Index Construction & Compression: Agenda

® Practical considerations

e Building indices
e Static indexing approaches
* Dynamic indexing

e Storing indices
® Dictionary compression

® Posting list compression

Our friend, the inverted index:

Brutus

Caesar

Calpurnia

ﬁ

Dictionary

2 4| 11 |31 |45 | 173 | 174
2| 4 5| 6|16 | 57 | 132
31 | 54 | 101

Postings lists

Basic steps to for building an index:

1. Pass through collection, pair terms and doclDs

2. Group doclDs by term

3. Convert <term, docID> tuples to <term, [docID...]>
tuples; calculate other misc. statistics

Translation: Lots of sorting! By term, doclD, etc.

When the collection can fit in memory, this is very simple...

One measurement motivates most index
construction & compression techniques:

Statistic Value

average seek time 5ms=5x10"" s
transfer time per byte 0.02us =2 x 107 % s
processor’s clock rate 10” s~}

lowlevel operation
(e.g., compare & swap a word) 0.01 us = 1075 s

107° > 10°°

The central idea:

If we can’t fit everything in memory...

... we'll need to use a disk-based external sorting
algorithm...

—
} — ... and do it in such a way as to
/ minimize disk seeks.

O T |

Disks store data in contiguous chunks, or “blocks”...

... and that’s how operating systems get data from disks.

Blocked sort-based indexing (BBSI)

The basic idea: make many block-sized indices, and
then merge them.

BSBINDEXCONSTRUCTION(() x

1 n<—0

2 while (all documents have not been processed)

3 don«—n+1

4 block <+ PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK (block, fy) -

7 MERGEBLOCKS(f1, . - -, fu; fmerged) PO lihe

to be merged

brutus d1,d3,d6,d7

brutus d1,d3 brutus dé6,d7 caesar d1,d2,d4,d8,d9

caesar d1,d2,d4 caesar d8,d9 julius ~ d10 merged
noble d5 julius d10 - killed d8 postings lists
with d1,d2,d3,d5 killed d8 noble d5

with d1,d2,d3,d5

AN /

* We also have to do a separate, full pass F disk ﬁ
through the collection to assemble the
dictionary and compute termlIDs.

Blocked sort-based indexing (BBSI)

BBSI has an important limitation:

Even though the postings are split up by block size...
... the dictionary is not.

We still must maintain a term->termID data structure that
is shared by all blocks, and this might not fit in memory.

Single-pass in-memory indexing (SPIMI)

The basic idea: make many independent block-sized
indices, and then merge them.

SPIMI-INVERT (token_stream)
1 output_file = NEWFILE()
2 dictionary = NEWHASH()
3 while (free memory available)
4 do token < next(token_stream)
5 if term(token) ¢ dictionary
6 then postings_list = ADDTODICTIONARY (dictionary, term(token))
7 else postings_list = GETPOSTINGSLIST (dictionary, term(token))
8 if full(postings_list)
9 then postings_list = DOUBLEPOSTINGSLIST (dictionary, term(token))
10 ADDTOPOSTINGSLIST (postings_list,docID(token))
11 sorted_terms < SORTTERMS(dictionary)
12 WRITEBLOCKTODISK (sorted_terms, dictionary, output_file)
13 return output_file

Key difference: uses raw terms instead of shared termlDs, so
each block has its own dictionary.

Also: lower overhead, so larger blocks can be processed.

Distributed Indexing:

For very large collections, it may make sense to
distribute indexing across multiple computers.

Map-Reduce is a common distributed-computing

paradigm. @l cml -8Bl

A RN

[mapper] [mapper] [mapper] [mapper]
BB H:Hls H:-HB: B/JHs

Shuffle and Sort: aggregate values by keys

B B - - IHEIE
!) !

reducer] [reducer] [reducer

! ! !
x B M H-

Figure from Lin & Dyer 2010.

Distributed Indexing:

1: class MAPPER

2 procedure Mapr(docid n, doc d)

3 H < new ASSOCIATIVEARRAY

4; for all term ¢ € doc d do

5 H{r) < H{t} + 1

6 forall term ¢t € H do

7 Emit(term ¢, posting (n, H{t}))

1: class REDUCER

2 procedure REDUCE(term 7, postings [(n1, f1), (n2, f2)...])
3: P < new LisT

4; for all posting (a, f) € postings [(n1, f1), (n2, f2)...] do
5 P.App({a, f))

6

7

P.SORT()
EmiT(term ¢, postings P)

Figure from Lin & Dyer 2010.

Distributed Indexing:

doc 1 doc 2 doc 3
one fish, two fish red fish, blue fish one red bird
[mapper] [mapper] [mapper]
\ fish |d, || 2| 1 ! blue |dyfl 1| 1 ! bird |dg|f 1]
" one |d, | 1|t ! fish |[dy 2|t ! one |dy| 1|
two [d | 1| 0 0 ored |dy 1| 1 1 red |dgff 1|
L 1R B TN NPT

Figure from Lin & Dyer 2010.

Distributed Indexing:

doc 1 doc 2 doc 3
one fish, two fish red fish, blue fish one red bird
[mapper] [mapper] [mapper]
\ fish |d, || 2| 1 ! blue |dyfl 1| 1 ! bird |dg|f 1]
" one |d, | 1|t ! fish |[dy 2|t ! one |dy| 1|
two [d | 1| 0 0 ored |dy 1| 1 1 red |dgff 1|

Shuffle and Sort: aggregate values by keys

Figure from Lin & Dyer 2010.

Distributed Indexing:

doc 1 doc 2 doc 3
one fish, two fish red fish, blue fish one red bird
[rnapper] [rnapper J [rnapper]
\ fish |d, || 2| 1 ! blue |dyfl 1| 1 ! bird |dg|f 1]
" one |d, | 1|t ! fish |[dy 2|t ! one |dy| 1|
two [d | 1| 0 0 ored |dy 1| 1 1 red |dgff 1|
L 1R S SRR RPN

Shuffle and Sort: aggregate values by keys

[reducer]

Figure from Lin & Dyer 2010.

d,|| 2] ' bird
ds|l 1| 11 blue
E i red

[reducer J

dy || 1
d, || 1
dy | 1]]d,] 1

Distributed Indexing:

1: class M APPER

2 method MAap(docid n, doc d)

3 H < new ASSOCIATIVEARRAY
4: for all term ¢ € doc d do
5

6

7

forall term ¢t € H do
Emit(tuple (t, n), tf H{t}

class REDUCER
method INITIALIZE
Iprev <— 0
P < new PosTINGsLisT
method ReEpuck(tuple (t, n), tf [f])
if 1 # tprev N tprev 7# 9 then
EmiT(term ¢, postings P)
P.RESET()

P.Apbp({n, f))

tprev <1

2o N e & sy R

—
<

method CLOSE
12: EmiT(term ¢, postings P)

—
—

Figure from Lin & Dyer 2010.

What happens when new data needs to be
added to an index?

1. Maintain an “auxiliary index” containing the new
data, query both, and merge periodically;

2. Build a second full index periodically and “switch
over” when it’s done.

Option 1 is attractive but complex; option 2 is less
flexible and expensive but is simpler.

How to represent auxiliary index?

The easiest way is as a large collection of posting files-
then, merging is just a simple append operation.

However, most file systems don’t appreciate having
millions of files (also disk seek time, etc.).

So, the tradeoff is: for merge speed, we want as small an
auxiliary index as possible...

... but large enough to not run into storage-related
complications; also, we want to minimize merges.

Also, the naive approach results in overall O(T?) index

construction time (because each posting list has to be
merged in each merge).

Can we do better?

Solution: Logarithmic merging.

Maintain a series of indexes, each twice as large as
the previous one

" At any time, some of these powers of 2 are instantiated
Keep smallest (Z,) in memory
Larger ones (l,, I, ...) on disk
If Z, gets too big (> n), write to disk as |
or merge with |, (if |, already exists) as Z,
Either write merge Z, to disk as I, (if no I,)
Or merge with |, to form Z,

Taken from Manning, et al.’s slides on the subject.

Solution: Logarithmic merging.

Index construction is now O(TlogT) on average, since
each posting is only merged logT times...

But query performance just went down: we have to
merge log T indices to deliver results.

Also, it is now much harder to main

ain collection-wide

statistics (needed for spelling sugges
etc.).

ion, result ranking,

What about positional indexes?

General process is similar...

... But storage needs are much greater (each posting
contains add’l metadata, etc.)...

Other tricks:

Ordering of postings: Newest first? Oldest first? “Impact-ranked”?

Security: Including ACL information in index?

Index Construction & Compression: Agenda

® Practical considerations

e Building indices
e Static indexing approaches
* Dynamic indexing

e Storing indices
® Dictionary compression

® Posting list compression

Why compress?

The obvious answer: to save disk space.

A less obvious answer: to keep more data in the
computer’s cache.

Statistic Value

average seek time 5ms=>5x10"7 s
transfer time per byte 0.02us =2 x 107 °s
processor’s clock rate 10” s~}

lowlevel operation
(e.g., compare & swap a word) 0.01 us =107° s

We can decompress data much faster than the disk can
get 1t to us!

Quick sidebar on caching...

Don’t forget about caching.

Runtimes for repeated binary searches in sorted vectors

N
X
O
«©
o~
"
-
w -
- -
E --e
O —_— -

- —

-

-=
-
--

Size of vector (Ig(n))

http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/

Average number of misses (mirymedian/max)

Cache misses for repeated binary searches in sorted vectors

Size of vector (lg(n])‘

Cache lavel
L1

. L2

> L3
LB

http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/
http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/

Don’t forget about caching...

Runtimes for repeated searches in sorted vectors

N

" method
O .
0 e * bin
o~

" ¢ quat
-

w _ * st
2 |

ras ter
S

O

Size of vector (Ig(n)) .

http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/

http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/
http://www.pvk.ca/Blog/2012/07/30/binary-search-is-a-pathological-case-for-caches/

Don’t forget about caching...

for (int i = 0; 1 < arr.Length; 1 += K) arr[i] *= 3;

Update Every K-th Int

K=16

Time (ms)

1 2 - 8 16 32 64 128 256 512 1024

http://igoro.com/archive/gallery-of-processor-cache-effects/

http://igoro.com/archive/gallery-of-processor-cache-effects/
http://igoro.com/archive/gallery-of-processor-cache-effects/

Don’t forget about caching...

int steps = 64 * 1024 * 1024; // Arbitrary number of steps
int lengthMod = arr.Length - 1;
for (int i = 0; i < steps; i++)
{
arr[(i * 16) & lengthMod]++; // (x & lengthMod) is equal to (x % arr.Length)

}

Time per element (ns)

1kB 16kB 256kB 4MB 64MB 1GB

Array size

http://igoro.com/archive/gallery-of-processor-cache-effects/

http://igoro.com/archive/gallery-of-processor-cache-effects/
http://igoro.com/archive/gallery-of-processor-cache-effects/

There are two ways to compress an index:

Brutus — (1] 2 4| 11|31 |45 | 173 | 174

Caesar — | 1| 2| 4 5| 6|16 | 57 | 132

Calpurnia | — | 2 | 31 | 54 | 101
A

Dictionary Postings lists

There are two ways to compress an index:

Brutus — (1] 2 4| 11|31 |45 | 173 | 174

Caesar — | 1| 2| 4 5| 6|16 | 57 | 132

Calpurnia | — | 2 | 31 | 54 | 101
A

Dictionary Postings lists

Pre-processing is one approach to dictionary

compression:
P (distinct) terms

number A% T%

unfiltered 484,494
no numbers 473,723 —2 —2
case folding 391,523 —-17 —19

30 stop words 391,493 -0 —19
150 stop words 391,373 -0 —19
stemming 322,383 —17 =33

Fewer dictionary terms == smaller dictionary, fewer
posting lists, etc.

Note that this is language-dependent!

(distinct) terms

nonpositional postings

number A% T% number A% T%
unfiltered 484 494 109,971,179
no numbers 473,723 —2 —2 100,680,242 —8 —8
case folding 391523 —-17 —-19 96,969,056 -3 -12
30 stop words 391,493 -0 -19 83,390,443 —14 —-24
150 stop words 391,373 -0 -19 67,001,847 —-30 -39
stemming 322383 —17 —-33 63,812,300 —4 —42

How to estimate the number of terms in a
collection?

Counting the number of distinct
words in, say, the OED is a
tempting way to start...

... but often results in dramatically
under-estimated counts.

(Think names of places, products,
genes/proteins, etc.)

How to estimate the number of terms in a
collection?

log10 T

Heaps’ law curve for vocab size M in collection of size T
tokens.

How to estimate the number of terms in a
collection?

log10 T

Implication: M increases continually (i.e., doesn’t plateau
once the collection gets to a certain size).

8000

000

4000

2000

0 200000 400000 00000 800000 12+06

https://en.wikipedia.org/wiki/Heaps' law

https://en.wikipedia.org/wiki/Heaps'_law
https://en.wikipedia.org/wiki/Heaps'_law

What about term distribution within collection?

log10 cf

log10 rank

1 Zipf's law: collection frequency of

ct; o ; a term decreases rapidly with rank.

What about term distribution within collection?

Implication: A small number of terms are very common;
most are rare.

The point of dictionary compression:

Fit as much of the dictionary as possible in
main memory.

Because of Heap’s law, large collections will
have large dictionaries...

... and many search engines are
multilingual!

Warning: here there be pointers...

Warning: here there be caveats...

#1: For the rest of today, we shall
pretend that all text is ASCII.

Warning: here there be caveats...

Also: the book uses a 32-bit address
space. Large collections need more.

The simplest possible dictionary structure:

term document pointer to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
space needed: 20bytes 4 bytes 4 bytes

In RCV1*, 11.2 MB needed to store
400,000 dictionary entries.

RCV1: “Reuters Corpus Volume 1,” a newswire corpus.

The simplest possible dictionary structure:

term document pointer to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
space needed: 20bytes 4 bytes 4 bytes

Fixed-width entries are both wasteful and
limiting, but are simple to implement.

Next: dictionary-as-a-string

..systilesyzygeticsyzygialsyzygyszaibelyiteszecinszono. ..

freq. postings ptr. term ptr.

9
92
5
71
12

U

4 bytes 4 bytes 3 bytes

In RCV1, 7.6 MB needed to store 400,000
dictionary entries.

Next: dictionary-as-a-string

..systilesyzygeticsyzygialsyzygyszaibelyiteszecinszono. ..

freq. postings ptr. term ptr.

9
92
5
71
12

U

4 bytes 4 bytes 3 bytes

Some of the space saved by the variable
width is offset by the need for term pointers.

Blocked storage:

...7systile9syzygetic8syzygial6bsyzygyllszaibelyite6bszecin. ..

freq. postings ptr. term ptr.
9 —
92 —
5 —
71 -
12 —

Pick blocks of size k, and only store pointer
to first term of each block. Add in-band term
lengths to dictionary string.

Blocked storage:

...7systile9syzygetic8syzygial6bsyzygyllszaibelyite6bszecin. ..

freq. postings ptr. term ptr.

9
92
5
71
12

! ¢ & 0

This saves k - T term pointers, but adds k
bytes for term lengths.

Blocked storage:

...7systile9syzygetic8syzygial6bsyzygyllszaibelyite6bszecin. ..

freq. postings ptr. term ptr.

9
92
5
71
12

! ¢ & 0

For RCV1, we are now down to 7.1
megabytes.

But there is always a tradeoft: Term lookup

now takes more time.

(a)

(b)

Seeking through the
uncompressed
dictionary involves
on average 25%
fewer steps.

Front coding takes advantage of common
prefixes to save space.

One block in blocked compression (k = 4) ...
S8automata8automate9automaticl0automation

4

... further compressed with front coding.
8automatxaloe2 ¢ 1c3¢ion

Dictionary compression for Reuters-RCV1.

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6

~, with blocking, k = 4 7.1

~, with blocking & front coding 5.9

There are two ways to compress an index:

Brutus — (1] 2 4| 11|31 |45 | 173 | 174

Caesar — | 1| 2| 4 5| 6|16 | 57 | 132

Calpurnia | — | 2 | 31 | 54 | 101
A

Dictionary Postings lists

Simplest approach to posting list:

Store lists of complete doclDs.

RCV1 has 800,000 documents, so we
need log, 800,000 = 20 bits per doclD.

Approximately 250 MB uncompressed.

800,000 is tiny; bigger collections need more
bits per doclD (many more).

Key observation: postings for frequent terms
are often close together in the collection.

What if we store gaps or offsets
between doclDs rather than doclDs
themselves?

encoding postings list

the docIDs o 283042 283043 283044 283045
gaps 1 1 1

computer doclIDs o 283047 283154 283159 283202
gaps 107 5 43

arachnocentric ~ doclIDs 252000 500100
gaps 252000 2483100

Many words wouldn’t need a full 20
bits to be represented...

We can use a variable byte code to more
efficiently use space:

docIDs 824 829 215406
gaps 5 214577

VB code 0000011010111000 10000101 00001101 00001100 10110001
Figure 5.8 in the book gives an
example algorithm...

Using this scheme achieves >50% reduction in
posting list space (down to 116 MB).

In practice, these schemes can be applied to
different units than bytes (16-bit words, etc.).

Variable-byte encodings are simple and work
well... but can we do better?

Yes, by using bit-level encodings (like the y
encoding).

But is it enough better to be worth the significant
hassle? Probably not.

(Also note that response time depends in part on
time spent seeking through index)

data structure

size in MB

dictionary, fixed-width

dictionary, term pointers into string
~, with blocking, k = 4

~, with blocking & front coding
collection (text, xml markup etc)
collection (text)

term incidence matrix

postings, uncompressed (32-bit words)
postings, uncompressed (20 bits)
postings, variable byte encoded
postings, v encoded

11.2
7.6

7.1

5.9
3600.0
960.0
40,000.0
400.0
250.0
116.0
101.0

Next up: Experimental evaluation.

