
Experimental Evaluation: Agenda

• Models of evaluation

• Why evaluate?

• Relevance: What is it good for?

• “System-oriented” Evaluation

• Unranked measures

• Ranked measures

• User-oriented Evaluation



Models of evaluation

Formative evaluation:

Typically early-stage; “what should our widget do?
Are our goals appropriate?

Summative:

Is our widget doing what it is supposed to do?

How well is it doing it?

Is it doing it better than other kinds of widget?

"When the cook tastes the soup, that’s formative; 
when the guests taste the soup, that’s summative."

— Robert Stake



Models of evaluation

Intrinsic:

Assess properties of systems in their own 
right (e.g., comparing their outputs to 
reference outputs in a corpus)

Extrinsic:

Assess the effect of a system on something 
that is external to it.



Why evaluate?

Systematic evaluation allows us to make 
meaningful comparisons between systems and 
between techniques:

“Is the new weighting scheme ‘better’ than 
the old one?”

“How does indexing technique A compare 
to technique B?”

“Does my system work as well on medical 
text as it does on newswire text?”



Why evaluate?

“Controversy over the 
new methods was still 
raging, with extravagant 
claims on one side being 
countered by absurd 
arguments on the other 
side, without any firm 
data being available to 
justify either viewpoint.”

THE SIGNIFICANCE OF THE
CRANFIELD TESTS

ON INDEX LANGUAGES
by

Cyril W. Cleverdon

1946 saw the lifting of the
security restrictions on large numbers
of scientific and technical reports
which had been written during World War
Two. Pre-war virtually all publication
had been in journals, and the report
format was strange and unfamiliar, both
for the scientific community and for
librarians. As such they presented new
challenges; the administrative problem
of actually being able to obtain copies
of the reports was tackled by setting
up new government agencies with direct
responsibility for collecting and
making the reports generally available.
The more difficult problem lay in
revealing and making accessible the
intellectual content of the papers. At
that time there were two conventional
types of index and two major indexing
techniques. An index could be in the
form of a card catalogue, as found in
most libraries, or alternatively in
printed form as, for example, an annual
accumulation of an abstract journal.
Regarding the techniques of indexing,
in Europe there was a tendency to use a
classified system, whereas in America
the usual practice was to use
alphabetical subject headings.

With the deluge of scientific and
technical reports, both the physical
form of the index and the indexing
techniques came under strong attack.
While card catalogues and printed
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indexes still exist, there has been
over the past forty years a steady and
reasonably placid progress of
❑echanised systems, culminating now in
online systems and CD-ROM, but there
was nothing placid about the
development of indexing techniques.
The early 50s saw many attempts to
depart from the conventional systems.
In England a small group met regularly
to discuss the development of facet
classification. This technique breaks
away from the conventional enumerative
or hierarchical classification, such as
the Dewey Decimal Classification, and
relies on subject analysis and
synthesis by facet principles. However
the main thrust of the new methods was
in America, from such people as Calvin
Mooers with Zatorcording, James Perry
with semantic factoring and, in
particular, Mortimer Taube. Taube, a
government librarian, analysed some
40,000 subject headings used in a major
card catalogue and found that the
headings were combinations of only some
7,000 different words. He therefore
proposed using these individual words
as index terms which would be
coordinated at the searching stage.
This became known as the Uniterm
System.

These new techniques generated
considerable argument, not only between
the proponents of the different
systems, but also among the library
establish-merit, many of whom saw these
new methods as degrading their
professional mystiques.

This briefly is the context in
which I started my research. In 1946,
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IR has a long history of empirical evaluation:

The first empirical IR studies began in 1957 with 
the “Cranfield Studies.”

Cyril Cleverdon
1914-1997

1,400 Documents
225 Queries

This approach became known as the “Cranfield 
model” of system evaluation...



IR has a long history of empirical evaluation:

The Cranfield studies set a “pro-evaluation” tone 
within the new field...

... but there was little coordination, which made 
comparison difficult:

Karen Spärck Jones
1935-2007

“... the most striking feature of the 
test history of the past two decades is 
its lack of consolidation...”
Information Retrieval Experiment. 1981



IR has a long history of empirical evaluation:

In 1990, DARPA asked NIST to build a very large 
test collection for an IR development program...

... NIST realized that this test collection could be 
useful to the field as a whole, and arranged for its 
public release.

In 1992, NIST hosted the first TREC conference.



The Text REtrieval Conference (TREC) has been 
the foundation of modern IR evaluation.

TREC has included a wide variety of tracks:

• Ad-hoc retrieval

• Multi/Cross-lingual retrieval

• Question answering

• Web

• Genome

• Speech

• Medical

• etc.

It happens each year, and anyone can participate!



The Text REtrieval Conference (TREC) has been 
the foundation of modern IR evaluation.

The TREC collections and topics are all publicly 
available...

... and so are frequently used as reference 
collections by IR system developers and evaluators.



TREC-style evaluations generally follow the 
Cranfield model, and consist of:

A document collection;

A set of information needs (not queries!) that might 
be satisfied by documents in the collection;

A set of human-generated relevance judgments, 
indicating which documents are germane to 
which needs.



A set of information needs (not queries!) that might 
be satisfied by documents in the collection:

Number: 312
Title: Hydroponics

Description: Document will discuss the science of growing plants in 
water or some substance other than soil.

Narrative: A relevant document will contain specific information on 
the necessary nutrients, experiments, types of substrates, and/or 
any other pertinent facts related to the science of hydroponics. 
Related information includes, but is not limited to, the history of 
hydroponics, advantages over standard soil agricultural practices, or 
the approach of suspending roots in a humid enclosure and spraying 
them periodically with a nutrient solution to promote plant growth.

Example topic from TREC-6 ad-hoc.

Number: 179
Description: Patients taking atypical antipsychotics without a 
diagnosis schizophrenia or bipolar depression.

Example topic from 2012 TREC-Med



Besides TREC, there are many other evaluation 
campaigns and test collections.

Cross-Language Evaluation Forum (CLEF)

NTCIR

NIST post-TREC corpora (GOV-2, etc.)

RCV1, etc.



Relevance: What is it?

"... pertaining to the matter at hand." This is the meaning 
of relevance defined in major dictionaries. But more 
importantly, it is the meaning intuitively understood by 
people everywhere. When it comes to any pragmatic 
application in using the notion people use this intuitive 
understanding as the base. They apply it effortlessly, 
without anybody having to define for them what 
'relevance' is. It is so basic that people use it without 
thinking about it. But they use it nevertheless.

Saracevic, T. (1996). Relevance Reconsidered ’96. In P. Ingwersen, & N.O. Pors (Eds.), Proceedings of CoLIS 2, second international conference on 
conceptions of library and information science: Integration in perspective, Copenhagen (pp. 201–218). Copenhagen: Royal School of Librarianship.



Relevance: What is it?

Simplest formulation: “Objective relevance”

“... how well the topic of the information 
retrieved matches the topic of the request. A 
document is objectively relevant to a request 
if it deals with the topic of the request.”

Harter SP. Psychological relevance and information science. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE. 1992;43(9):602–15. 

Robertson SE, Hancock-Beaulieu MM. On the evaluation of IR systems. Information Processing and Management. 1992 Mar 1;28:457–66.

Taylor RS. Question-Negotiation and Information Seeking in Libraries. College & research libraries. 1968 Jan 6;29(3):178–94.

Note: “stated requests are not the same as information needs, and ... 
consequently relevance should be judged in relation to needs rather 
than stated requests.”



Relevance: What is it good for?

OK, that’s an exaggeration...

But this model of evaluation has implicit assumptions:

1. Information needs are static and fully-formed at query 
time...

2. A document’s relevance is binary...
3. A document’s relevance can be objectively assessed (and is 

not person-dependent)...
4. Each document’s relevance is independent of any other 

document’s relevance.

(Absolutely Nothing!)
Edwin Starr

1942-



“All models are wrong, but some are useful.”

George E. P. Box
1919–2013



We can identify two main classes of relevances:

Objective “system-oriented” conceptualizations

“relevance as a static and objective concept”

Subjective “human-oriented” conceptualizations

“a subjective individualized mental experience that 
involves cognitive restructuring”

Borlund P. The concept of relevance in IR. J Am Soc Inf Sci. 2003;54(10):913–25. 



Borlund P. The concept of relevance in IR. J Am Soc Inf Sci. Wiley Subscription Services, Inc., A Wiley Company; 2003;54(10):913–25.
Saracevic, T. (1996). Relevance Reconsidered ’96. In P. Ingwersen, & N.O. Pors (Eds.), Proceedings of CoLIS 2, second international conference on 
conceptions of library and information science: Integration in perspective, Copenhagen (pp. 201–218). Copenhagen: Royal School of Librarianship.

Saracevic identifies 5 types of relevance:

1. System (algorithmic)

3. Pertinence (cognitive)
Related to the information need as perceived by the user

4. Situational
Depending on the interpretation of the task

5. Motivational (affective)
“Goal-oriented” relevance

2. Topical (“aboutness”)
Not solely based on relationship between query 
representation and information object



“In a real-world IR situation, the primary motivation for a user sitting down with an 
IR system is to retrieve information which will allow him to complete his current 
task...”

“.. his degree of satisfaction with the retrieval results will depend on the true ‘task-
relevance’ of the results, i.e. their importance in enabling him to complete his task 
successfully.”

A slightly different formulation of relevance:

Reid J. A Task-Oriented Non-Interactive Evaluation Methodology for Information Retrieval Systems. Information Retrieval. 2000;2(1):115–29. 

Cosijn E, Ingwersen P. Dimensions of relevance. Information Processing and Management. 2000;36(4):533–50. 

“Task-relevance:”

“Socio-cognitive relevance:”
“... measured in terms of the relation between the situation, work task or problem at 
hand in a given socio-cultural context and the information objects, as perceived by 
one or several cognitive agents”



“All models are wrong, but some are useful.”

George E. P. Box
1919–2013
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Unranked retrieval evaluation:

Precision:
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8.3 Evaluation of unranked retrieval sets 155

IR system returns a set of documents for a query. We will see later how to
extend these notions to ranked retrieval situations.

Precision (P) is the fraction of retrieved documents that are relevantPRECISION

Precision =
#(relevant items retrieved)

#(retrieved items)
= P(relevant|retrieved)(8.1)

Recall (R) is the fraction of relevant documents that are retrievedRECALL

Recall =
#(relevant items retrieved)

#(relevant items)
= P(retrieved|relevant)(8.2)

These notions can be made clear by examining the following contingency
table:

(8.3)
Relevant Nonrelevant

Retrieved true positives (tp) false positives (fp)
Not retrieved false negatives (fn) true negatives (tn)

Then:

P = tp/(tp + f p)(8.4)
R = tp/(tp + f n)

An obvious alternative that may occur to the reader is to judge an infor-
mation retrieval system by its accuracy, that is, the fraction of its classifica-ACCURACY

tions that are correct. In terms of the contingency table above, accuracy =
(tp + tn)/(tp + f p + f n + tn). This seems plausible, since there are two ac-
tual classes, relevant and nonrelevant, and an information retrieval system
can be thought of as a two-class classifier which attempts to label them as
such (it retrieves the subset of documents which it believes to be relevant).
This is precisely the effectiveness measure often used for evaluating machine
learning classification problems.

There is a good reason why accuracy is not an appropriate measure for
information retrieval problems. In almost all circumstances, the data is ex-
tremely skewed: normally over 99.9% of the documents are in the nonrele-
vant category. A system tuned to maximize accuracy can appear to perform
well by simply deeming all documents nonrelevant to all queries. Even if the
system is quite good, trying to label some documents as relevant will almost
always lead to a high rate of false positives. However, labeling all documents
as nonrelevant is completely unsatisfying to an information retrieval system
user. Users are always going to want to see some documents, and can be
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tp
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R =
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Why not just use classification accuracy?
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such (it retrieves the subset of documents which it believes to be relevant).
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There is a good reason why accuracy is not an appropriate measure for
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system is quite good, trying to label some documents as relevant will almost
always lead to a high rate of false positives. However, labeling all documents
as nonrelevant is completely unsatisfying to an information retrieval system
user. Users are always going to want to see some documents, and can be

A =
tp+ tn

tp+ fp+ fn+ tn

“Fraction of classifications that are correct”

Most of the time, the data are extremely skewed 
(>>90% “not relevant”).



“F-measure” is a good composite measure.
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assumed to have a certain tolerance for seeing some false positives provid-
ing that they get some useful information. The measures of precision and
recall concentrate the evaluation on the return of true positives, asking what
percentage of the relevant documents have been found and how many false
positives have also been returned.

The advantage of having the two numbers for precision and recall is that
one is more important than the other in many circumstances. Typical web
surfers would like every result on the first page to be relevant (high preci-
sion) but have not the slightest interest in knowing let alone looking at every
document that is relevant. In contrast, various professional searchers such as
paralegals and intelligence analysts are very concerned with trying to get as
high recall as possible, and will tolerate fairly low precision results in order to
get it. Individuals searching their hard disks are also often interested in high
recall searches. Nevertheless, the two quantities clearly trade off against one
another: you can always get a recall of 1 (but very low precision) by retriev-
ing all documents for all queries! Recall is a non-decreasing function of the
number of documents retrieved. On the other hand, in a good system, preci-
sion usually decreases as the number of documents retrieved is increased. In
general we want to get some amount of recall while tolerating only a certain
percentage of false positives.

A single measure that trades off precision versus recall is the F measure,F MEASURE

which is the weighted harmonic mean of precision and recall:

F =
1

α 1
P + (1 − α) 1

R

=
(β2 + 1)PR

β2P + R
where β2 =

1 − α

α
(8.5)

where α ∈ [0, 1] and thus β2 ∈ [0, ∞]. The default balanced F measure equally
weights precision and recall, which means making α = 1/2 or β = 1. It is
commonly written as F1, which is short for Fβ=1, even though the formula-
tion in terms of α more transparently exhibits the F measure as a weighted
harmonic mean. When using β = 1, the formula on the right simplifies to:

Fβ=1 =
2PR

P + R
(8.6)

However, using an even weighting is not the only choice. Values of β < 1
emphasize precision, while values of β > 1 emphasize recall. For example, a
value of β = 3 or β = 5 might be used if recall is to be emphasized. Recall,
precision, and the F measure are inherently measures between 0 and 1, but
they are also very commonly written as percentages, on a scale between 0
and 100.

Why do we use a harmonic mean rather than the simpler average (arith-
metic mean)? Recall that we can always get 100% recall by just returning all
documents, and therefore we can always get a 50% arithmetic mean by the

The F-measure is the weighted harmonic mean of P 
and R; the weight parameter indicates their relative 
importance.
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! Figure 8.1 Graph comparing the harmonic mean to other means. The graph
shows a slice through the calculation of various means of precision and recall for
the fixed recall value of 70%. The harmonic mean is always less than either the arith-
metic or geometric mean, and often quite close to the minimum of the two numbers.
When the precision is also 70%, all the measures coincide.

same process. This strongly suggests that the arithmetic mean is an unsuit-
able measure to use. In contrast, if we assume that 1 document in 10,000 is
relevant to the query, the harmonic mean score of this strategy is 0.02%. The
harmonic mean is always less than or equal to the arithmetic mean and the
geometric mean. When the values of two numbers differ greatly, the har-
monic mean is closer to their minimum than to their arithmetic mean; see
Figure 8.1.

? Exercise 8.1 [⋆]

An IR system returns 8 relevant documents, and 10 nonrelevant documents. There
are a total of 20 relevant documents in the collection. What is the precision of the
system on this search, and what is its recall?

Exercise 8.2 [⋆]

The balanced F measure (a.k.a. F1) is defined as the harmonic mean of precision and
recall. What is the advantage of using the harmonic mean rather than “averaging”
(using the arithmetic mean)?

“F-measure” is a good composite measure.

Why use the harmonic (rather than arithmetic) mean?
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An IR system returns 8 relevant documents, and 10 nonrelevant documents. There
are a total of 20 relevant documents in the collection. What is the precision of the
system on this search, and what is its recall?

Exercise 8.2 [⋆]

The balanced F measure (a.k.a. F1) is defined as the harmonic mean of precision and
recall. What is the advantage of using the harmonic mean rather than “averaging”
(using the arithmetic mean)?

“F-measure” is a good composite measure.

Arithmetic mean is too susceptible to bias in low-
precision situations!



The main problem with unranked retrieval:

Most of the time, we want the 
most relevant results first.



We can extend precision and recall to 
incorporate ranking information.
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! Figure 8.2 Precision/recall graph.

Exercise 8.3 [⋆⋆]

Derive the equivalence between the two formulas for F measure shown in Equa-
tion (8.5), given that α = 1/(β2 + 1).

8.4 Evaluation of ranked retrieval results

Precision, recall, and the F measure are set-based measures. They are com-
puted using unordered sets of documents. We need to extend these measures
(or to define new measures) if we are to evaluate the ranked retrieval results
that are now standard with search engines. In a ranked retrieval context,
appropriate sets of retrieved documents are naturally given by the top k re-
trieved documents. For each such set, precision and recall values can be
plotted to give a precision-recall curve, such as the one shown in Figure 8.2.PRECISION-RECALL

CURVE Precision-recall curves have a distinctive saw-tooth shape: if the (k + 1)th

document retrieved is nonrelevant then recall is the same as for the top k
documents, but precision has dropped. If it is relevant, then both precision
and recall increase, and the curve jags up and to the right. It is often useful to
remove these jiggles and the standard way to do this is with an interpolated
precision: the interpolated precision pinterp at a certain recall level r is definedINTERPOLATED

PRECISION
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Recall Interp.
Precision

0.0 1.00
0.1 0.67
0.2 0.63
0.3 0.55
0.4 0.45
0.5 0.41
0.6 0.36
0.7 0.29
0.8 0.13
0.9 0.10
1.0 0.08

! Table 8.1 Calculation of 11-point Interpolated Average Precision. This is for the
precision-recall curve shown in Figure 8.2.

as the highest precision found for any recall level r′ ≥ r:

pinterp(r) = max
r′≥r

p(r′)(8.7)

The justification is that almost anyone would be prepared to look at a few
more documents if it would increase the percentage of the viewed set that
were relevant (that is, if the precision of the larger set is higher). Interpolated
precision is shown by a thinner line in Figure 8.2. With this definition, the
interpolated precision at a recall of 0 is well-defined (Exercise 8.4).

Examining the entire precision-recall curve is very informative, but there
is often a desire to boil this information down to a few numbers, or perhaps
even a single number. The traditional way of doing this (used for instance
in the first 8 TREC Ad Hoc evaluations) is the 11-point interpolated average11-POINT

INTERPOLATED
AVERAGE PRECISION

precision. For each information need, the interpolated precision is measured
at the 11 recall levels of 0.0, 0.1, 0.2, . . . , 1.0. For the precision-recall curve in
Figure 8.2, these 11 values are shown in Table 8.1. For each recall level, we
then calculate the arithmetic mean of the interpolated precision at that recall
level for each information need in the test collection. A composite precision-
recall curve showing 11 points can then be graphed. Figure 8.3 shows an
example graph of such results from a representative good system at TREC 8.

In recent years, other measures have become more common. Most stan-
dard among the TREC community is Mean Average Precision (MAP), whichMEAN AVERAGE

PRECISION provides a single-figure measure of quality across recall levels. Among eval-
uation measures, MAP has been shown to have especially good discrimina-
tion and stability. For a single information need, Average Precision is the

Often reported as an eleven-point interpolated average 
precision (averaged across all topics).

“Interpolated precision”



We can extend precision and recall to 
incorporate ranking information.

Also commonly reported: “precision at k” (system 
performance at one point on the p/r curve).

Advantage: easy to understand; more realistic model for 
many scenarios (users only usually look at first few results, 
etc.);

Disadvantage: highly unstable; doesn’t average well; is 
highly influenced by the number of relevant documents.



We can extend precision and recall to 
incorporate ranking information.

One solution: R-prec

As such, it averages nicely across multiple topics.

R-prec: Precision at whatever level of recall captures the 
top k relevant documents

R-prec accounts for topics having different numbers of 
relevant documents.



We can extend precision and recall to 
incorporate ranking information.

Another popular metric is “Mean average precision”.
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! Figure 8.3 Averaged 11-point precision/recall graph across 50 queries for a rep-
resentative TREC system. The Mean Average Precision for this system is 0.2553.

average of the precision value obtained for the set of top k documents exist-
ing after each relevant document is retrieved, and this value is then averaged
over information needs. That is, if the set of relevant documents for an in-
formation need qj ∈ Q is {d1, . . . dmj} and Rjk is the set of ranked retrieval
results from the top result until you get to document dk, then

MAP(Q) =
1
|Q|

|Q|

∑
j=1

1
mj

mj

∑
k=1

Precision(Rjk)(8.8)

When a relevant document is not retrieved at all,1 the precision value in the
above equation is taken to be 0. For a single information need, the average
precision approximates the area under the uninterpolated precision-recall
curve, and so the MAP is roughly the average area under the precision-recall
curve for a set of queries.

Using MAP, fixed recall levels are not chosen, and there is no interpola-
tion. The MAP value for a test collection is the arithmetic mean of average

1. A system may not fully order all documents in the collection in response to a query or at
any rate an evaluation exercise may be based on submitting only the top k results for each
information need.

“Average precision” for a single query is the mean of the 
precision scores at the rank of each relevant result...

MAP is just the mean of all the AP scores for each topic.



We can extend precision and recall to 
incorporate ranking information.

ROC curves are also commonly used:

Online edition (c) 2009 Cambridge UP

162 8 Evaluation in information retrieval

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

1 − specificity

s
e

n
s
it
iv

it
y
 (

 =
 r

e
c
a

ll)

! Figure 8.4 The ROC curve corresponding to the precision-recall curve in Fig-
ure 8.2.

.

the curve.
Another concept sometimes used in evaluation is an ROC curve. (“ROC”ROC CURVE

stands for “Receiver Operating Characteristics”, but knowing that doesn’t
help most people.) An ROC curve plots the true positive rate or sensitiv-
ity against the false positive rate or (1 − specificity). Here, sensitivity is justSENSITIVITY

another term for recall. The false positive rate is given by f p/( f p + tn). Fig-
ure 8.4 shows the ROC curve corresponding to the precision-recall curve in
Figure 8.2. An ROC curve always goes from the bottom left to the top right of
the graph. For a good system, the graph climbs steeply on the left side. For
unranked result sets, specificity, given by tn/( f p + tn), was not seen as a verySPECIFICITY

useful notion. Because the set of true negatives is always so large, its value
would be almost 1 for all information needs (and, correspondingly, the value
of the false positive rate would be almost 0). That is, the “interesting” part of
Figure 8.2 is 0 < recall < 0.4, a part which is compressed to a small corner
of Figure 8.4. But an ROC curve could make sense when looking over the
full retrieval spectrum, and it provides another way of looking at the data.
In many fields, a common aggregate measure is to report the area under the
ROC curve, which is the ROC analog of MAP. Precision-recall curves are
sometimes loosely referred to as ROC curves. This is understandable, but
not accurate.

A final approach that has seen increasing adoption, especially when em-
ployed with machine learning approaches to ranking (see Section 15.4, page 341)
is measures of cumulative gain, and in particular normalized discounted cumu-CUMULATIVE GAIN

NORMALIZED
DISCOUNTED

CUMULATIVE GAIN

NB: “1-Specificity” == FPR

One typically reports the area under the curve (AUC).



We can extend precision and recall to 
incorporate ranking information.

One more: Normalized Discounted Cumulative Gain

NDCG works on “graded” (non-binary) relevance 
judgments...

... the intuition is that highly-relevant articles that score 
badly should be penalized more than less-relevant articles 
that score well.
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lative gain (NDCG). NDCG is designed for situations of non-binary notionsNDCG
of relevance (cf. Section 8.5.1). Like precision at k, it is evaluated over some
number k of top search results. For a set of queries Q, let R(j, d) be the rele-
vance score assessors gave to document d for query j. Then,

NDCG(Q, k) =
1
|Q|

|Q|

∑
j=1

Zkj

k

∑
m=1

2R(j,m) − 1
log2(1 + m)

,(8.9)

where Zkj is a normalization factor calculated to make it so that a perfect
ranking’s NDCG at k for query j is 1. For queries for which k′ < k documents
are retrieved, the last summation is done up to k′.

? Exercise 8.4 [⋆]
What are the possible values for interpolated precision at a recall level of 0?

Exercise 8.5 [⋆⋆]
Must there always be a break-even point between precision and recall? Either show
there must be or give a counter-example.

Exercise 8.6 [⋆⋆]
What is the relationship between the value of F1 and the break-even point?

Exercise 8.7 [⋆⋆]
The Dice coefficient of two sets is a measure of their intersection scaled by their sizeDICE COEFFICIENT
(giving a value in the range 0 to 1):

Dice(X, Y) =
2|X ∩ Y|
|X| + |Y|

Show that the balanced F-measure (F1) is equal to the Dice coefficient of the retrieved
and relevant document sets.

Exercise 8.8 [⋆]
Consider an information need for which there are 4 relevant documents in the collec-
tion. Contrast two systems run on this collection. Their top 10 results are judged for
relevance as follows (the leftmost item is the top ranked search result):

System 1 R N R N N N N N R R

System 2 N R N N R R R N N N

a. What is the MAP of each system? Which has a higher MAP?
b. Does this result intuitively make sense? What does it say about what is important

in getting a good MAP score?
c. What is the R-precision of each system? (Does it rank the systems the same as

MAP?)

Järvelin K, Kekäläinen J. Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst. 2002;20(4):422–46. 



There are many, many other evaluation metrics.



Quick sidebar: assessing relevance

Ideally, judges look at all topics, and all articles, and 
assign complete pairwise relevance judgments.

For small collections, this works... but what if your 
collection isn’t small?

The solution: pooling

System A System B System C

Top K Top K Top K

Pooled Results



Quick sidebar: assessing relevance

The main problem with pooling is that if one system finds 
a bunch of unique results... 

System A System B System C

Top K Top K Top K

Pooled Results

... they might not get included in the pool...

... thereby penalizing 
that system.



Quick sidebar: assessing relevance

Another consideration: the performance of human judges.

Judges often disagree about a document’s relevance.

One common approach is to calculate kappa scores, to 
measure how well your judges agree with one another.
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Judge 2 Relevance
Yes No Total

Judge 1 Yes 300 20 320
Relevance No 10 70 80

Total 310 90 400

Observed proportion of the times the judges agreed
P(A) = (300 + 70)/400 = 370/400 = 0.925
Pooled marginals
P(nonrelevant) = (80 + 90)/(400 + 400) = 170/800 = 0.2125
P(relevant) = (320 + 310)/(400 + 400) = 630/800 = 0.7878
Probability that the two judges agreed by chance
P(E) = P(nonrelevant)2 + P(relevant)2 = 0.21252 + 0.78782 = 0.665
Kappa statistic
κ = (P(A)− P(E))/(1− P(E)) = (0.925− 0.665)/(1− 0.665) = 0.776

! Table 8.2 Calculating the kappa statistic.

A human is not a device that reliably reports a gold standard judgment
of relevance of a document to a query. Rather, humans and their relevance
judgments are quite idiosyncratic and variable. But this is not a problem
to be solved: in the final analysis, the success of an IR system depends on
how good it is at satisfying the needs of these idiosyncratic humans, one
information need at a time.

Nevertheless, it is interesting to consider and measure how much agree-
ment between judges there is on relevance judgments. In the social sciences,
a common measure for agreement between judges is the kappa statistic. It isKAPPA STATISTIC

designed for categorical judgments and corrects a simple agreement rate for
the rate of chance agreement.

kappa =
P(A)− P(E)

1 − P(E)
(8.10)

where P(A) is the proportion of the times the judges agreed, and P(E) is the
proportion of the times they would be expected to agree by chance. There
are choices in how the latter is estimated: if we simply say we are making
a two-class decision and assume nothing more, then the expected chance
agreement rate is 0.5. However, normally the class distribution assigned is
skewed, and it is usual to use marginal statistics to calculate expected agree-MARGINAL

ment.2 There are still two ways to do it depending on whether one pools

2. For a contingency table, as in Table 8.2, a marginal statistic is formed by summing a row or
column. The marginal ai.k = ∑j aijk.

As a rule of thumb, a kappa of >0.8 is “good”, 0.67-0.8 is 
“fair”, and <0.67 is “poor”. 

Changing judges rarely affects relative ranking of systems!



Another solution to incomplete judgment:

Quick sidebar: assessing relevance

Evaluation metrics (bpref, infAP/infDCG, etc.) 
designed to be robust under incomplete/unreliable 
judgment.



zero corresponds to no correlation. Pairs of rankings whose
Kendall’s τ values are at or above 0.9 are often considered
effectively equivalent [16]. The linear correlation coefficient
ρ evaluates how well the actual and estimated values fit to
a straight line. As with Kendall’s τ , the linearly correlation
coefficient ρ ranges from −1 to +1 with similar interpreta-
tions. RMS error is related to the standard deviation of
the estimation error. Let (a1, a2, ...aN ) be actual values and
(e1, e2, ...., eN ) be estimates of these values. Then the RMS
error of the estimation is computed as

RMS =

vuut 1
N

NX

i=1

(ei − ai)2.

RMS error is measured in the same units as the underlying
data (in our case, units of “average precision”).

In our experiments, we use data from TRECs 7, 8 and 10.
We report detailed results for TREC8 and overall results
from TRECs 7 and 10, due to space constraints.

2.2 Bpref
Buckley and Voorhees [6] show that commonly used eval-

uation measures such as average precision, R-precision and
precision-at-cutoff 10 are not robust to incomplete relevance
judgments. They propose another measure named bpref
which is more robust to incomplete relevance judgments.

Given a query with R relevant documents, the bpref value
of a ranked list is calculated as follows

bpref =
1
R

X

r

„
1 − number of n above r

R

«
(1)

where r is a relevant document and n is a nonrelevant doc-
ument within the first R judged nonrelevant documents in
the output of the retrieval system.

However, when the number of relevance judgments is small,
a variation of the measure named bpref-10 is preferred. The
bpref-10 measure is calculated as follows

bpref-10 =
1
R

X

r

„
1 − number of n above r

10 + R

«

where n is a nonrelevant document within the top 10 + R
judged nonrelevant documents in the output of the system.

When the relevance judgments are incomplete, Buckley
and Voorhees [6] show that the rankings of systems ob-
tained using bpref-10 are more robust and correlated with
the rankings of the systems obtained using average precision
and the complete judgment set than the rankings of systems
obtained using R-precision and precision-at-cutoff 10. How-
ever, one potential drawback of bpref (or bpref-10) is that
the value of bpref does not have a theoretical basis, as have
average precision (an approximation to the area under the
precision-recall curve) and R-precision (the break-even point
in the precision-recall curve). Buckley and Voorhees [6] show
that when the entire judgment set is used, the value of bpref
is closely related to the value of average precision. How-
ever, as the relevance judgment sets become more and more
incomplete, the value of bpref deviates from the value of
average precision computed using the entire judgment set.
This behavior can be seen in Figure 1. The figure shows the
value of mean bpref obtained using 30, 10, and 5% of the
entire judgment set versus the value of mean average preci-
sion using the entire judgment set. Each plot in the figure

reports the root mean squared (RMS) error, the Kendall’s
τ correlation, and the linear correlation coefficient ρ. The
plots also include the line y = x for purposes of comparison.

Ideally, one might well prefer a measure that is both ro-
bust to incomplete judgments and that has longstanding
usage, a theoretical basis, and/or exhibits a high correlation
to standard measures of retrieval effectiveness. In this pa-
per, we propose three measures based on average precision
that are approximations to average precision itself and that
are robust to incomplete relevance judgments.

2.3 Induced AP (indAP)
The average precision of the output of a retrieval system is

the average of the precisions at each relevant document; the
precisions at unretrieved relevant documents are assumed to
be zero, by convention. It is known that average precision
is an approximation to the area under the precision-recall
curve.

Buckley and Voorhees [6] show that as the number of judg-
ments is reduced, the average precision value decreases and
the rankings of the systems based on average precision also
change. This can be explained by the fact that all unjudged
documents are assumed to be nonrelevant by average pre-
cision in a typical evaluation setting such as TREC. There-
fore, as the number of judgments is reduced, the number
of relevant documents retrieved before a relevant document,
hence the precision at a relevant document, is also reduced.
Therefore, average precision, the average of the precisions
at relevant documents, is reduced.

However, one can obtain a different version of average
precision, which we call induced AP (indAP), that does not
make any assumption about the unjudged documents. For
a query with R relevant documents, induced AP can be
calculated in exactly the same way as average precision with
a slight difference: in induced AP, the documents that are
unjudged are removed from the list and are not considered
in evaluation.

Once the unjudged documents are removed from the re-
trieval system’s output, induced AP can be calculated in
exactly the same way as traditional average precision. In-
duced AP has the nice property that it is an approximation
to the area under the precision-recall curve of the output
of a retrieval system when only the judged documents are
considered.

Given a query with R judged relevant documents, induced
AP can be calculated as

indAP =
1
R

X

r

number of relevants up to rank(r)
rank(r)

where r is a relevant document and rank(r) is the rank of
a document when only judged documents are considered.
Note that the above formula can be written as a preference
based measure:

indAP =
1
R

X

r

„
1 − number of n above r

rank(r)

«

where n is a nonrelevant document retrieved above a rel-
evant document when only judged nonrelevant documents
are considered.

Note the similarity between induced AP and bpref (Equa-
tion 1). In bpref, at each relevant document, the number of
nonrelevants above a relevant document is scaled by a fac-
tor of 1/R (or with 1/(R + 10) in the case of bpref-10),

104

bpref (Buckley & Voorhees): 

r: rel doc, n: non-rel doc within first R judged non-
relevant docs

R: Num judged rel docs

infAP (Yilmaz & Aslam): 

Sampling estimation of average precision



Manning, et al. make a good point:

Measuring ranking performance is really a proxy for what 
we really care about: system utility.

Is the system solving our users’ problems?

In other words, are we helping them meet their 
information needs?

Also: besides ranking, we might care about query service 
speed, feature set, indexing time and flexibility, etc.



Experimental Evaluation: Agenda

• Models of evaluation

• Why evaluate?

• Relevance: What is it good for?

• “System-oriented” Evaluation

• Unranked measures

• Ranked measures

• User-oriented Evaluation



What does it mean to be user-oriented?

Focus on measuring whether users are able to get what 
they need out of the system.

We might measure:

Clicks: how many, where are they, etc.

Return visits: do they come back and use us again?

Sales (if relevant to our problem area)

Speed: can they finish their task more quickly?

Use amount: do they look at more or different results?

“Satisfaction”: how “happy” are they?



We can also evaluate systems in context: with 
actual users doing actual tasks.



A formal user study has many considerations:

Task definition: what will you have the subjects do?

Experimental conditions: what perturbation(s) will you 
introduce to the environment? What will you use as a 
control?

Measurements: what will you be measuring?

Study subjects: who will your subjects be? 

Each of these can introduce bias!



Of special importance: eliminating condition-
ordering effects.

The order that your subjects are exposed to the different 
conditions can affect their performance!

As subjects perform a task, they typically get better at it 
(“learning effect”);

Sometimes, though, subjects get slower as the test 
goes on (“fatigue effect”);

If one condition is “better”, the order in which it is 
seen can affect users’ opinions of other conditions.



Of special importance: eliminating condition-
ordering effects.

When this “faceted” interface was shown first, users’ subjective 
ratings of the baseline interface were lower than when the 
baseline was shown first.

Figure 1: The opening page shows a text search
box and the first level of metadata terms. Hovering
over a facet name yields a tooltip (here shown below
“Location”) explaining the meaning of the facet.

misfiled classification; these issues did not appear to disrupt
the flow of the participants’ searches nor did they negatively
affect their evaluation of the system. The leaf-level category
labels were manually organized into hierarchical facets,
using breadth and depth guidelines similar to those in [2].

INTERFACE DESIGN
The Faceted Category Interface
Unifying Goals
Our design goals are to support search usability guidelines
[16], while avoiding negative consequences like empty
result sets or feelings of being lost. Because searching
and browsing are useful for different types of tasks, our
design strives to seamlessly integrate both searching and
browsing functionality throughout. Results can be selected
by keyword search, by pre-assigned metadata terms, or
by a combination of both. Each facet is associated with a
particular hue throughout the interface. Categories, query
terms, and item groups in each facet are shown in lightly
shaded boxes, whose colors are computed by adjusting value
and saturation but maintaining the appropriate hue.

In working with a large collection of items and a large
number of metadata terms, it is essential to avoid over-
whelming the user with complexity. We do this by keeping
results organized, by sticking to simple point-and-click
interactions instead of imposing any special query syntax on
the user, and by not showing any links that would lead to
zero results. Every hyperlink that selects a new result set is
displayed with a query preview (an indicator of the number
of results to expect).

The design can be thought of as having three stages, by rough
analogy to a game of chess: the opening, middle game,
and endgame. The most natural progression is to proceed
through the stages in order, but users are not forced to do so.

Figure 2: Middle game (items grouped by location).
Opening
The primary aims of the opening are to present a broad
overview of the entire collection and to allow many starting
paths for exploration. The opening page (Figure 1) displays
each metadata facet along with its top-level categories. This
provides many navigation possibilities, while immediately
familiarizing the user with the high-level information struc-
ture of the collection. The opening also provides a text box
for entering keyword searches, giving the user the freedom
to choose between starting by searching or browsing.

Selecting a category or entering a keyword gathers an initial
result set of matching items for further refinement, and
brings the user into the middle game.
Middle Game
In the middle game (Figure 2) the result set is evaluated and
manipulated, usually to narrow it down. There are three main
parts of this display: the result set, which occupies most
of the page; the category terms that apply to the items in
the result set, which are listed along the left by facet (we
refer to this category listing as The Matrix); and the current
query, which is shown at the top. A search box remains
available (for searching within the current result set or within
the entire collection), and a link provides a way to return to
the opening.

The key aim here is organization, so the design offers flexible
methods of organizing the results. The items in the result set
can be sorted on various fields, or they can be grouped into
categories by any facet. Selecting a category both narrows
the result set and organizes the result set in terms of the
newly selected facet. For instance, suppose a user is cur-
rently looking at the results of selecting the category Bridges
from the Places facet. If the user then selects Europe from
the Locations facet, not only is the category Europe added to
the query, but the results are organized by the subcategories
of Europe, namely France, Italy, and so on. Generalizing or
removing a category term broadens the result set. Selecting
an individual item takes the user to the endgame.

Ft. Lauderdale, Florida, USA 2 April 5-10, 2003                                                                                            Paper: Searching and Organizing 
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One common way to address this:

Using a “Latin Square” design to balance the number of 
users exposed to each interface in each position.

This also allows us to use ANOVA to look for interaction 
effects!

Figures taken from Aula 2004 via Hearst 2009.



When direct user studies are not an option, there are 
other options:

Log analysis;

A-B testing;

“Crowd-sourced” (Mechanical Turk) tasks;

Etc.

Each has its own experimental design 
considerations!



Next up: web search.


