
Web Search: Agenda

• Quick web overview

• How is the web different?

• Types of web information needs

• Crawling

• Link analysis

The WWW was invented in 1989, at CERN.

Sir Tim Berners-Lee
1955 –

https://en.wikipedia.org/wiki/Tim_Berners-Lee

https://commons.wikimedia.org/wiki/File:NeXTcube_first_webserver.JPG

Keys to the WWW: HTTP, HTML, and hypertext.
"I just had to take the hypertext idea and connect it to the Transmission Control Protocol and domain name system
ideas and—ta-da!—the World Wide Web ... Creating the web was really an act of desperation, because the
situation without it was very difficult when I was working at CERN later. Most of the technology involved in the
web, like the hypertext, like the Internet, multifont text objects, had all been designed already. I just had to put them
together. It was a step of generalising, going to a higher level of abstraction, thinking about all the documentation
systems out there as being possibly part of a larger imaginary documentation system."

https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Domain_name_system
https://en.wikipedia.org/wiki/Domain_name_system

Depending on who you ask, the concept of
hypertext was invented by either:

Vannevar Bush
1890 – 1974

Jorge Luis Borges
1899 – 1986

Regardless, it was not until the 1960s that
actual hypertext systems were built...

Ted Nelson
1937 –

Douglas Engelbart
1925 – 2013

... and not until the 1970s that any were
really usable.

What distinguished the web from previous
information systems?

1.Simplicity

2.Decentralization

3.Hypertext

In other words: anybody could easily add
any content and cross-link it any-which-way.

This led to incredibly rapid and uncontrolled growth...

... which in turn posed major challenges for search:
Standard Web

Index size (relatively) small petabytes+

Updates & Additions rare constant

Language monolingual
aggressively
multilingual

Content
consistent (news

articles, etc.)
diverse formats

Authors curated uncontrolled

Behavior cooperative adversarial

Quality homogeneous
heterogeneous,

subjective

Web information needs fall into three broad categories:

Informational:

Seeking information on a broad topic;
answer usually not found on any single page
“Leukemia”, “art galleries in Portland”

Navigational:

Seeking a specific website from a particular
entity
“alaska airlines”

Transactional:

A prelude to the user performing a transaction (buying
something, making a reservation, etc.)
“alaska airlines reservation desk”

Search engines try to infer the category of need from a
query (and user behavior: prior queries, clicks, etc.)...

... this is a huge area of research!

Early web search engnes took one of two basic
approaches:

Both were based primarily on the content of the
indexed web pages.

Web as a directed graph

Web pages are nodes. Hyperlinks are directed edges.

Web is not a strongly connected graph.

The web can be thought of as a directed graph...

This is a very useful formulation!

The web can be thought of as a directed graph...

The web graph is not strongly connected;

Web as a directed graph

Web pages are nodes. Hyperlinks are directed edges.

Web is not a strongly connected graph.

Links are non-random;

A page’s in-degree: # incoming links; out-degree: # outgoing links

The link distribution is often said to follow a power-law
distribution:

num. pages with in-degree of i is proportional to 1/iα

Online edition (c)�2009 Cambridge UP

19.2 Web characteristics 427

! Figure 19.4 The bowtie structure of the Web. Here we show one tube and three
tendrils.

SCC is somewhat larger; most web pages fall into one of these three sets. The
remaining pages form into tubes that are small sets of pages outside SCC that
lead directly from IN to OUT, and tendrils that either lead nowhere from IN,
or from nowhere to OUT. Figure 19.4 illustrates this structure of the Web.

19.2.2 Spam

Early in the history of web search, it became clear that web search engines
were an important means for connecting advertisers to prospective buyers.
A user searching for maui golf real estate is not merely seeking news or en-
tertainment on the subject of housing on golf courses on the island of Maui,
but instead likely to be seeking to purchase such a property. Sellers of such
property and their agents, therefore, have a strong incentive to create web
pages that rank highly on this query. In a search engine whose scoring was
based on term frequencies, a web page with numerous repetitions of maui golf
real estate would rank highly. This led to the first generation of spam, whichSPAM

(in the context of web search) is the manipulation of web page content for
the purpose of appearing high up in search results for selected keywords.
To avoid irritating users with these repetitions, sophisticated spammers re-
sorted to such tricks as rendering these repeated terms in the same color as
the background. Despite these words being consequently invisible to the hu-
man user, a search engine indexer would parse the invisible words out of

From Manning et al., Ch. 19

The web can be thought of as a directed graph...

J.#Leskovec,#A.#Rajaraman,#J.#Ullman:#Mining#of#Massive#Datasets,#h=p://www.mmds.org#

Connections)between)political)blogs)
Polarization)of)the)network)[Adamic:Glance,)2005])

Web as a directed graph

Web pages are nodes. Hyperlinks are directed edges.

Web is not a strongly connected graph.

The web can be thought of as a directed graph...

We can use link data in two main ways:

1. Inferring authority or trustworthiness of a page;

2. Identifying new pages to be added to our index.

Online edition (c)�2009 Cambridge UP

434 19 Web search basics

! Figure 19.7 The various components of a web search engine.

In some cases, a search engine is aware of a page p that is linked to by pages
it has indexed, but has not indexed p itself. As we will see in Chapter 21,
it is still possible to meaningfully return p in search results.

2. Search engines generally organize their indexes in various tiers and parti-
tions, not all of which are examined on every search (recall tiered indexes
from Section 7.2.1). For instance, a web page deep inside a website may be
indexed but not retrieved on general web searches; it is however retrieved
as a result on a search that a user has explicitly restricted to that website
(such site-specific search is offered by most web search engines).

Thus, search engine indexes include multiple classes of indexed pages, so
that there is no single measure of index size. These issues notwithstanding,
a number of techniques have been devised for crude estimates of the ratio of
the index sizes of two search engines, E1 and E2. The basic hypothesis under-
lying these techniques is that each search engine indexes a fraction of the Web
chosen independently and uniformly at random. This involves some ques-
tionable assumptions: first, that there is a finite size for the Web from which
each search engine chooses a subset, and second, that each engine chooses
an independent, uniformly chosen subset. As will be clear from the discus-
sion of crawling in Chapter 20, this is far from true. However, if we begin

From Manning et al., Ch. 19

“Crawling” is a basic and important piece of any
search engine:

Starting with a set of “seed” URLs...

Fetch & parse, extract URLs...

Add to queue...

Fetch & parse each URL on queue, etc.

“Crawling” is a basic and important piece of any
search engine:

URLs frontier

Unseen Web

Seed
pages

URLs crawled
and parsed

From Manning et al., Ch. 19

This may sound easy, but it actually is not:

Crawling requires parallelism, with all the joy that brings...

Malicious pages seek to confound crawlers:

Spam, Spider traps (both static & dynamic)

Latency & Bandwidth vary widely across sites

Sites have different crawling policies (depth, frequency, etc.)

Duplicate pages, site mirrors, “dynamic” UIs, etc.

Politeness

There are two primary things that crawlers must do:

Be Robust:

Be immune to spider traps; gracefully handle
bandwidth, timeout, and web server issues

Be Polite:

Respect implicit and explicit conventions

There are two primary things that crawlers must do:

Implicit politeness: avoid hitting a site too often, etc.

Explicit politeness: honor specifications from webmasters about what
portions of the site may be crawled (robots.txt), etc.

Be Robust:

Be immune to spider traps; gracefully handle
bandwidth, timeout, and web server issues

Be Polite:

Respect implicit and explicit conventions

Robots.txt:

A way to “control” what parts of your site get crawled
(and by whom).

Dating from 1994, the protocol has remained
(relatively) static.

Well-behaved crawlers look for a text file named
“robots.txt” at the root of your website, and follow its
directives:

User-Agent: *
Allow: /about_us
Disallow: /docs/private_files/

Robots.txt:

Extensions: directives for crawl frequency & rate, etc.

Sitemap, Host (to specify canonical mirrors, etc.)

Caution: a robots.txt file is not a security mechanism!
User-agent: *
Disallow: /_archive/
Disallow: /_resources/
Disallow: /academic/som/
Disallow: /bigbrain_courses_staging/
...
Disallow: /itgdba/

Quite the opposite, in fact...

“During the reconnaissance stage of a web
application testing, the tester (or attacker) usually
uses a list of known subdirectories to brute force the
server and find hidden resources.”

Robots.txt:

User-agent: *
Disallow: /admin/
Disallow: /stats/
Disallow: /internaljobs/
Disallow: /internaljobsbyorganization/
Disallow: /internaljobsearch/

http://thiébaud.fr/robots.txt.html

http://www.behindthefirewalls.com/2013/07/using-robotstxt-to-locate-your-targets.html

http://thi
http://thi
http://www.behindthefirewalls.com/2013/07/using-robotstxt-to-locate-your-targets.html
http://www.behindthefirewalls.com/2013/07/using-robotstxt-to-locate-your-targets.html

There are two primary things that crawlers must do:

Implicit politeness: avoid hitting a site too often, etc.

Explicit politeness: honor specifications from webmasters about what
portions of the site may be crawled (robots.txt), etc.

Be Robust:

Be immune to spider traps; gracefully handle
bandwidth, timeout, and web server issues

Be Polite:

Respect implicit and explicit conventions

Beyond those requirements, there are several “shoulds”:

Be capable of distributed operation;

Be scalable (increase crawl rate by adding machines)

Be as efficient as possible (both in terms of CPU and network)

Be clever: fetch “higher quality” pages first, etc.

Operate continuously

Be easily extensible to support new protocols, document types, etc.

URLs crawled
and parsed

Unseen Web

Seed
Pages

URL frontier

Crawling thread

From Manning et al., Ch. 19

!  Pick%a%URL%from%the%fron2er%
!  Fetch%the%document%at%the%URL%
!  Parse%the%URL%

!  Extract%links%from%it%to%other%docs%(URLs)%

!  Check%if%URL%has%content%already%seen%
!  If%not,%add%to%indexes%

!  For%each%extracted%URL%
!  Ensure%it%passes%certain%URL%filter%tests%
!  Check%if%it%is%already%in%the%fron2er%(duplicate%URL%
elimina2on)%

Which one?

robots.txt filters, etc.

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

URL$fron)er:$two$main$considera)ons$

!  Politeness:donothitawebservertoofrequently$
!  Freshness:$crawl$some$pages$more$o?en$than$
others$

!  E.g.,$pages$(suchasNews$sites)$whose$content$
changes$o?en$

These$goals$may$conflict$with$each$other.$

(E.g.,$simple$priority$queue$fails$–$many$links$outof
a$page$gotoitsownsite,$crea)ng$a$burst$of$
accessestothat$site.)$

There are many solutions: see the book!

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

Duplicate*documents*
!  The*web*is*full*of*duplicated*content*
!  Strict*duplicate*detec7on*=*exact*match*

!  Not*as*common*
!  But*many,*many*cases*of*near*duplicates*

!  E.g.,*Last*modified*date*the*only*difference*
between*two*copies*of*a*page*

From Manning et al., Ch. 19

Duplicate/Near-Duplicate.Detec/on.

!  Duplica(on:.Exact.match..can.be.detected.with.
fingerprints.

!  Near.Duplica(on:.Approximate.match.
!  Overview.

! Compute.syntac/c.similarity.with.an.edit-distance.
measure.

! Use.similarity.threshold.to.detect.near-duplicates.
!  E.g.,..Similarity.>.80%.=>.Documents.are.�near.duplicates�.
!  Not.transi/ve.though.some/mes.used.transi/vely.

From Manning et al., Ch. 19

Compu&ng)Similarity)
!  Features:)

!  Segments)of)a)document)(natural)or)ar&ficial)breakpoints))
!  Shingles)(Word)N@Grams))
!  a"rose"is"a"rose"is"a"rose)→)4@grams)are)
))))))a_rose_is_a))
))))))))))rose_is_a_rose)
))))))))))))))))))))is_a_rose_is))
)))))))))a_rose_is_a)

!  Similarity)Measure)between)two)docs)(=)sets)of)shingles))
!  Jaccard)cooefficient:)(Size_of_Intersec&on)/)Size_of_Union))

From Manning et al., Ch. 19

Shingles)+)Set)Intersec/on)
! )Compu/ng)exact)set)intersec/on)of)shingles)
between)all)pairs)of)documents)is)expensive)

! Approximate)using)a)cleverly)chosen)subset)of)
shingles)from)each)(a)sketch))
! )Es/mate)(size_of_intersec/on)/)size_of_union))
based)on)a)short)sketch))

Doc
A

Shingle set A Sketch A

Doc
B

Shingle set B Sketch B

Jaccard

From Manning et al., Ch. 19

Sketch'of'a'document'
!  Create'a'�sketch'vector�'(of'size'~200)'for'
each'document'
! Documents'that'share'≥'t'(say'80%)'
corresponding'vector'elements'are'deemed'
near'duplicates'

!  'For'doc'D,'sketchD['i$]'is'as'follows:'
! Let'f'map'all'shingles'in'the'universe'to'1..2m'
(e.g.,'f'='fingerprinMng)'

! Let'πi'be'a'random$permuta.on'on'1..2m'

! Pick'MIN'{πi(f(s))}''over'all'shingles's'in'D$

From Manning et al., Ch. 19

Compu&ng)Sketch[i])for)Doc1)

Document 1

Start with 64-bit f(shingles)

Permute on the number line
with πi

Pick the min value

From Manning et al., Ch. 19

Test%if%Doc1.Sketch[i]%=%Doc2.Sketch[i]%%

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

Test for 200 random permutations: π1, π2,… π200

A B

From Manning et al., Ch. 19

!  Shingling'is'a'randomized*algorithm*
!  Our'analysis'did'not'presume'any'probability'model'on'the'
inputs'

!  It'will'give'us'the'right'(wrong)'answer'with'some'
probability'on'any*input*

!  We’ve'described'how'to'detect'near'duplica=on'in'a'
pair'of'documents'

!  In'“real'life”'we’ll'have'to'concurrently'look'at'many'
pairs'
!  See'text'book'for'details'

From Manning et al., Ch. 19

Web as a directed graph

Web pages are nodes. Hyperlinks are directed edges.

Web is not a strongly connected graph.

The web can be thought of as a directed graph...

We can use link data in two main ways:

1. Inferring authority or trustworthiness of a page;

2. Identifying new pages to be added to our index.

Link analysis piece...

Challenges to all of the above: spam

Since good search results mean more traffic, more
customers, etc...

... people are strongly motivated to try and “game”
search engine’s indexing processes.

“As the popularity of the Web has increased, the
efforts to exploit the Web for commercial, social,
or political advantage have grown, making it
harder for search engines to discriminate between
truthful signals of content quality and deceptive
attempts to game search engines’ rankings.”

Castillo C, Davison BD. Adversarial Web Search. Foundations and Trends® in Information Retrieval. 2010;4(5):377–486.

Early attempts at search engine spamming involved
“keyword stuffing”:

Including (many!) additional instances of key words or
phrases on the page...

... but doing it in a way that was invisible to human
users (hiding in a metadata field, causing them to
blend in with the background, etc.).

Modern spammers have to be more clever:

Cloaking:

Returning one page for humans, and another for index crawlers

Doorway pages:

Show a page that looks legit to a web crawler, but have all the
outgoing links point to commercial pages

Scraping:

Steal high-quality content from another page, and then link to
commercial pages (sending “quality points” from your scraped
page to the crappy spam pages)

Link buying/exchange:

What it sounds like

Comment spam:

Putting your spam in higher-ranked websites’ comment sections

Foundations and TrendsR⃝ in
Information Retrieval
Vol. 4, No. 5 (2010) 377–486
c⃝ 2011 C. Castillo and B. D. Davison
DOI: 10.1561/1500000021

Adversarial Web Search

By Carlos Castillo and Brian D. Davison

Contents

1 Introduction 379

1.1 Search Engine Spam 380
1.2 Activists, Marketers, Optimizers, and Spammers 381
1.3 The Battleground for Search Engine Rankings 383
1.4 Previous Surveys and Taxonomies 384
1.5 This Survey 385

2 Overview of Search Engine Spam Detection 387

2.1 Editorial Assessment of Spam 387
2.2 Feature Extraction 390
2.3 Learning Schemes 394
2.4 Evaluation 397
2.5 Conclusions 400

3 Dealing with Content Spam and
Plagiarized Content 401

3.1 Background 402
3.2 Types of Content Spamming 405
3.3 Content Spam Detection Methods 405
3.4 Malicious Mirroring and Near-Duplicates 408
3.5 Cloaking and Redirection 409
3.6 E-mail Spam Detection 413
3.7 Conclusions 413

Castillo C, Davison BD. Adversarial Web Search. Foundations and Trends® in Information Retrieval. 2010;4(5):377–486.

Next up: search UI/UX.

