingly, we have two vari-
ants of our model, named WPS Slack and WPS Margin re-
spectively. The learning precision ε for the feature weight
estimation in Algorithm 2 is set to 0.1.

We first conduct experiment on the entire data set con-
taining 1,000 pages. 4-fold cross-validation is employed and
the average performance evaluated with ARI and NMI is
reported in Table 2. Both variants of our model can outper-
form the comparison methods significantly. The improve-
ments in ARI values over BF-RULEBASED and GCUTS are about
25%. In addition, paired t-tests (with P < 0.01) comparing
the variants of our model with the comparison methods show
that the performance of our variants is significantly bet-
ter. Among different variants of our model, WPS Margin
with Hamming loss can achieve better performance than
WPS Slack with informative segment oriented loss. It is
because WPS Slack favors the segmentations that generate
more accurate informative segments, which makes it perform
less accurately on the uninformative segments. While the
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Figure 4: Percentage of pages below an ARI value.

Table 3: Type-specific segmentation results in ARI.
Type ID 1 2 3 4 5 6 7 8 9

WPS Slack .745 .771 .761 .763 .802 .794 .769 .757 .782
WPS Margin .778 .795 .787 .786 .829 .819 .793 .775 .807
BF-RULEBASED .617 .640 .662 .657 .687 .671 .653 .701 .654

CCLUS .528 .532 .529 .547 .564 .553 .540 .532 .543
GCUTS .674 .687 .665 .691 .703 .697 .684 .669 .698

evaluation metrics ARI and NMI do not consider the impor-
tance difference among the segments, which gives WPS Margin
more advantage in the reported performance.

GCUTS achieved slightly better performance than BF-RULEBASED.
And CCLUS achieved the lowest accuracy, because it re-
ports many non-rectangular segments since the built graph
of it only contains the leaf DOM nodes. Generally, non-
rectangular segment should not exist according to common
sense. We observe that the page designers now prefer us-
ing <div> and <span> tags together with Cascading Style
Sheets (CSS) in page design. This makes the heuristics
based on gap-enforcing tags in BF-RULEBASED less effective.
Similar to our method, GCUTS is more adaptable since its
feature weights are tuned with training examples. It also
solves the problem of reporting non-rectangular segments to
some extent with the rendering constraint. The cumulative
percentage of Web pages for which the segmentation perfor-
mance of a particular method is less than a certain ARI value
is plotted in Figure 4. The slower the curve goes up from
left to right, the better the corresponding method is. For
CCLUS, BF-RULEBASED and GCUTS, the percentages of ARI
value lower than 0.6 are about 82%, 56% and 52% respec-
tively. For the variants of our framework, such percentages
are between 20% to 30%.

7.3 Type-specific Segmentation Results
To evaluate the type-specific performance of different seg-

mentation methods, we employ the page set of each type
as an individual experimental data set. Also 4-fold cross-
validation is conducted on each of the nine page sets. The
results evaluated with ARI are reported in Table 3. We
find that all methods can achieve better performance on
an individual page type compared with on the entire data
set. This is because the trained or tuned parameters in dif-
ferent methods are more tailor-made for a particular type
so as to achieve better accuracy. Among different types of
pages, Search Result and Blog are relatively easier to han-
dle. The main reason is that these two types of pages have
relatively simple structures. Index and News are the most
difficult types. The reason is that these two types of pages
have more heterogenous structures and various information
topics. In addition, the loss function in WPS Slack is set
to 1 for the index pages since no informative segments are
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Figure 5: Stacked percentage in different ARI value
intervals by WPS Margin.

Table 4: Results of informative block extraction.
Type ID 2 3 4 5 6 7 8 9 ALL\Index

WPS Slack .91 .90 .92 .93 .93 .90 .94 .90 .88
WPS Margin .88 .88 .86 .88 .88 .83 .85 .83 .84
BF-RULEBASED .62 .59 .63 .72 .75 .73 .75 .63 .68

GCUTS .64 .61 .60 .78 .78 .71 .71 .65 .70

annotated for them, which makes WPS Slack less effective
in tackling index pages compared with tackling the other
types. Note that our framework does not have type-specific
features, since we assume that the type of the pages is un-
known. The stacked percentage in different ARI value inter-
vals for individual page types is given in Figure 5. Besides
the types of Product and News, the percentage of ARI value
lower than 0.6 is no more than 20%.

7.4 Informative Segment Results
Recall that besides the index pages, we annotated infor-

mative segments in the pages of other types. We conduct
evaluation on the performance of our method for segment-
ing these informative segments. If the informative segment
of a page is accurately segmented, we regard this page suc-
cessfully handled. If the informative segment is regarded
as a subpart of any other segment or it is separated into
several sub-segments, this page is not successfully handled.
We calculate the percentage of the pages whose informative
segments are successfully segmented.

In addition to the eight individual sets of pages, we have
another data set that aggregates the pages of these eight
types and it is called ALL\Index. The average results from
4-fold cross-validation are reported in Table 4. TheWPS Slack
with informative segment oriented loss achieved the best
performance and dominated other methods significantly. It
demonstrates that the design of informative segment ori-
ented loss is helpful for capturing informative segments for
different types. It also shows that our variants with different
loss designs have their own advantages to handle segmen-
tation tasks with different focuses, making our framework
more adaptable compared with previous works. The trained
segmentation models on the individual types are more tailor-
made so as to achieve better results compared with that on
ALL\Index. After some manual checking, we found that
most unsuccessful cases include some noise elements as part
of the informative segments, such as the comments in the
news and blog pages. In BF-RULEBASED, one heuristic rule is
that a segmentation gap should be enforced after the tags
<h1>-<h6>. Consequently, BF-RULEBASED always splits the
title formatted with <h1>-<h6> of an informative segment
and the main content of the segment, which results in over-
segmentation mistakes.
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Algorithm 3: In-segment position finding.

1: initialization: s(t)← ∅, s(b)← ∅, s(l)← ∅, s(r)← ∅,
s(m)← ∅, {bi}ni=1: boundaries having the label Y in s

2: if n = 0 then
3: s(m)← s
4: else if n = 1 then
5: if {bi}ni=1 are horizontal then

6: s(t)← {so1}, s(b)← {sb1}
7: else
8: s(l)← {so1}, s(r)← {sb1}
9: end if
10: else
11: if n = 2 then
12: b′ ← b1, b′′ ← b2
13: else
14: calculate F ′

i = 〈Ψ(bi, Y),w〉 for each bi
15: b′ ← argmaxbi F

′
i , b

′′ ← argmaxbj∈{bi}ni=1
\b′ F ′

j

16: end if
17: if {bi}ni=1 are horizontal then
18: s(t)← the segments above b′
19: s(m)← the segments between b′ and b′′
20: s(b)← the segments below b′′
21: else
22: s(l)← the segments on the left of b′
23: s(m)← the segments between b′ and b′′
24: s(r)← the segments on the right of b′′
25: end if
26: end if

8. APPLICATION IN WEB PAGE CLASSI-
FICATION

8.1 Feature Extraction for Classification
As discussed above, the output of our segmentation model

provides a good structural analysis of Web pages enabling
better utilization for different Web page mining tasks. Such
efficacy of our model is examined in the task of page func-
tional type classification [26]. Different from topical type,
functional type describes the role that a Web page plays,
such as image page mainly presenting an image, video page
mainly presenting a video, etc. The identification of func-
tional type is very useful for different Web mining problems.
For example, search result ranking normally considers func-
tional type as one factor. Page crawler can also trigger a
better crawling strategy given the type of crawled pages.

The functional type of a page is closely related to the
page structure and the functional terms appearing in differ-
ent positions of the page. For example, the functional terms
“reply” and “post” in the informative segment of a forum
page are indicative features. The term“forum” in the header
and bottom sections is also an important feature. To utilize
the output of our segmentation model in this classification
task, five different in-segment positions are defined, namely,
top, bottom, left, right, and middle. For a segment s, these
positions are denoted as s(t), s(b), s(l), s(r), and s(m) re-
spectively. Let b1..n denote the boundaries having the label
Y inside s. The procedure of finding the in-segment positions
of s is given in Algorithm 3. Note that an in-segment posi-
tion can contain more than one subsegments when n > 2.

To construct the feature vector of each input page, we
consider the in-segment positions in two major segments of
the page obtained from different layers of the segmentation
procedure. The first major segment is the entire page and
the second major segment is the largest segment obtained

Table 5: The results of page classification.
Precision Recall F1

Our method 0.945 0.926 0.936
Unstructured Text 0.698 0.673 0.685

BF-RULEBASED Segment 0.755 0.735 0.745
GCUTS Segment 0.772 0.745 0.758

by segmenting the entire page. In Figure 3, the major seg-
ments are s0 in (a) and so2 in (b). Suppose b1, b2, b3, and
b4 are labeled as Y by our segmentation model. Thus, s0
is segmented into s0(t) containing so1, s0(m) containing so2,
and s0(b) containing sb2 as shown in Figure 3(b). so2 is seg-
mented into so2(l) containing so3, s

o
2(m) containing so4, and

so2(r) containing sb4 as shown in Figure 3(c). After a page is
segmented by our model and the in-segment positions of the
major segments are determined by Algorithm 3, we calculate
the in-segment position based TF-ISF value for each term t
in the individual positions, where TF is the frequency of t
in this position of the page and ISF is the inverted segment
frequency of t calculated based on the same position across
the corpus. Therefore, a single term is decomposed into 10
different dimensions in the feature vector according to its
in-segment positions in the two major segments. After some
basic preprocessing such as stop word removal, we perform
feature selection with information gain (IG) [36]. Only the
top 10% of terms are retained in the construction of the
feature vector so as to control the dimensionality.

8.2 Experimental Setting and Results
We prepare another collection of 4,000 pages from the

eight types having informative segments as indicated in Ta-
ble 4. Each type contains about 500 pages. LibSVM [8] with
linear kernel is employed to train eight classifiers under one-
against-the-rest strategy for multi-class classification. To
conduct comparison, three baseline methods are designed.
The first baseline, named Unstructured Text, is a purely
text-based method without considering page structure. It
employs all terms after preprocessing to form the feature
vectors. We design the other two comparison methods based
on the informative segments detected by BF-RULEBASED and
GCUTS. The informative segment of each page is identified
with the following rule. The largest segment that appears
(maybe partially) in the first screen of a page is regarded as
its informative segment. The first screen of a page is defined
as the top fraction of the page with the height of 1,000 pixels.
Then, the feature vector of a page employs the terms appear-
ing in its informative segment as the dimensions. These two
baselines are named BF-RULEBASED Segment and GCUTS Segment
respectively. For our method, the employed segmentation
model is the variant of WPS with margin re-scaling. All the
segmentation models are tuned or trained with the entire
data set in Table 1.

The average results, evaluated with macro-averaged Pre-
cision, Recall and F1 measure, of 4-fold cross-validation are
reported in Table 5. Our method achieves significantly bet-
ter performance compared with the other methods. The per-
centages of improvements in F1 are about 23% to 37%. This
demonstrates that the page structure information, revealed
by the in-segment positions in our method, is very useful in
the classification of page functional types. The F1 values
of different page types are given in Figure 6. We observe
that BF-RULEBASED Segment and GCUTS Segment face more
difficulties in handling three types of pages, namely, Blog,
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Figure 6: Classification performance for different
page types.

News, and Search Result. It is because these types of pages
have very few functional terms in their main content. The
two informative-segment-based methods cannot well distin-
guish the main content of a news page and that of a blog
page. Although the baseline Unstructured Text keeps the
functional terms outside the informative segments, it does
not have the structure information to differentiate the ap-
pearances of the same term as functional term in a specific
position and as a normal term in the main content. There-
fore, its performance is even degraded by the negative effect
of the noise.

9. CONCLUSIONS
We propose a framework which can perform page segmen-

tation with a structured prediction approach. The segmen-
tation task is formulated as a structured labeling problem on
the WPS-graph. Each labeling scheme on the WPS-graph
corresponds to a possible segmentation of the page. The
feature weight learning algorithm is developed based on the
structured output Support Vector Machine framework so
that it is able to consider the inter-dependency among the
vertices of a WPS-graph. Extensive experiments demon-
strate that our framework achieves better performance com-
pared with state-of-the-art methods.
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