Agenda for today

e Information Retrieval Basics

— Term-document matrix
— Inverted 1ndices

— Boolean retrieval, index intersection
e Additional topics on terms and postings

— Faster intersection of posting lists
— Positional indices

— Tokenization and normalization

What is IR

Definition from Manning, Raghavan and Schiitze:

Information retrieval (IR) 1s:
finding material (usually documents)
of an unstructured nature (usually text)
that satisfies an information need

from within large collections (usually stored on computers).

lly...

Traditiona

Material

e Most retrieved data currently documents consisting largely of text

— Disparate file formats (MS Word, PDF, etc.)

— Various text encodings (e.g., ASCII, UTF-8, etc.)
— Inconsistently formatted

— Multilingual

e Multi-modal retrieval increasingly important

— Images, speech, video, smells, etc.
— Each modality introduces its own complications

— Mixtures of modalities present opportunities and challenges

Unstructured

e Definition from Manning, Raghavan and Schiitze:

““ data which does not have clear, semantically overt, easy-for-a-

computer structure ”
e Does not mean there 1s no structure in the data

— Document structure (headings, paragraphs, lists, etc.)
— Explicit document markup formatting

— Linguistic structure (hidden)

e Rather, not structured rigidly like a relational database

Information need / large collection

e Fundamental model

— Collection/corpus of “documents”

— Each document consists of some number of “terms”
e User has an information need, presented as a query

— Map query to “terms’’; search for “documents” containing “terms”
e Many possible realizations of this model:

— What’s a “document” (unit of retrieval)?

— What’s a “term”? (typically a word/token)

e Whatever the definition: find documents containing terms

Exact match problem

e Nearly the same problem as exact match 1n bioinformatics

— Given a relatively short pattern (term)

— Find instances of the pattern in a large rext
e Here we have documents, sort of like bins in the text

— Do not necessarily need exact position, just document ID
e Algorithms can either focus on the pattern or the text

— Preprocess the pattern for sub-linear scan of whole text

— Preprocess the text if 1t 1s fixed (e.g., suffix tree)

e In IR, document sets large enough that grep not an option

Term-document matrix

e Starting point for thinking about indexing
e Establish list of terms (lexicon, dictionary) in the corpus
e Create a matrix with rows=terms and columns=documents

e Cell (t, d) has 1 if term ¢ occurs in d; 0 otherwise:
Antony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Boolean Retrieval

e Query: Brutus AND Caesar AND NOT Calpurnia

e Determine the bit vector (row) for each term in query:
Brutus: 110100
Caesar: 110111
Calpurnia: 010000

e Take the complement of Calpurnia: 101111

e Perform a bitwise AND:
Brutus 110100

Caesar: 110111
NOT Calpurnia: 101111
Answer 100100

Term-document matrix

e Limited in key ways
— Matrix grows too large for standard sized problems
e.g., hundreds of thousands of terms, millions of documents
— Fortunately very sparse, amenable to sparse representations
— Great for simple query operators, others not feasible
e.g., two query words occurring “near”’ each other
— No means to rank the resulting matching document set

e Will move towards richer representations, beginning with “inverted”

index

10

Inverted index

e Sparse representation of the term-document matrix

e Sorted list of document IDs (“postings™) for each term

Brutus

Caesar

Calpurnia

A\ J/
~

Dictionary

o

—

1 2 4| 11 |31 |45 |173 | 174
11 2| 4 5| 6|16 | 57| 132
2|31 |54 101

Posgngs

e Determine results by intersecting postings

11

Building inverted indices

e Four basic steps to build an inverted index for a collection

— Collect the documents to be collected (unit of retrieval)

— Tokenize the collection; documents become lists of tokens

— Text preprocessing (decasing, normalization, stemming, etc.)
— Index the tokenized, normalized collection

* Indices typically include document frequency (# of postings)
e Rather than simple bitwise intersection, now intersecting list

— Assume sorted lists; simple, efficient algorithms

— Various methods to improve typical complexity

12

Merge algorithm

e Merge algorithm: scan through sorted lists simultaneously;

advance pointer on the lesser document ID

Caesar — | 1 2 4 5 6 | 16 57 | 132

Calpurnia | — | 2 | 31 | 54 | 101

13

Merge algorithm

e Merge algorithm: scan through sorted lists simultaneously;

advance pointer on the lesser document ID

Caesar — | 1 2 4 5 6 | 16 57 | 132

Calpurnia | — | 2 | 31 | 54 | 101

INTERSECT(p1, p2)
1 answer < ()

2 while p; # NIL and p, # NIL

3 doifdocID(p1) = docID(p;)

4 then ADD(answer,docID(p1))

5 p1 < next(p1)

6 pa < next(py)

7 else if docID(p1) < docID(py)

8 then p1 < next(pq)

9 else p, < next(py)

0

1 return answer

14

Merge algorithm

e For lists of length m and n, complexity O(m + n)
— Bounded by O(N) for a collection of N documents
e Non-optimal in certain scenarios
— e.g., very small list with a large list
e Various optimizations can be carried out to improve typical case

— Fast binary search methods for long list with very short list
x Complexity O(m log n) instead of O(m + n)
— Optimizations on complex queries to determine most restrictive

*x Most restrictive first: (Brutus AND Calpurnia) AND Caesar

15

Data structures for index

e Typically store document frequency (DF) with postings list:

term doc. freq. — postings lists
ambitious | 1 — |2

be | 1 — 2]

brutus 1] =]2
capitol | 1 — |1

caesar | 2 — |1]—|2

e Can store postings lists in a couple of ways

— Linked list: easy insertion of new doc IDs

— Variable length arrays: space efficient, cache friendly

e DF provides size of array of posting list; good for binary search

— Hence structure of choice for query optimization

16

Skip lists

e One linked list optimization in chapter 2 of Manning et al.:

16 28 Il
Brutus — 2 41§ 16 1923~ 28 — 43

5)] 98
Caesar—l-] 2358 Al 5T 00 7T

e Check skip link if present to skip multiple entries
e Heuristic for skip placement in list of length L:

— Evenly space v/ L skip links

17

Pros/cons of Boolean model

e Boolean retrieval contrasts with “Ranked retrieval” approaches

— Structured versus unstructured queries

— Recall versus precision: Boolean can easily over-specify query,

resulting 1n no returned results (rare in current search engines)

— Returning nothing not as useful for query reformulation
e Expert users often prefer Boolean systems to ranked retrieval

— User feels like they have more control of system behavior

— Validation of the expertise of the user: librarian, analysts, etc.

e Represents a big divide between “classical” and “modern” IR

18

Classical vs. Modern IR

e Back 1n the day

— Highly trained professional system users (librarians, analysts)
— Computers and data transmission were slow and expensive
x €.g., many systems charged a per-query fee

— Users typically had well-defined information needs
e Today

— Typical users are not professionals, i.e., untrained
— Computers are fast and basically free

— Information needs are often much less well-defined

x “what TV should I buy”

x “‘cases on employment law involving trade secret disclosures in the semi-
conductor industry in which the plaintiff blah blah blah”

19

Extended Boolean model

e Boolean model just supports AND, OR, NOT and presence/absence
e Ultimately want free-text queries of the sort we know and love
— More complicated queries: collocations, “proximity”
e Also some kind of ranking model to sort resulting documents
e Extended Boolean model takes term weighting into account

— How often does the term occur in the particular document?

— Is that frequency surprising given distribution of term?
e Requires storing more information in index

— Which can also permit positional queries (“within three words”™)

20

Positional indices

e Augment inverted indices with positions of each token:
word, DF: (docID, TF: (posi, posa, ... , pOSk); ...)

to, 993427
(1,6: (7,18,33,72,86,231);
2,5 (1,17,74,222,255);
4,5: (8,16,190, 429, 433);
5,2: (363,367);
7,3:(13,23,191);...)

be, 178239:
(1,2: (17,25);
4,5: (17,191,291, 430, 434);
5,3: (14,19, 101);...)

e Much larger (but optimizations to come); intersection also more expensive

21

What do positional indices buy us?

e Proximity-based queries

— employment \ 3 place (within three words on either side)

— “New York™; “Hong Kong”; “Steven Bedrick”

(without having to include these n-grams in the index itself)

— Algorithms 1in Manning et al. text (offset arithmetic req’d)
e Have term frequency available, for term weighting

— Obviates the need for explicit stop-word list creation

— Provides the means for assessing query relevance of match

22

Ranking retrieval results

e Huge topic, one we’ll return to a lot over the course

e Key 1ntuition:
a document that frequently mentions a query term should probably

be ranked higher than a document that only mentions it once
e However, not every query term 1s equally important

— Closed-class words (‘the’, ‘of’, ...) in most English documents
— Corpus-specific frequent terms have similar problems

* e.g., “‘auto” 1n a corpus related to cars; “brain” or “cell” in

neuroscience articles

e Must also consider the document frequency of a term

23

TF*IDF

e TF=term frequency; IDF=inverse document frequency
e A start towards weighting terms: favor high TF, low DF
— Use DF rather than total count, less impacted by outliers
e In practice, IDF of term calculated as log % for N documents
e Score of frequently occurring words severely penalized
e IDF can be seen as a kind of “expected document frequency”

e Favor terms occurring significantly more frequently that typical

— Other metrics (log likelihood or odds ratios) more directly

measure this

24

Ranking documents

e Given a query q and a document d, score the document by

summing tf-idf for every term ¢ in g, 1.e., in Manning et al.:

Score(q,d) = Z ti-idfy 4 (6.9)
teq

e This formulation allows for alternatives to tf-1df
— e.g., vector space models, to be covered next lecture
e Methods still depend on key 1nitial questions:

— What is a document?

— What 1s a term?

25

Terms and documents

e Chapter 2 of Manning et al. covers important issues in defining

“documents” (unit of retrieval) and “terms” 1n vocabulary
e Many issues that we deal with in other courses

— Document format normalization (mapping to text sequences)

— Language identification

— Tokenization and segmentation

— Term normalization (e.g., de-casing, stemming, lemmatization)

e Mapping to an internal representation:

Consistent normalization more important than human readability

26

Many non-English phenomena

e Ordering of characters within script, e.g., Arabic diacritics

L & T ola 4
unbatik (complicated by, e.g., numbers)
[kitabun/ ‘a book’

e Tokenization of nominal compounds in German:
Lebensversicherungsgesellschaftsangestellter

“life insurance company employee”

e Word segmentation in East Asian Languages, e.g., Chinese:
VP AR JRAEAE SR E R M EB R i 2 Bk . A 4 H
9 H, WP ES — R AAEL 71 8 54
Ho AEHIRN L, PDhripEss i 7 rmeE .

27

Normalization

e Mapping of multiple terms to a single class
e Case-folding 1s an obvious case: both This and this are the same

e Prefer easy, deterministic transforms, e.g., remove hyphens or

punctuation: U.S.A. — USA; Case-folding — Casefolding
e Map symbols with diacritics to the base symbol without
e Date and number normalization

e Stemming and lemmatization (rules for mapping term classes)

— e.g., Porter stemmer suffix rule in English: 1es — 1

thus ponies — poni (correct root ‘pony’ also maps to ‘poni’)

e Doesn’t matter that the mapping 1s wrong (internal representation)

28

What have we covered

e Figure out your terms and your ‘document’ granularity
— Variously complex pre-processing required
e Simple Boolean term-document matrix
e Sparse matrix representation — inverted index
e Merge algorithm for intersection postings list
e Optimizing queries and structures: binary search and skip lists
e Extended Boolean model: keep DF, TF and offsets
— positional indices

e Calculate tf-1df (or other scores) and rank retrieval results

29

Next week

e IR Models

— Vector space models

— Language models

e Index construction/optimization/compression

30

